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Abstract
Pentapartitioned neutrosophic sets are a generalization of the single-valued and quadri-
partitioned single-valued neutrosophic sets, and utilizes five symbol-valued neutrosophic
logic. In this paper, we introduce some novel concepts regarding pentapartitioned neu-
trosophic graphs (PPNGs), and emphasize the effectiveness at interpreting extremely
heterogeneous data that are prevalent in our daily life, particularly data gathered from various
different sources which are becoming increasingly common place in the current times. The
applicability of the proposed PPNG is demonstrated by applying the PPNGs on a potential
real-life scenario on responding to the spread of COVID-19, where PPNGs are used to deter-
mine the safest path of travel and the safest place to stay to minimize the chances of getting
infected. Both of this information have proven to be vital aspects in the efforts to combat the
spread of the COVID-19 pandemic while providing the necessary support to the domestic
economies, most of which are currently in recession due to the adverse effects brought upon
by the pandemic. Hence, the PPNGs are applicable to all countries around the world and can
be used under any circumstances such as pandemics or even in regular situations to optimize
the travelling time and distance.
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1 Introduction

Fuzzy set theory, which was firstly introduced by Zadeh (1965) is an important tool in
dealing with vagueness, imprecise and incomplete information that are prevalent in many
different fields such as engineering, medicine, social sciences, artificial intelligence, pattern
recognition and image analysis. The easy applicability of fuzzy sets has led to its extension
and generalization to models such as intuitionistic fuzzy sets, type 2 fuzzy sets, interval
valued fuzzy sets, Pythagorean fuzzy sets and neutrosophic sets. Neutrosophic set proposed
by Smarandache (1999) is a generalization of fuzzy set and intuitionistic fuzzy set. It has
the capability to deal with incomplete, indeterminant and inconsistent information. Wang
et al. (2010) subsequently proposed the concept of single-valued neutrosophic sets (SVNS)
as a subclass of the neutrosophic set in which each of the truth, indeterminacy and falsity
memberships assume values in the interval of [0, 1].

This paper pertains to the study of SVNS graphs and some of the important research
related to the SVNS and other related models and applications will be expounded. Chatterjee
et al. (2016a) defined quadripartitioned SVNS which comprises four membership functions
namely the truth, falsity and indeterminacy which is split into unknown and contradiction,
all of which assume values in the range of [0, 1]. Smarandache (2013) defined five-valued
neutrosophic logic in which the indeterminacy membership degree is further refined into
unknown, ignorance and contradiction. This work was subsequently extended to seven-
valued logic and refined to n-valued neutrosophic logic in Smarandache (2013), whereby
the indeterminacy membership is split into many types of truths, falsities and indetermina-
cies. Chatterjee et al. (2016b, 2020) studied the implementation of quadripartitionedSVNSon
various decision-making operators and applications. Mallick and Pramanik (2020) proposed
the concept of pentapartitioned neutrosophic set, which comprises the truth, contradiction,
ignorance, unknown and falsity membership functions.

Many researchers have worked on neutrosophic sets, SVNS and their extensions in many
different applications (Peng et al. 2014; Zhang et al. 2016; Tian et al. 2018; Wu et al. 2016;
Karabašević et al. 2020; Tan 2021; Ye et al. 2020; Gulistan et al. 2019; Quek et al. 2018).
Peng et al. (2014) and Zhang et al. (2016) proposed outranking approaches for multi-criteria
decision-making (MCDM) problems for simplified neutrosophic sets and interval-valued
neutrosophic sets, respectively. Tian et al. (2018) introduced a MCDM method based on
generalized prioritized aggregation operators, while Wu et al. (2016) introduced the concept
of cross-entropy and prioritized aggregation operators for simplified neutrosophic sets in
MCDM problems. Karabašević et al. (2020) introduced a novel MCDM method based on
TOPSIS on SVNS for selection of strategies for e-commerce development, while Tan (2021)
introduced a new MCDM method for the SVNS model based on entropy for typhoon dis-
aster assessment. Ye et al. (2020) introduced new correlation coefficients of consistency for
neutrosophic multi-valued sets, Gulistan et al. (2019) proposed neutrosophic cubic Heronian
mean operators using cosine similarity functions, whereas Quek et al. (2018) presented some
new results pertaining to the graph theory for complex neutrosophic sets.

Graphs are the visual symbolization of objects and their relations. Graph theory is appli-
cable to many fields and have been successfully applied in diverse areas such as medicine,
engineering, computer science, biochemistry and operations research. The relations between
objects may become vague and uncertain when some real-world problems are considered,
and therefore fuzzy graphs are considered in such situations. Having Zadeh’s fuzzy relation
as a base, Kaufmann (1973) proposed the idea of fuzzy graphs. Various basic graph theory
concepts such as cycles, paths, bridges and connectedness were defined by Rosenfeld (1975).
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Morderson and Peng (1994) introduced some operations on fuzzy graphs, while Gani and
Radha (2008), Akram and Davvaz (2012) and Karunambigai and Parvathi (2006) proposed
the concept of regular fuzzy graphs, strong fuzzy graphs and intuitionistic fuzzy graphs,
respectively. Akram and Dudek (2013) presented the concept of intuitionistic fuzzy hyper-
graphs and demonstrated the applications of this hypergraphs in real-life problems. Broumi
et al. (2016a, b) introduced single-valued neutrosophic graphs and isolated single-valued
neutrosophic graphs, respectively, while Naz et al. (2017) proposed several new operations
for single-valued neutrosophic graphs and introduced the concept of regular single-valued
neutrosophic graphs.

Broumi et al. (2016c) introducedbipolar single-valuedneutrosophic graphs anddefined the
concept of strong, complex and regular bipolar single-valued neutrosophic graphs. Broumi
et al. (2016d) presented some new results on bipolar single-valued neutrosophic graphs,
whereas Hassan et al. (2017) introduced some special types of bipolar neutrosophic graphs.
Dey et al. (2018) introduced several new concepts on vertex and edge coloring of simple
vague graphs, and Naz et al. (2018) introduced some important concepts related to the energy
and Laplacian energy for single-valued neutrosophic graphs. In recent years, fuzzy graphs
have been extended to Pythagorean graphs, picture fuzzy graphs, spherical fuzzy graphs,
etc. Numerous concepts pertaining to these graphs such as the energy of the graphs and
coloring of these graphs have been introduced in Zuo et al. (2019), Akram et al. (2020a, b),
Akram and Naz (2018), Mohamed and Ali (2020), Akram and Khan (2020) and Ajay and
Chellamani (2020). Zuo et al. (2019) proposed new concepts related to picture fuzzy graphs,
Akram et al. (2020a) introduced the concept of spherical fuzzy graphs. Akram andNaz (2018)
studied the energy of Pythagorean fuzzy graphs, while Mohamed and Ali (2020) presented
a study on the energy of spherical fuzzy graphs. Akram, Dar and Naz (2020b) introduced
the concept of Pythagorean Dombi fuzzy graphs, while Akram and Khan (2020) proposed
the notion of complex Pythagorean Dombi fuzzy graphs. Pythagorean neutrosophic graphs
were presented by Ajay and Chellamani (2020) by combining the idea of fuzzy graphs and
Pythagorean neutrosophic set.

In this paper, we present the concept of pentapartitioned neutrosophic graphs, explore
the fundamental properties of this newly introduced graph and demonstrate the applicability
of this graph by applying it in a MCDM problem. On the other hand, in the current state
of the increasing spread of the COVID-19 pandemic, transport navigation systems (e.g.,
WAZE, Google Maps, or any customized navigation systems) requires an unprecedentedly
sophisticated way of navigating the drivers through the most optimal roads, which considers
not only the conventional parameters such as distance, traffic congestion, and road conditions
but also many new pandemic related parameters, such as the number of reported COVID-
19 cases (Khalifa et al. 2021; Eroğlu and Şahin 2020). Such complexity in consideration
enables the creation of better mobile applications of traffic navigation systems in response
to the current pandemic situation. With the abundance of information being considered, this
gives rise to five major types of situations for a given town, all of which are as described
below:

(i) All types of information unanimously affirm that a town is safe: No reported COVID-19
cases, stringent government intervention, and full adherence to the disease prevention
rules imposed by the government.

(ii) Contradicting information exists on the safety of a town: No reported COVID-19 cases,
but no adherence to rules.

(iii) Denied access to information for a town: The government refuses to reveal the partic-
ulars of a town.
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(iv) Information is unknown for a town.
(v) All types of information unanimously affirm that a town is dangerous.

As for a given road, the five major types of situations that may be encountered are as
follows.

(i) All types of information unanimously affirm that a road is safe and efficient: No reported
COVID-19 cases, stringent government intervention, and full adherence to the disease
prevention rules imposed by the government in both the two towns connecting at each
of its ends. In addition, the road is short on distance, has smooth traffic, and the best
road conditions.

(ii) Contradicting information exists on a road’s safety or efficiency.
(iii) Denied access to information for a road.
(iv) Information is unknown for a road.
(v) All types of information unanimously affirm that a road is dangerous.

Therefore, pentapartitioned neutrosophic sets (PPNSs) and pentapartitioned neutrosophic
graphs (PPNGs) prove to be more suitable compared to all the previous derivatives of fuzzy
systems to model and represent such as a vast group of information. This is because PPNS
and PPNG as their names suggest is able to consider all the five aforementioned major types
of situations as individual memberships. Therefore, PPNS and PPNG can consider a much
greater variety of information as independent entities and process them accordingly.

The remainder of this paper is organized as follows. Section 2 covers some of the impor-
tant definitions and terminologies which form the background of this study are recapitulated.
In Sect. 3, the newly introduced concept of PPNG is introduced and some of the impor-
tant properties of this concept are also presented and discussed. Section 4 demonstrates the
applicability of the PPNGs by applying it to a MCDM problem on the spread of COVID-19,
specifically on determining the safest path to travel and the safest place to stay to minimize
the chances of getting infected. Concluding remarks are presented in Sect. 5, followed by the
acknowledgements and list of references.

2 Preliminaries

This section recapitulates some important concepts pertaining to the theory of SVNSs and
the concept of PPNSs from which the concept of PPNGs is derived. We refer the readers
to Smarandache (1999) and Wang et al. 2010) for further details pertaining to the NS and
SVNS theory, respectively.

The single-valued neutrosophic set (SVNS) model introduced in Wang et al. (2010) is
one of the most well-known and commonly used models among the neutrosophic models.
It is a special case of the classical neutrosophic set in which the range of each of the three
membership functions, namely the truth, indeterminacy and falsity membership functions
lie in the standard unit of interval of [0, 1], instead of the non-standard interval of ]−0, 1+[,
thereby making it compatible with traditional fuzzy sets and other fuzzy based models in
literature. The formal definition of the classical NS introduced by Smarandache (1999) is
given below.

Let U be a universe of discourse, with a class of elements in U denoted by x .

Definition 2.1. Smarandache 1999) A neutrosophic set A is an object having the form A �
{〈x, TA(x), IA(x), FA(x)〉 : x ∈ U },where the functions T , I , F : U → ]−0, 1+[ denote the
truth, indeterminacy, and falsity membership functions, respectively, of the element x ∈ U
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with respect to A.Themembership functionsmust satisfy the condition−0 ≤ TA(x)+ IA(x)+
FA(x) ≤ 3+.

Definition2.2. Smarandache 1999)Aneutrosophic set A is contained in another neutrosophic
set B, if TA(x) ≤ TB(x), IA(x) ≥ IB(x), and FA(x) ≥ FB(x), for all x ∈ U . This
relationship is denoted as A ⊆ B.

The SVNS is a specific form of the NSwith values of the membership functions defined in
the standard interval of [0, 1]. The formal definition of the SVNS is presented below, and this
is followed by the definitions of some of the important concepts and set theoretic operations
of the SVNS.

Definition 2.3. Wang et al. 2010) A SVNS A over a universe Y is given by A �
{(y, TA(y), IA(y), FA(y)) : y ∈ Y }, where TA(y), IA(y), FA(y) ∈ [0, 1] signify truth, inde-
terminacy and false membership of each y ∈ A respectively, and TA(y), IA(y), FA(y) satisfy
0 ≤ TA(y) + IA(y) + FA(y) ≤ 3.

For a SVNS N in Y , the triplet (TA(y), IA(y), FA(y)) is called a single-valued neutro-
sophic number (SVNN). For the sake of convenience, we simply let y � (

Ty, Iy, Fy
)
to

represent a SVNN as an element in the SVNS A.

Definition 2.4. Wang et al. 2010) Let A and B be two SVNSs over a universe Y .

(i) A is contained in B, if TA(y) ≤ TB(y), IA(y) ≥ IB(y), and FA(y) ≥ FB(y), for all
y ∈ Y . This relationship is denoted as A ⊆ B.

(ii) A and B are said to be equal if A ⊆ B and B ⊆ A.

(iii) Ac � (y, (FA(y), 1 − IA(y), TA(y))), for all y ∈ Y .

(iv) A ∪ B � (y, (max(TA, TB),min(IA, IB),min(FA, FB))), for all y ∈ Y .

(v) A ∩ B � (y, (min(TA, TB),max(IA, IB),max(FA, FB))), for all y ∈ Y .

Definition 2.5. Wang et al. 2010) Let x � (Tx , Ix , Fx ) and y � (
Ty, Iy, Fy

)
be two SVNNs.

The operations for SVNNs can be defined as follows:

(i) x ⊕ y � (
Tx + Ty − Tx ∗ Ty, Ix ∗ Iy, Fx ∗ Fy

)

(ii) x ⊕ y � (
Tx ∗ Ty, Ix + Iy − Ix ∗ Iy, Fx + Fy − Fx ∗ Fy

)

(iii) λx � (
1 − (1 − Tx )λ, (Ix )λ, (Fx )λ

)
, where λ > 0

(iv) xλ � (
(Tx )λ, 1 − (1 − Ix )λ, 1 − (1 − Fx )λ

)
, where λ > 0.

Definition 2.6. Majumdar and Samanta 2014) Let A and B be two SVNSs over a finite
universe Y � {y1, y2, . . . , yn}. Then the various distance measures between A and B are
defined as follows:

(i) The Hamming distance between A and B are defined as:

dH(A, B) �
n∑

i�1

{|TA(yi ) − TB(yi )| + |IA(yi ) − IB(yi )| + |FA(yi ) − FB(yi )|} (1)

(ii) The normalized Hamming distance between A and B are defined as:

dN
H (A, B) � 1

3n

n∑

i�1

{|TA(yi ) − TB(yi )| + |IA(yi ) − IB(yi )| + |FA(yi ) − FB(yi )|}

(2)
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(iii) The Euclidean distance between A and B are defined as:

dE(A, B) �
√√
√
√

n∑

i�1

{
(TA(yi ) − TB(yi ))2 + (IA(yi ) − IB(yi ))2 + (FA(yi ) − FB(yi ))2

}

(3)

(iv) The normalized Euclidean distance between A and B are defined as:

dN
E (A, B) �

√√√√ 1

3n

n∑

i�1

{
(TA(yi ) − TB(yi ))2 + (IA(yi ) − IB(yi ))2 + (FA(yi ) − FB(yi ))2

}

(4)

Definition 2.7. Broumi et al. 2016a) Let V be a set. Let E ⊆ {{u, v} : u, v ∈ V with u �� v}.
Let A be a SVNS on V and B be a SVNS on E with TB(u, v) ≤ min{TA(u), TA(v)},
IB(u, v) ≥ max{IA(u), IA(v)} and FB(u, v) ≥ max{FA(u), FA(v)} for all {u, v} ∈ E . Then
G � (A, B, V , E) is said to be a single-valued neutrosophic graph.

Remark. To avoid too many brackets in notation, we simply denote TB(u, v) � TB({u, v})
in this entire paper and this also applies to all other membership functions defined similarly
on E .

Definition 2.8. Mallick and Pramanik 2020) A pentapartitioned neutrosophic set (PPNS) A
on Y is defined as:

A � {(y, tA(y), cA(y), gA(y), uA(y), fA(y)) : y ∈ Y },
where tA(y), cA(y), gA(y), uA(y), fA(y) ∈ [0, 1] signify the truth, contradiction,
ignorance, unknown and falsity membership functions of each y ∈ A, respec-
tively. The membership functions tA, cA, gA, uA, fA must satisfy the condition 0 ≤
tA(y), cA(y), gA(y), uA(y), fA(y) ≤ 5.

3 Pentapartitioned neutrosophic graphs

In this section, we present the proposed concept of pentapartitioned neutrosophic graphs
(PPNGs). The definitions of SVNS, single-valued neutrosophic graphs and PPNS given
in Definitions 2.3, 2.7 and 2.8, respectively will be used to develop the formal definition of
PPNGs. The important components pertaining to this concept will be subsequently presented
and expounded.

Definition 3.1. Let V be a set. Let E ⊆ {{u, v} : u, v ∈ V with u �� v}. Let A be a
PPNS on V , and B be a PPNS on E , with tB(u, v) ≤ min{tA(u), tA(v)}, cB(u, v) ≥
max{cA(u), cA(v)}, gB(u, v) ≥ max{gA(u), gA(v)}, uB(u, v) ≥ max{uA(u), uA(v)} and
fB(u, v) ≥ max{fA(u), fA(v)} for all {u, v} ∈ E . Then we have the following:

(i) G � (A, B, V , E) is said to be a pentapartitioned neutrosophic graph (PPNG).
(ii) Each v ∈ V is said to be a vertex of G.
(iii) Each {u, v} ∈ E is said to be an edge of G.

123



New concepts of pentapartitioned neutrosophic graphs … Page 7 of 27 151

Fig. 1 A graphical representation of the PPNG G

Notation 3.1.1 Let G � (A, B, V , E) be a PPNG. Denote mA : V → [0, 1]5, where
mA(v) � (tA(v), cA(v), gA(v), uA(v), fA(v)) for all v ∈ V . Denote mB : E → [0, 1]5,
where mB(u, v) � (tB(u, v), cB(u, v), gB(u, v), uB(u, v), fB(u, v)) for all {u, v} ∈ E .

Example 3.2 Let G � (A, B, V , E) be a PPNG with V � {v1, v2, v3, v4, v5} and E �
{{v1, v2}, {v1, v3}, {v1, v4}, {v2, v5}, {v4, v5}}. Then we have the following (Fig. 1):

mA(v1) � (0.5, 0.6, 0.8, 0.9, 0.7), mB(v1, v2) � (0.3, 0.6, 0.9, 0.9, 0.8),

mA(v2) � (0.4, 0.3, 0.6, 0.5, 0.8),

mB(v1, v3) � (0.4, 0.7, 0.8, 0.9, 0.8),mA(v3) � (0.9, 0.7, 0.5, 0.3, 0.2),

mB(v1, v4) � (0.5, 0.8, 0.9, 0.9, 0.7),mA(v4) � (0.8, 0.5, 0.4, 0.6, 0.5),

mB(v2, v5) � (0.4, 0.5, 0.6, 0.5, 0.8),mA(v5) � (0.7, 0.4, 0.3, 0.2, 0.3),

mB(v4, v5) � (0.6, 0.6, 0.4, 0.6, 0.6),mB(v3, v4) � (0.3, 0.9, 0.8, 0.6, 0.5).

Definition 3.3. LetG � (A, B, V , E) and H � (
A′, B ′, V ′, E ′) be two PPNGs that satisfies

the following conditions:

(i) V ′ ⊆ V
(ii) E ′ ⊆ {{v,w} : v,w ∈ V ′ with u �� v

}

(iii) mA′(v) � mA(v), for all v ∈ V ′ ⊆ V
(iv) mB′ (v,w) � mB(v,w), for all {v,w} ∈ E ′ ⊆ E .

Then, H is said to be a partial pentapartitioned neutrosophic graph (partial-PPNG) of G.

Definition 3.4. LetG � (A, B, V , E) and H � (
A′, B ′, V ′, E ′) be two PPNGs that satisfies

the following conditions:

(i) V ′ ⊆ V
(ii) E ′ ⊆ {{v,w} : v,w ∈ V ′ with u �� v

}

(iii) tA′ (v) ≤ tA(v), cA′ (v) ≥ cA(v), gA′ (v) ≥ gA(v), uA′ (v) ≥ uA(v), fA′ (v) ≥ fA(v) for
all v ∈ V ′ ⊆ V

(iv) tB′ (v,w) ≤ tB(v,w), cB′ (v,w) ≥ cB(v,w), gB′ (v,w) ≥ gB(v,w), uB′ (v,w) ≥
uB(v,w), fB′ (v,w) ≥ fB(v,w), for all {v,w} ∈ E ′ ⊆ E .

Then, H is said to be a pentapartitioned neutrosophic subgraph (PPNSG) of G.

Example 3.5. Let G1 be a PPNG and H1, H2 be the partial-PPNG and PPNSG of G1,
respectively. The graphical representation of G1, H1 and H2 are shown in Figs. 2, 3 and
4, respectively. Here H2 is a PPNSG of G1 but not a partial-PPNG of G1.
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Fig. 2 Graphical representation of the PPNG G1

Fig. 3 Graphical representation of H1

Fig. 4 Graphical representation of H2
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Fig. 5 Example of a PPNG with isolated vertex

Definition 3.6. Let G � (A, B, V , E) be a PPNG. Let v1, v2, . . . , vn ∈ V , with {vi−1, vi } ∈
E for all 1 < i ≤ n, and with vi �� v j for all 1 ≤ i < j ≤ n. Then we have the following:

(i) P � (v1, v2, . . . , vn) is said to be a pentapartitioned neutrosophic path (PPNP) in G.

(ii) For each i , {vi−1, vi } is said to be an edge of P .
(iii) n is said to be the length of P .

Definition 3.7. Let G � (A, B, V , E) be a PPNG. Then G is said to be connected if there
exists at least one {v,w} ∈ E for all v ∈ V .

Definition 3.8. Let G � (A, B, V , E) be a PPNG. Then v ∈ V is said to be isolated if
{v,w} /∈ E for all w ∈ V \ {v}.

In Fig. 5, the PPNG has v1 as the isolated vertex.

Definition 3.9. Let G � (A, B, V , E) be a PPNG and let v ∈ V . The degree of v, written as
d(v), is defined as d(v) � ∑

u∈Vwith{v,w}∈E mB(v,w).

Remark 3.9.1. It follows that d(v)∈ [0, 1]5.

Example 3.10. In Fig. 3 under Eg. 3.5, the degree of the vertices are as follows.

d(v1) � (0.5, 1.7, 1.5, 1.1, 1.2),d(v3) � (0.6, 1.7, 1.7, 1.2, 1.2),

d(v4) � (0.5, 1.8, 1.6, 1.3, 1.6).

Definition 3.11. Let G � (A, B, V , E) be a PPNG and let P � (v1, v2, . . . , vn) be a PPNP
in G. The strength of P , denoted as s(P), is defined as:

s(P) � (
st(P), sc(P), sg(P), su(P), sf(P)

)
,

where st(P) � min{tB(vi−1, vi ) : 1 < i ≤ n}, sc(P) � max{cB(vi−1, vi ) : 1 < i ≤ n},
sg(P) � max{gB(vi−1, vi ) : 1 < i ≤ n}, su(P) � max{uB(vi−1, vi ) : 1 < i ≤ n} and

sf(P) � max{fB(vi−1, vi ) : 1 < i ≤ n}.
Moreover, the strength of connectedness among the vertices a, b ∈ V in G, denoted as

rG(a, b), is defined as:

rG(a, b) � (
rt,G(a, b), rc,G(a, b), rg,G(a, b), ru,G(a, b), rf,G(a, b)

)
,
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where:

rt,G(a, b) � max
{
st(P) : P � (

v1, v2, . . . , vnP
)
inG with v1 � a and vnP � b

}
,

rc,G(a, b) � min
{
sc(P) : P � (

v1, v2, . . . , vnP
)
inG with v1 � a and vnP � b

}
,

rg,G(a, b) � min
{
sg(P) : P � (

v1, v2, . . . , vnP
)
inG with v1 � a and vnP � b

}
,

ru,G(a, b) � min
{
su(P) : P � (

v1, v2, . . . , vnP
)
inG with v1 � a and vnP � b

}
,

rf,G(a, b) � min
{
sf(P) : P � (

v1, v2, . . . , vnP
)
inG with v1 � a and vnP � b

}
.

Definition 3.12. Let G � (A, B, V , E) be a PPNG and let {v,w} be an edge in G. Denote
G ′{v,w} as the partial-PPNG of G, in which G ′{v,w} � (

A′, B ′, V ′, E ′) with V
′ � V and

E
′ � E−{{v,w}}. Then, {v,w} is said to be a pentapartitioned neutrosophic bridge (PPNB)

in G if at least one of the following conditions holds for some a, b ∈ V .

(i) rt,G ′{v,w}(a, b) < rt,G(a, b)
(ii) rc,G ′{v,w}(a, b) > rc,G(a, b)
(iii) rg,G ′{v,w}(a, b) > rg,G(a, b)
(iv) ru,G ′{v,w}(a, b) > ru,G(a, b)
(v) rf,G ′{v,w}(a, b) > rf,G(a, b)

In particular, if all of the conditions (i)–(v) are true for some a, b ∈ V , then {v,w} is said
to be a strong pentapartitioned neutrosophic bridge (strong-PPNB) in G.

Remark 3.12.1. The behavior of A′ and B ′ follows that of Definition 3.3.

Definition 3.13. Let G � (A, B, V , E) be a PPNG and let v be a vertex in G. Denote
G ′

v as the partial-PPNG of G in which G ′
v � (

A′, B ′, V ′, E ′) with V
′ � V − {v} and

E
′ � E − {{a, v} : a ∈ V − {v}}. Then v is said to be a pentapartitioned neutrosophic cut

vertex (PPNCV) in G if at least one of the following conditions holds for some a, b ∈ V .

(i) rt,G ′
v
(a, b) < rt,G(a, b)

(ii) rc,G ′
v
(a, b) > rc,G(a, b)

(iii) rg,G ′
v
(a, b) > rg,G(a, b)

(iv) ru,G ′
v
(a, b) > ru,G(a, b)

(v) rf,G ′
v
(a, b) > rf,G(a, b)

In particular, if all of the conditions (i) to (v) are true for some a, b ∈ V , then v is said to
be a strong pentapartitioned neutrosophic bridge (strong-PPNCV) in G.

4 Application of the pentapartitioned neutrosophic graphs

In this section, the utility, applicability and practicality of our proposed PPNGs are demon-
strated by applying the concept of PPNGs to a MCDM problem related to the COVID-19
pandemic. Specifically, PPNGS will be used to determine the safest path of travel and the
safest place to stay in order to minimize the chances of getting infected by COVID-19.
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4.1 The scenario and datasets

4.1.1 The towns and the roads of connection

In this example, consider a district which consists of 6 towns denoted by v1, v2, v3, v4, v5, v6.
The towns are connected by roads as shown in Fig. 6. However, Fig. 6 only shows the manner
of connection and henceforth the lengths of those roads are not shown to scale in this figure.

4.1.2 The raw input variables considered

In this example, consider the following information gathered for each of the 6 towns, obtained
from various sources such as governmental reports, check-in registrations and online maps,
as follows:

n(v): number of new COVID-19 cases reported in the most recent 24 h.
m(v): maximum ICU occupancy ratio in the town during the most recent 24 h, from 0 to

1.
p(v): number of traffic that has checked-in through entering the town in the most recent

1 h,
if no check-in is enforced, then p(v) is assigned to be +∞.
q(v): number of check-ins by customers in all shops in the town in the most recent 1 h,
if no check-in is enforced, then q(v) is assigned to be +∞.
s(v): number of violations of disease prevention rules reported in the most recent 24 h.
d(v): population density of the town, in terms of the number of headcounts per km2 (thus

it can always be known).
In addition, for each town v,w that are directly connected by a road, the following infor-

mation are further considered:
l(v,w): length of the road connecting the two towns, in km (thus it can always be known).
u(v,w): average number of vehicles per 100 m in the most recent 1 h.
a(v,w): average speed of vehicles in the most recent 1 h.
Each of n(v),m(v), p(v), q(v), s(v), u(v,w), a(v,w) are assigned to be−1 if unknown,

−2 if denied access. Themaximumoperator, as inmax{n(v), 0} for example,will be deployed
to separate the values of −1 (absent data) and −2 (data denied access) from known data.

Fig. 6 The connection of towns for the scenarios presented in this scenario
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4.1.3 The dataset for the variables involved

In this example, suppose the following datasets given in Tables 1 and 2 are obtained at a
given instant, for which decisions are to be made.

4.2 Formation of PPNG and the score function

A PPNGG � (A, B, V , E) is to be constructed, firstly by assigning V and E to all the towns
and paths respectively. Therefore, such choices of V and E apply to all users regardless of
their needs.

The next step of forming G is to choose function ϕ : (R ∪ {+∞})6 → [0, 1]5 and
ψ : (R ∪ {+∞})15 → [0, 1]5 called the fuzzification functions for V and E , respectively.
These are to construct A and B by assigning the following:

(i) mA(v) � [
mA(v)i

]
5 � ϕ(n(v),m(v), p(v), q(v), s(v), d(v)) �

(tA(v), cA(v), gA(v), uA(v), fA(v)) for all v ∈ V , and

(ii) mB(v,w) � [
mB(v,w)i

]
5 � ψ

⎛

⎝
n(v),m(v), p(v), q(v), s(v), d(v),

n(w),m(w), p(w), q(w), s(w), d(w),

l(v,w), u(v,w), a(v,w)

⎞

⎠

� (tB(v,w), cB(v,w), gB(v,w), uB(v,w), fB(v,w)) for all {v,w} ∈ E .
Unlike V and E however, such choices of ϕ andψ will however depend on the preference

of the user, as long as the following conditions are satisfied for all {v,w} ∈ E :

Table 1 Data for each town v

v n(v) m(v) p(v) q(v) s(v) d(v)

v1 0 0 10 15 − 1 4200

v2 0 80 10 360 − 2 6000

v3 30 − 2 70 127 2 6000

v4 167 93 249 1404 43 12,000

v5 5 23 − 2 43 − 1 4000

v6 4 26 12 192 1 7000

Table 2 Data for each road {v, w}
v, w l(v, w) u(v, w) a(v, w)

v1, v2 5 6 60

v1, v3 13 37 70

v2, v3 26 6 50

v2, v4 6 76 40

v2, v5 31 − 1 − 1

v3, v5 8 57 5

v4, v6 9 56 50

v5, v6 13 5 60
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(i) mB(v,w)1 ≤ min{mA(v)1,mA(w)1}
(ii) mB(v,w)i ≥ max

{
mA(v)i ,mA(w)i

}
for all i � 2, 3, 4, 5.

Consequently, each user may use a different A and B subject to their needs.
Moreover, in comparing the safety among all paths P ∈ PPNP(G), a score function

σ : [0, 1]5 → R will be necessary to act on s(P) because there are 5 entries in s(P) to be
dealt with. With that σ , path P1 will be regarded as relatively safer and/or more efficient to
travel along compared to path P2 whenever σ(s(P1)) > σ(s(P2)). Moreover, that σ will also
be used to compare the safety of staying among all towns v ∈ V , for which town v1 will be
regarded as being relatively safer to stay in compared to town v2 whenever σ(v1) > σ(v2).
Such choices of σ is likewise dependent on the needs of the user.

4.3 Definition of fuzzification function

Thus, in the context of the scenario, let the fuzzification functions be defined as in Sects. 4.3.1
and 4.3.2, with the constants {ci |1 ≤ i ≤ 18} ∈ R

+
0 and {s1, s2} ∈ R

+ chosen as appropriate
by the user, as demonstrated in Sect. 4.4. On the other hand, s0 ∈ R

+ are chosen (either
manually or by a program) as an appropriate normalization parameter such that:

max

{
mean({ρ(v) : v ∈ V } ∪ {�(v,w) : {v,w} ∈ E})|

(ρ, �) ∈ {(tA, tB), (cA, cB), (gA, gB), (uA, uB), (fA, fB)}
}

≈ 0.5

to enable the most prominent membership value out of the truth, contradiction, ignorance,
unknown and falsity membership functions to receive the most attention, without causing
oversaturation of fuzzified values (e.g., when most of the fuzzified values are getting too
close to 1).

4.3.1 Fuzzification function'

ϕ(n(v),m(v), p(v), q(v), s(v), d(v)) � (tA(v), cA(v), gA(v), uA(v), fA(v)), where:

(i) tA(v) � 1 − tanh(s0c1d(v)max{n(v), 0})
Thus, the lower the number of COVID-19 cases in a town, the safer the town. The
variable d(v) serves to accentuate the deviation of the value from 0 according to the
population density—the denser the population, the more prominent the outcomes are.

(ii) cA(v) � min

⎧
⎨

⎩

|tanh(s0c2d(v)max{n(v), 0}) − tanh(s0c3d(v)max{m(v), 0})|
+tanh(s0c4max{s(v), 0}),

1

⎫
⎬

⎭

When there is a lot of new COVID-19 cases but low ICU occupancy, or few COVID-19
cases but higher ICU occupancy, it is deemed that the data obtained are contradictory
as when the number of COVID-19 cases is small, low ICU occupancy is expected.
The violations of disease prevention rules reported possesses two mutually opposite
perceptions. Onemay conclude that it is unsafe due to the presence of violation, another
may conclude that it is safe as it shows that the laws are strictly enforced. Likewise,
the role of the maximum in max{n(v), 0} is to separate the values of −1 (absent data)
and −2 (data denied access) for special consideration. The variable d(v) serves to
accentuate the deviation of the value from 0 according to the population density, but it
does not apply to the number of violations.
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(iii) gA(v) � tanh

⎛

⎜
⎜
⎜
⎜
⎜
⎝
s0c5d(v)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

boolean(n(v) � −2)
+boolean(m(v) � −2)
+boolean(p(v) � −2)
+boolean(q(v) � −2)
+boolean(s(v) � −2)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Thus, the total number of information denied accesses are added, and d(v) serves to
accentuate the deviation of the value from 0 according to the population density.

(iv) uA(v) � tanh

⎛

⎜
⎜
⎜
⎜
⎜
⎝
s0c6d(v)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

boolean(n(v) � −1)
+boolean(m(v) � −1)
+boolean(p(v) � −1)
+boolean(q(v) � −1)
+boolean(s(v) � −1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

The total number of unknown information is added, and d(v) serves to accentuate the
deviation of the value from 0 according to the population density.

(v) fA(v) � tanh

⎛

⎝s0c7d(v)max{n(v), 0}
⎛

⎝
c8max{m(v) + c9, 0}

+c10(max{p(v), 0} + max{c11s(v), 0})
+c12(max{q(v), 0} + max{c13s(v), 0})

⎞

⎠

⎞

⎠

The higher the number of COVID-19 cases, the higher the danger level. Such danger
is further accentuated when the ratio of ICU occupancy is high, number of check-ins
is high, or the number of violations is high, and d(v) serves to further accentuate the
deviation of the value from 0 according to the population density.

4.3.2 Fuzzification functionÃ

Likewise, define.

ψ

⎛

⎝
n (v) ,m (v) , p (v) , q (v) , s (v) , d (v) ,

n (w) ,m (w) , p (w) , q (w) , s (w) , d (w) ,

l (v,w) , u (v,w) , a (v,w)

⎞

⎠

� (tB (v,w) , cB (v,w) , gB (v,w) , uB (v,w) , fB (v,w)) ,

where:

(i) tB(v,w) � min

{
tA(v), tA(w),

tanh(s0c14min{d(v), d(w)}a(v,w))

}

The higher the travel speed of a car on a road and the safer both the adjacent towns of
the road, the safer and more efficient is that road itself.

(ii) cB(v,w) � max

{
cA(v), cA(w),

tanh
(
s0c15max{d(v), d(w)}

∣∣∣ a(v,w)u(v,w)
s1

+ s1
a(v,w)u(v,w)

− 2
∣∣∣
)
}

It is usually observed that cars move faster when the roads are open and move slower
when the roads are congested. Thus, when cars move fast on a congested road, or cars
move slowly on an open road, the amount of contradiction will be higher.

(iii) gB(v,w) � max

⎧
⎨

⎩

gA(v), gA(w),

tanh

(
s0c16max{d(v), d(w)}

(
boolean(u(v,w) � −2)
+boolean(a(v,w) � −2)

))
⎫
⎬

⎭

(iv) uB(v,w) � max

⎧
⎨

⎩

uA(v), uA(w),

tanh

(
s0c17max{d(v), d(w)}

(
boolean(u(v,w) � −1)
+boolean(a(v,w) � −1)

))
⎫
⎬

⎭
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(v) fB(v,w) � max

{
fA(v), fA(w),

tanh
(
s0c18max{d(v), d(w)}

(
s2l(v,w) + u(v,w)

s2

))
}

When any of the adjacent towns are deemed dangerous or the road itself is deemed too
long and too congested, then the riskier and the less efficient it is to travel along that road.

In particular, {ci |1 ≤ i ≤ 18} ∈ R
+
0 denotes the relative sensitivities among all the inputs,

{s1, s2} ∈ R
+ are chosen depending on the traffic pattern (e.g., the usual speed of travel as

determined by the speed limit) for a given road. Thus, a higher value of the corresponding
ci must be chosen by the user if more attention is to be given for an input.

In Sects. 4.4 and 4.5, three specific examples of adopting the fuzzification procedure will
be discussed, whereby each is assigned a different {ci |1 ≤ i ≤ 18} to suit their respective
needs.

4.4 Illustrative example 1: choosing a path to travel

Suppose we have three groups of people who are currently situated at town v1. They would
like to travel from town v1 to town v6. The three groups of people are: Riders from a delivery
company who need to deliver goods bought online to customers, a medical team which deals
with COVID-19 patients, and a family on a trip. Therefore, each team must choose the safest
and most efficient path to travel from v1 to v6.

For the delivery company, the truth and false membership functions carry greater impor-
tance than the rest as the delivery team only stays on the path for a very short period as they
are tasked to deliver their goods within a stipulated amount of time. Hence, the delivery team
cannot afford to give much attention to contradicting or absent information and must make a
quick decision based on whatever information that is certain. On the other hand, a delivery
company must pay the utmost attention to the road length and the traffic conditions. Thus, in
this example, let the choice of fuzzification function and the score function for the delivery
team be defined as follows:

ϕd(n(v),m(v), p(v), q(v), s(v), d(v)) � (
tAd (v), cAd (v), gAd (v), uAd (v), fAd (v)

)
,

where

tAd (v) � 1 − tanh

(
s0d(v)max{n(v), 0}

4000

)
,

cAd (v) � min

⎧
⎪⎪⎨

⎪⎪⎩

∣∣∣tanh
(
s0d(v)max{n(v),0}

1000000

)
− tanh

(
s0d(v)max{m(v),0}

1000000

)∣∣∣

+tanh
(
s0max{s(v),0}

1000000

)
,

1

⎫
⎪⎪⎬

⎪⎪⎭
,

gAd (v) � tanh

⎛

⎜⎜⎜⎜⎜
⎝

s0d(v)

1000000

⎛

⎜⎜⎜⎜⎜
⎝

boolean(n(v) � −2)
+boolean(m(v) � −2)
+boolean(p(v) � −2)
+boolean(q(v) � −2)
+boolean(s(v) � −2)

⎞

⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟
⎠

,
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uAd (v) � tanh

⎛

⎜
⎜
⎜
⎜
⎜
⎝

s0d(v)
1000000

⎛

⎜
⎜
⎜
⎜
⎜
⎝

boolean(n(v) � −1)
+boolean(m(v) � −1)
+boolean(p(v) � −1)
+boolean(q(v) � −1)
+boolean(s(v) � −1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, and

fAd (v) � tanh

⎛

⎜
⎝
s0d(v)

4000
max{n(v), 0}

⎛

⎜
⎝

max{m(v)+10,0}
2

+ (max{p(v),0}+max{10s(v),0})
50

+ (max{q(v),0}+max{10s(v),0})
200

⎞

⎟
⎠

⎞

⎟
⎠;

whereas

ψd

⎛

⎝
n (v) ,m (v) , p (v) , q (v) , s (v) , d (v) ,

n (w) ,m (w) , p (w) , q (w) , s (w) , d (w) ,

l (v,w) , u (v,w) , a (v,w)

⎞

⎠

� (
tBd (v,w) , cBd (v,w) , gBd (v,w) , uBd (v,w) , fBd (v,w)

)
,

where

tBd (v,w) � min

{
tAd (v), tAd (w), tanh

(
s0

(
min{d(v), d(w)}

40

)
(a(v,w))

)}
,

cBd (v,w) � max

⎧
⎪⎪⎨

⎪⎪⎩

cAd (v), cAd (w),

tanh

⎛

⎝
s0
(
max{d(v),d(w)}

1000000

)
×

∣∣∣max{a(v,w),0}max{u(v,w),0}
300 + 300

max{a(v,w),0}max{u(v,w),0} − 2
∣∣∣

⎞

⎠

⎫
⎪⎪⎬

⎪⎪⎭
,

gBd (v,w) � max

⎧
⎨

⎩

gAd (v), gAd (w),

tanh

(
s0
(
max{d(v),d(w)}

1000000

)( boolean(u(v,w) � −2)
+boolean(a(v,w) � −2)

))
⎫
⎬

⎭
,

uBd (v,w) � max

⎧
⎨

⎩

uAd (v), uAd (w),

tanh

(
s0
(
max{d(v),d(w)}

1000000

)( boolean(u(v,w) � −1)
+boolean(a(v,w) � −1)

))
⎫
⎬

⎭
,

fBd (v,w)

� max

{
fAd (v) , fAd (w) , tanh

(
s0

(
max {d (v) , d (w)}

10

)
(l (v,w) + max {u (v,w) , 0})

)}
,

and with the score function

σd(t, c, g, u, f) � 2t − c − g − u − 2f.

Thus, a relatively low sensitivity of 1
1000000 is assigned for {c2, c3, c4, c5, c6, c15, c16, c17}

compared to the other elements in the set {ci |1 ≤ i ≤ 18}, which results in a constantly near-
zero values for

{
cAd (v), gAd (v), uAd (v), cBd (v), gBd (v), uBd (v)

}
as the contradiction and

absence of information are deemed not very important for quick delivery. On the other hand,
a relatively high sensitivity value of 1

10 is assigned for c18 compared to the other elements
in {ci |1 ≤ i ≤ 18}. This is because the traffic conditions and the length of travel are deemed
very important in this case.

For the medical team, the contradiction, ignorance, and the unknown membership func-
tions carry much more importance compared to the others, whether in a town or on a road.
This is because, when there is absence or contradiction of information, it is difficult for the
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medical team to make their decisions. On the other hand, the truth and false membership
functions would carry lesser weight because the medical team can handle a known situation
very well with their knowledge and medical skills, although a safer and more efficient route
will still be favorable. Moreover, the medical team are well prepared even when the reported
number of Covid-19 cases are high. This results in much less attention given to the reported
number of Covid-19 cases and ICU occupancy upon the fuzzification. For the route of travel,
the medical team may give less attention as they will be given priority. Thus, in this example,
let the choice of fuzzification function and the score function for the medical team be defined
as follows:

ϕm(n(v),m(v), p(v), q(v), s(v), d(v)) � (
tAm (v), cAm (v), gAm (v), uAm (v), fAm (v)

)
,

where

tAm (v) � 1 − tanh

(
s0d(v)max{n(v), 0}

1000000

)
,

cAm (v) � min

⎧
⎪⎪⎨

⎪⎪⎩

∣
∣
∣tanh

(
s0d(v)max{n(v),0}

1000

)
− tanh

(
s0d(v)max{m(v),0}

1000

)∣∣
∣

+tanh
(
s0max{s(v),0}

10

)
,

1

⎫
⎪⎪⎬

⎪⎪⎭
,

gAm (v) � tanh

⎛

⎜⎜⎜⎜⎜
⎝

s0d(v)

10

⎛

⎜⎜⎜⎜⎜
⎝

boolean(n(v) � −2)
+boolean(m(v) � −2)
+boolean(p(v) � −2)
+boolean(q(v) � −2)
+boolean(s(v) � −2)

⎞

⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟
⎠

,

uAm (v) � tanh

⎛

⎜⎜⎜⎜⎜
⎝

s0d(v)

10

⎛

⎜⎜⎜⎜⎜
⎝

boolean(n(v) � −1)
+boolean(m(v) � −1)
+boolean(p(v) � −1)
+boolean(q(v) � −1)
+boolean(s(v) � −1)

⎞

⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟
⎠

,

fAm (v) � tanh

⎛

⎜
⎝

s0d(v)

1000000
max{n(v), 0}

⎛

⎜
⎝

max{m(v)+10,0}
1000000

+ (max{p(v),0}+max{10s(v),0})
50

+ (max{q(v),0}+max{10s(v),0})
200

⎞

⎟
⎠

⎞

⎟
⎠,

whereas

ψm

⎛

⎝
n (v) ,m (v) , p (v) , q (v) , s (v) , d (v) ,

n (w) ,m (w) , p (w) , q (w) , s (w) , d (w) ,

l (v,w) , u (v,w) , a (v,w)

⎞

⎠

� (
tBm (v,w) , cBm (v,w) , gBm (v,w) , uBm (v,w) , fBm (v,w)

)
,

where

tBm (v,w) � min

{
tAm (v), tAm (w), tanh

(
s0

(
min{d(v), d(w)}

10000

)
a(v,w)

)}
,

cBm (v,w) � max

{
cAm (v), cAm (w),

tanh
(
s0
(
max{d(v),d(w)}

10000

)∣∣∣ a(v,w)u(v,w)
300 + 300

a(v,w)u(v,w)
− 2

∣∣∣
)
}

,
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gBm (v,w) � max

⎧
⎨

⎩

gAm (v), gAm (w),

tanh

(
s0
(
max{d(v),d(w)}

1000

)( boolean(u(v,w) � −2)
+boolean(a(v,w) � −2)

))
⎫
⎬

⎭
,

uBm (v,w) � max

⎧
⎨

⎩

uAm (v), uAm (w),

tanh

(
s0
(
max{d(v),d(w)}

1000

)( boolean(u(v,w) � −1)
+boolean(a(v,w) � −1)

))
⎫
⎬

⎭
,

fBm (v,w) � max

{
fAm (v), fAm (w), tanh

(
s0

(
max{d(v), d(w)}

50000

)
(l(v,w) + u(v,w))

)}
;

and with the score function σm(t, c, g, u, f) � t − 2c − 2g − 2u − f.
For the family on a trip, the falsemembership function carries greater importance, followed

by the contradiction and ignorance membership functions. Moreover, the family on a trip
will be very mindful of the reported number of COVID-19 cases. This results in much more
attention given to the reported number of COVID-19 cases and ICU occupancy upon the
fuzzification. Thus, in this example, let the choice of fuzzification function and the score
function for the family on a trip to be defined as follows:

ϕz(n(v),m(v), p(v), q(v), s(v), d(v)) � (
tAz(v), cAz(v), gAz(v), uAz(v), fAz(v)

)
,

where

tAz(v) � 1 − tanh

(
s0d(v)max{n(v), 0}

10

)
,

cAz(v) � min

⎧
⎪⎪⎨

⎪⎪⎩

∣∣∣tanh
(
s0d(v)max{n(v),0}

200

)
− tanh

(
s0d(v)max{m(v),0}

40

)∣∣∣

+tanh
(
s0max{s(v),0}

100

)
,

1

⎫
⎪⎪⎬

⎪⎪⎭
,

gAz(v) � tanh

⎛

⎜⎜⎜⎜⎜
⎝

s0d(v)

1000

⎛

⎜⎜⎜⎜⎜
⎝

boolean(n(v) � −2)
+boolean(m(v) � −2)
+boolean(p(v) � −2)
+boolean(q(v) � −2)
+boolean(s(v) � −2)

⎞

⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟
⎠

,

uAz(v) � tanh

⎛

⎜⎜⎜⎜⎜
⎝

s0d(v)

1000

⎛

⎜⎜⎜⎜⎜
⎝

boolean(n(v) � −1)
+boolean(m(v) � −1)
+boolean(p(v) � −1)
+boolean(q(v) � −1)
+boolean(s(v) � −1)

⎞

⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟
⎠

,

fAz(v) � tanh

⎛

⎜
⎝
s0d(v)

40
max{n(v), 0}

⎛

⎜
⎝

max{m(v)+10,0}
2

+ (max{p(v),0}+max{10s(v),0})
50

+ (max{q(v),0}+max{10s(v),0})
200

⎞

⎟
⎠

⎞

⎟
⎠,

whereas

ψz

⎛

⎝
n (v) ,m (v) , p (v) , q (v) , s (v) , d (v) ,

n (w) ,m (w) , p (w) , q (w) , s (w) , d (w) ,

l (v,w) , u (v,w) , a (v,w)

⎞

⎠

� (
tBz (v,w) , cBz (v,w) , gBz (v,w) , uBz (v,w) , fBz (v,w)

)
,
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where

tBz(v,w) � min

{
tAz(v), tAz(w), tanh

(
s0

(
min{d(v), d(w)}

4000

)
a(v,w)

)}
,

cBz(v,w) � max

{
cAz(v), cAz(w),

tanh
(
s0
(
max{d(v),d(w)}

4000

)∣∣
∣ a(v,w)u(v,w)

300 + 300
a(v,w)u(v,w)

− 2
∣
∣
∣
)
}

,

gBz(v,w) � max

⎧
⎨

⎩

gAz(v), gAz(w),

tanh

(
s0
(
max{d(v),d(w)}

200

)( boolean(u(v,w) � −2)
+boolean(a(v,w) � −2)

))
⎫
⎬

⎭
,

uBz(v,w) � max

⎧
⎨

⎩

uAz(v), uAz(w),

tanh

(
s0
(
max{d(v),d(w)}

200

)( boolean(u(v,w) � −1)
+boolean(a(v,w) � −1)

))
⎫
⎬

⎭
,

fBz(v,w) � max

{
fAz(v), fAz(w), tanh

(
s0

(
max{d(v), d(w)}

40000

)
(l(v,w) + u(v,w))

)}
,

and with the score function σz(t, c, g, u, f) � t − c − 2g − 2u − 3f.

Remark: for all the aforementioned examples, it is worth emphasizing that s0 is to be chosen
using the formula given below:

max

{
mean({ρ(v) : v ∈ V } ∪ {�(v,w) : {v,w} ∈ E})|

(ρ, �) ∈ {(tA, tB), (cA, cB), (gA, gB), (uA, uB), (fA, fB)}
}

≈ 0.5

4.4.1 Step 1: assignment of V and E

Firstly, for all the three teams assign V � {v1, v2, v3, v4, v5, v6} and E �
{{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v2, v5}, {v3, v5}, {v4, v6}, {v5, v6}}.

4.4.2 Step 2: assignment of A and B which leads to the formation
of G � (A, B, V , E)

For the delivery team, the truth, contradiction, ignorance, unknown and falsity membership
functions for Ad and Bd are calculated usingϕd on the raw data. The values of themembership
functions and the safety of travelling between adjacent towns that are yielded are given in
Tables 3 and 4, respectively. In this example, s0 � 0.0000244291178987957 is chosen by

Table 3 Values of the membership functions of Ad for the delivery team

v tAd (v) cAd (v) gAd (v) uAd (v) fAd (v)

v1 1.00000 0.00000 0.00000 0.00000 0.00000

v2 1.00000 0.00001 0.00000 0.00000 0.00000

v3 0.99890 0.00000 0.00000 0.00000 0.00720

v4 0.98774 0.00002 0.00000 0.00000 0.72138

v5 0.99988 0.00000 0.00000 0.00000 0.00205

v6 0.99983 0.00000 0.00000 0.00000 0.00333
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an iterative program.
Likewise, for the medical team, the truth, contradiction, ignorance, unknown and falsity

membership functions of Am and Bm are calculated using ϕm on the raw data. The values of
themembership functions and the safety of travelling between adjacent towns that are yielded
are given in Tables 5 and 6, respectively. In this example, s0 � 0.00156005814758476 is
chosen by an iterative program.

Table 4 Values of the membership functions of Bd for the delivery team

v, w tBd (v, w) cBd (v, w) gBd (v, w) uBd (v, w) fBd (v, w)

v1, v2 0.15299 0.00001 0.00000 0.00000 0.16016

v1, v3 0.17799 0.00000 0.00000 0.00000 0.62569

v2, v3 0.18154 0.00001 0.00000 0.00000 0.43816

v2, v4 0.14581 0.00002 0.00000 0.00000 0.98395

v2, v5 0.00000 1.00000 0.00000 0.00000 0.42622

v3, v5 0.01224 0.00000 0.00000 0.00000 0.74186

v4, v6 0.21096 0.00002 0.00000 0.00000 0.95702

v5, v6 0.14581 0.00000 0.00000 0.00000 0.29899

Table 5 Values of the membership functions of Am for the medical team

v tAm (v) cAm (v) gAm (v) uAm (v) fAm (v)

v1 1.00000 0.00000 0.00000 0.57585 0.00000

v2 1.00000 0.63514 0.73406 0.00000 0.00000

v3 0.99972 0.27437 0.73406 0.00000 0.00071

v4 0.99687 0.06226 0.00000 0.00000 0.07112

v5 0.99997 0.11153 0.55459 0.55459 0.00001

v6 0.99996 0.23338 0.00000 0.00000 0.00006

Table 6 Values of the membership functions of Bm for the medical team

v, w tBm (v, w) cBm (v, w) gBm (v, w) uBm (v, w) fBm (v, w)

v1, v2 0.00039 0.63514 0.73406 0.57585 0.00010

v1, v3 0.00046 0.91888 0.73406 0.57585 0.00071

v2, v3 0.00047 0.63514 0.73406 0.00000 0.00071

v2, v4 0.00037 0.99911 0.73406 0.00000 0.07112

v2, v5 0.00000 1.00000 0.73406 0.55459 0.00029

v3, v5 0.00003 0.27437 0.73406 0.55459 0.00071

v4, v6 0.00055 0.99813 0.00000 0.00000 0.07112

v5, v6 0.00037 0.23338 0.55459 0.55459 0.00020
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Table 7 Values of the membership functions of AZ for the family on a trip

v tAz (v) cAz (v) gAz (v) uAz (v) fAz (v)

v1 1.00000 0.00000 0.00000 0.00012 0.00000

v2 1.00000 0.33586 0.00017 0.00000 0.00000

v3 0.51912 0.02620 0.00017 0.00000 0.69434

v4 0.00002 0.38716 0.00000 0.00000 1.00000

v5 0.94183 0.06396 0.00012 0.00012 0.23866

v6 0.91865 0.12764 0.00000 0.00000 0.37690

Table 8 Values of the membership functions of BZ for the family on a trip

v, w tBz (v, w) cBz (v, w) gBz (v, w) uBz (v, w) fBz (v, w)

v1, v2 0.00183 0.33586 0.00017 0.00012 0.00005

v1, v3 0.00214 0.02620 0.00017 0.00012 0.69434

v2, v3 0.00218 0.33586 0.00017 0.00000 0.69434

v2, v4 0.00002 0.38716 0.00017 0.00000 1.00000

v2, v5 0.00000 1.00000 0.00017 0.00175 0.23866

v3, v5 0.00015 0.06396 0.00017 0.00012 0.69434

v4, v6 0.00002 0.38716 0.00000 0.00000 1.00000

v5, v6 0.00175 0.12764 0.00012 0.00012 0.37690

For the family on a trip, the truth, contradiction, ignorance, unknown and falsity mem-
bership functions of AZ and BZ are calculated using ϕZ on the raw data. The values of the
membership functions and the safety of travelling between adjacent towns that are yielded
are given in Tables 7 and 8, respectively. In this example, s0 � 0.0000290825859068550 is
chosen by an iterative program.

We now form three PPNGs, namely Gd � (Ad, Bd, V , E),Gm � (Am, Bm, V , E) and
Gz � (Az, Bz, V , E) for the delivery team, the medical team, and the family on a trip,
respectively.

4.4.3 Step 3: determining all the paths

In travelling from v1 to v6, all the possible paths are as follows:

P1 � (v1, v2, v4, v6), P2 � (v1, v2, v5, v6),

P3 � (v1, v3, v2, v4, v6), P4 � (v1, v3, v2, v5, v6),

P5 � (v1, v2, v3, v5, v6), P6 � (v1, v3, v5, v2, v4, v6), P7 � (v1, v3, v5, v6).
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4.4.4 Step 4: calculating the score function for all the paths

The strength of each of the 7 paths will be computed from their corresponding PPNGs for
each of the 3 teams, after which their own choices of score functions will be applied and the
score function will then be determined. The score functions for all the 3 teams are given in
Tables 9, 10 and 11, respectively.

Table 9 The strength and score functions for all the paths for the delivery team

P sd(P) σd(sd(P))

P1 (0.14581, 0.00001, 0.00000, 0.00000, 0.16016) − 0.02870

P2 (0.00000, 0.00000, 0.00000, 0.00000, 0.16016) − 0.32032

P3 (0.14581, 0.00000, 0.00000, 0.00000, 0.43816) − 0.58470

P4 (0.00000, 0.00000, 0.00000, 0.00000, 0.29899) − 0.59798

P5 (0.01224, 0.00000, 0.00000, 0.00000, 0.16016) − 0.29584

P6 (0.00000, 0.00000, 0.00000, 0.00000, 0.42622) − 0.85245

P7 (0.01224, 0.00000, 0.00000, 0.00000, 0.29899) − 0.57351

Table 10 The strength and score
functions for all the paths for the
medical team

P sm(P) σm(sm(P))

P1 (0.00037,0.63514,0.00000,0.00000,0.00010) − 1.27001

P2 (0.00000,0.23338,0.55459,0.55459,0.00010) − 2.68523

P3 (0.00037,0.63514,0.00000,0.00000,0.00071) − 1.27062

P4 (0.00000,0.23338,0.55459,0.00000,0.00020) − 1.57614

P5 (0.00003,0.23338,0.55459,0.00000,0.00010) − 1.57601

P6 (0.00000,0.27437,0.00000,0.00000,0.00029) − 0.54903

P7 (0.00003,0.23338,0.55459,0.55459,0.00020) − 2.68529

Table 11 The strength and score functions for all the paths for the family on a trip

P sz(P) σz(sz(P))

P1 (0.00002, 0.33586, 0.00000, 0.00000, 0.00005) − 0.33599

P2 (0.00000, 0.12764, 0.00012, 0.00012, 0.00005) − 0.12825

P3 (0.00002, 0.02620, 0.00000, 0.00000, 0.69434) − 2.10921

P4 (0.00000, 0.02620, 0.00012, 0.00000, 0.23866) − 0.74242

P5 (0.00015, 0.06396, 0.00012, 0.00000, 0.00005) − 0.06419

P6 (0.00000, 0.02620, 0.00000, 0.00000, 0.23866) − 0.74218

P7 (0.00015, 0.02620, 0.00012, 0.00012, 0.37690) − 1.15722
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4.4.5 Step 5 Conclusion on the best path to travel

Based on the score functions obtained in Step 4 above, the best path for the delivery team to
travel along would be path P1 � (v1, v2, v4, v6), the best path for the medical team to travel
along would be path P6 � (v1, v3, v5, v2, v4, v6), whereas the best path for the family on
a trip to travel along would be path P5 � (v1, v2, v3, v5, v6), in travelling from town v1 to
town v6.

It is worth noting that the concept outlined in Definition 3.12 proves to be a much more
appropriate model for this scenario compared to the mere multiplication of the membership
functions of all the edges in a path. This is because the mere multiplication of values is
always done under the assumption that all the events are independent which bares opposite
resemblance with a real-life pandemic outbreak where an outbreak at a given place will
potentially affect the safety of an entire path or even the whole town, thereby increasing the
likelihood of occurrence of similar outbreaks.

4.5 Illustrative example 2: choosing a town to stay

Now, suppose the same three groups of people discussed in Sect. 4.3 wish to find a town to
rest temporarily on their journey from town v1 to town v6 along the safest paths that were
determined in Sect. 4.4.

4.5.1 Step 1: determination of vertices

Recall that in Sect. 4.4, the safest path to travel for the 3 teams are as given below:
Delivery team: path P1 � (v1, v2, v4, v6).
Medical team: path P6 � (v1, v3, v5, v2, v4, v6).

Family on a trip: path P5 � (v1, v2, v3, v5, v6).
Therefore, the delivery teamwill choose the safest town out ofWd � {v2, v4}, the medical

team will choose the safest town out ofWm � {v3, v5, v2, v4}, while the family on a trip will
choose the safest town out of Wz � {v2, v3, v5}.

4.5.2 Step 2: calculating the score function on all the paths

Similar to Sect. 4.4.4, each team will apply their own choices of score functions on their own
sets of towns. The values of the score functions for the safest town to stay temporarily for
the 3 teams are given in Table 12.

4.5.3 Step 5: conclusion on the safest town to stay temporarily

Based on the values of the score functions obtained in Table 12, it can be concluded that the
safest town for a temporary stay while travelling from town v1 to town v6 would be town v4
for the medical team, and town v2 for both the delivery team and the family on a trip.

5 Comparison with the previous works

Our PPNG model enables us to deal with 5 mutually distinct kinds of membership: truth,
contradiction, ignorance, unknown, and falsity. Throughout our observation in the literature,
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Table 12 The score functions for the safest town to stay temporarily in for the three teams

v σd(v) for v ∈ Wd σm(v) for v ∈ Wm σz(v) for v ∈ Wz

v1 – – –

v2 1.99999 − 1.73841 0.66379

v3 – − 1.01786 − 1.59045

v4 0.53269 0.80124 –

v5 – − 1.44146 0.16142

v6 – – −

there is yet to be any literature that consider the theory of PPNG as well as the practical
applications of PPNG in real-life events. Therefore, all of the reputable works in literature
that were observed have only 4 (mostly 3) distinct kinds of membership at most. Besides
the advantage of having more types of membership functions, our work deploys a novel and
dedicated, customized fuzzification procedure that was custom-made for the scenario. The
function of every component of the formulas used in the fuzzification procedure has been
justified inSect. 4.3.Moreover, our fuzzification procedure grants the user an unprecedentedly
great range of possibilities in adopting the model to suit their individual needs.

In contrast, all recent works encountered in literature were observed to directly start with
the fuzzified input. This defeats the purpose of the demonstration of the application as it
is a well-known fact that no data in real-life comes in the form of a fuzzy set or any of
its derivatives, including the PPNGs proposed in this study. As a result, most (if not all)
of the models introduced in the previous studies are general ones that were not specifically
configured to deal with a specific scenario.

6 Conclusions

The concluding remarks and the significant contributions that were made by the work in this
paper are summarized below:

(i) The pentapartitioned neutrosophic set is a generalization of the quadripartitioned
neutrosophic sets and SVNS models. A novel concept called the pentapartitioned neu-
trosophic graph (PPNG) is defined and its fundamental properties are presented. Some
of the important concepts related to the PPNGs such as the path, connectedness and
tree of PPNGs are also defined, and the graphical representation of these concepts were
presented alongside some examples.

(ii) Our proposed PPNG holds the distinction of being able to represent different aspects
of the data such as independent entities and process them accordingly as it is able to
represent the truth, contradiction, ignorance, unknown and falsity aspects of the data
which makes it highly suitable to handle incomplete, imprecise and uncertain data.

(iii) The proposed concepts were applied to a real-life scenario pertaining to the ongoing
Covid-19 pandemic.

(iv) The applicability of the proposed concepts was demonstrated by applying them to
a real-life scenario pertaining to the on-going Covid-19 pandemic. In this example,
the proposed PPNGs were used to determine the safest path of travel and the safest
place to stay in order to minimize the chances of getting infected by Covid-19. These
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parameters have been proven to be vital aspects in the efforts to combat the spread of the
Covid-19 pandemic while providing the necessary support to the domestic economies,
most of which are currently in recession due to the adverse effects brought upon by the
pandemic. It was proven that the novel concept of PPNGs that were introduced here can
be used under any circumstances such as pandemics, emergencies or even in regular
situations to optimize the travelling time and distance.

The future research directions with regards to this study are expounded below:

(i) To develop a full-fledged AI algorithm which a words extraction feature that would
enable the system to take into consideration non-numerical data in addition to numerical
data such as coordinates and distances. Such an AI algorithm will enable us to generate
a PPNG using all sources of data gathered on the towns and roads, without having to
rely on human intervention.

(ii) This improved PPNGwill potentially provide amuch clearer picture for the safety of an
area, which has proven to be essential to the global population as Covid-19 lockdowns
cannot be continuously implemented to the point of affecting the global economy.

(iii) The AI system developed in (i) would be further improved and expanded based on
the concept of PPNG and applied to develop more efficient global transport navigation
systems.
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