Skip to main content
Log in

Modified Galerkin method for Volterra-Fredholm-Hammerstein integral equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we analyze piecewise polynomial based modified Galerkin method for a class of nonlinear Volterra-Fredholm mixed type Hammerstein integral equations with smooth kernels. Existence and convergence of the approximate and iterated approximate solutions to the actual solution is discussed and the rates of convergence are obtained. We are able to improve the existing convergence results for Galerkin method with the modified Galerkin method for nonlinear Volterra-Fredholm-Hammerstein integral equations. Also, we further obtain better convergence rates with one step iteration approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahues M, Largillier A, Limaye B (2001) Spectral computations for bounded operators. CRC Press

  • Atkinson KE (1992) A survey of numerical methods for solving nonlinear integral equations. J. Integral Equ. Appl. pp.15-46

  • Bakodah HO, Darwish MA (2012) On discrete Adomian decomposition method with Chebyshev abscissa for nonlinear integral equations of Hammerstein type. Adv Pure Math 2(5):310–313

    Article  Google Scholar 

  • Brunner H (1990) On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods. SIAM J Numer Anal 27(4):987–1000

    Article  MathSciNet  Google Scholar 

  • Darwish MA (1999) Fredholm-Volterra integral equation with singular kernel. Korean J Comput Appl Math 6(1):163–174

    Article  MathSciNet  Google Scholar 

  • Darwish MA (1999) Note on stability theorems for nonlinear mixed integral equations. Korean J Comput Appl Math 6(3):633–637

    Article  MathSciNet  Google Scholar 

  • Das P, Nelakanti G (2015) Convergence Analysis of Legendre Spectral Galerkin Method for Volterra-Fredholm-Hammerstein Integral Equations. In Mathematical analysis and its applications (pp. 3-15). Springer, New Delhi

  • Grammont L (2011) A Galerkin’s perturbation type method to approximate a fixed point of a compact operator. Int J Pure Appl Math 69(1):1–14

    MathSciNet  MATH  Google Scholar 

  • Grammont L, Kulkarni R (2006) A superconvergent projection method for nonlinear compact operator equations. C R Math 342(3):215–218

    Article  MathSciNet  Google Scholar 

  • Grammont L, Kulkarni RP, Vasconcelos PB (2013) Modified projection and the iterated modified projection methods for nonlinear integral equations. J Integral Equ Appl 25(4):481–516

    Article  MathSciNet  Google Scholar 

  • Grammont L, Kulkarni RP, Nidhin TJ (2016) Modified projection method for Urysohn integral equations with non-smooth kernels. J Comput Appl Math 294:309–322

    Article  MathSciNet  Google Scholar 

  • Kulkarni RP (2004) Approximate solution of multivariable integral equations of the second kind. J Integral Equ Appl. 16(4):343–374

    Article  MathSciNet  Google Scholar 

  • Kulkarni RP (2003) A superconvergence result for solutions of compact operator equations. Bullet Aust Math Soc 68(3):517–528

    Article  MathSciNet  Google Scholar 

  • Kulkarni RP (2005) On improvement of the iterated Galerkin solution of the second kind integral equations. J Numer Math 13(3):205–218

    Article  MathSciNet  Google Scholar 

  • Kulkarni RP, Gnaneshwar N (2004) Spectral refinement using a new projection method. ANZIAM J 46(2):203–224

    Article  MathSciNet  Google Scholar 

  • Kulkarni RP, Nidhin TJ (2016) Approximate solution of Urysohn integral equations with non-smooth kernels. J Integral Equ Appl 28(2):221–261

    Article  MathSciNet  Google Scholar 

  • Kulkarni RP, Rakshit G (2018) Discrete modified projection method for Urysohn integral equations with smooth kernels. Appl Numer Math 126:180–198

    Article  MathSciNet  Google Scholar 

  • Kulkarni RP, Rakshit G (2020) Discrete Modified Projection Methods for Urysohn Integral Equations with Green’s Function Type Kernels. Math Model Anal 25:421–440

    Article  MathSciNet  Google Scholar 

  • Kulkarni RP, Rakshit G (2020) Richardson extrapolation for the discrete iterated modified projection solution. Numer Algo 85(1):171–189

    Article  MathSciNet  Google Scholar 

  • Maleknejad K, Karami M, Rabbani M (2006) Using the Petrov-Galerkin elements for solving Hammerstein integral equations. Appl Math Comput 172(2):831–845

    Article  MathSciNet  Google Scholar 

  • Mandal M, Nelakanti G (2017) Superconvergence of Legendre spectral projection methods for Fredholm-Hammerstein integral equations. J Comput Appl Math 319:423–439

    Article  MathSciNet  Google Scholar 

  • Mandal M, Nelakanti G (2021) Superconvergence results for the nonlinear Fredholm-Hemmerstein integral equations of second kind. J Anal 29:67–87

    Article  MathSciNet  Google Scholar 

  • Marzban HR, Tabrizidooz HR, Razzaghi M (2011) A composite collocation method for the nonlinear mixed Volterra-Fredholm-Hammerstein integral equations. Commun Nonlinear Sci Numer Simul 16(3):1186–1194

    Article  MathSciNet  Google Scholar 

  • Mashayekhi S, Razzaghi M, Tripak O (2014) Solution of the nonlinear mixed Volterra-Fredholm integral equations by hybrid of block-pulse functions and Bernoulli polynomials. Sci World J (2014)

  • Mirzaee F, Hoseini AA (2013) Numerical solution of nonlinear Volterra-Fredholm integral equations using hybrid of block-pulse functions and Taylor series. Alex Eng J 52(3):551–555

    Article  Google Scholar 

  • Pachpatte BG (2008) On a nonlinear Volterra-Fredholm integral equation. Sarajevo J Math 16:61–71

    MathSciNet  MATH  Google Scholar 

  • Vainikko GM (1967) A perturbed Galerkin method and the general theory of approximate methods for nonlinear equations. USSR Comput Math & Math Phys 7(4):1–41

    Article  MathSciNet  Google Scholar 

  • Wazwaz AM (2002) A reliable treatment for mixed Volterra-Fredholm integral equations. Appl Math Comput 127(2–3):405–414

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payel Das.

Additional information

Communicated by Hui Liang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Using Leibniz rule, we have

$$\begin{aligned}&\Vert [(\mathcal {K}_1\psi _1)'(x_0)x]^{1}\Vert _\infty \nonumber \\&\quad =\sup _{t\in [0,1]}|[(\mathcal {K}_1\psi _1)'(x_0)x]^{1}(t)|\nonumber \\&\quad =\sup _{t\in [0,1]}|\frac{\partial }{\partial t}\int _{0}^{t}k_1(t,s)\psi _1^{(0,1)}(s,x_0(s))x(s)ds|\nonumber \\&\quad \le \sup _{t\in [0,1]}\left[ |k_1(t,t)||\psi ^{(0,1)}(t,x_0(t))||x(t)|+\left| \int _{0}^{t}\frac{\partial }{\partial t}k_1(t,s)\psi _1^{(0,1)}(s,x_0(s))x(s)ds\right| \right] \nonumber \\&\quad \le \sup _{t\in [0,1]}[|k_1(t,t)||\psi _1^{(0,1)}(t,x_0(t))||x(t)|]\nonumber \\&\qquad +\sup _{t,s\in [0,1]}|\frac{\partial }{\partial t}k_1(t,s)|\sup _{s\in [0,1]}|\psi _1^{(0,1)}(s,x_0(s))|\int _{0}^{t}|x(s)|ds\nonumber \\&\quad \le M_1d_1\Vert x\Vert _\infty +\Vert k_1\Vert _{1,\infty }d_1\Vert x\Vert _\infty <\infty . \end{aligned}$$
(A.1)

For \(j=0, 1, 2,..., r\), we have

$$\begin{aligned} \Vert [(\mathcal {K}_2\psi _2)'(x_0)x]^{(j)}\Vert _\infty= & {} \sup _{t\in [0,1]}|[(\mathcal {K}_2\psi _2)'(x_0)x]^{(j)}(t)|\nonumber \\= & {} \sup _{t\in [0,1]}|\frac{\partial ^j}{\partial t^j}\int _{0}^{1}k_2(t,s)\psi _2^{(0,1)}(s,x_0(s))x(s)ds|\nonumber \\\le & {} \sup _{t, s\in [0,1]}|\frac{\partial ^j}{\partial t^j}k_2(t,s)|\sup _{s\in [0,1]}[|\psi _2^{(0,1)}(s,x_0(s))||x(s)|]\nonumber \\\le & {} \Vert k_2\Vert _{j,\infty }d_2\Vert x\Vert _\infty <\infty . \end{aligned}$$
(A.2)

Appendix B

Lemma 5

For any \(x, y\in L^2[0,1]\) or \(\mathcal {C}[0,1]\), the following hold

$$\begin{aligned}&\Vert [(\mathcal {K}_{1,n}^M\psi _1)'(x)-(\mathcal {K}_{1,n}^M\psi _1)'(y)]z\Vert _\infty \le [p_1M_1c_1+ch(M_1+2\Vert k_1\Vert _{1,\infty })c_1p_1^2]\Vert x\nonumber \\&\quad -y\Vert _{\infty }\Vert z\Vert _{\infty }, \\&\Vert [(\mathcal {K}_{2,n}^M\psi _2)'(x)-(\mathcal {K}_{2,n}^M\psi _2)'(y)]z\Vert _\infty \le [p_1M_2c_2+ch^rc_2\Vert k_2\Vert _{r,\infty }p_1^2]\Vert x\nonumber \\&\quad -y\Vert _{\infty }\Vert z\Vert _{\infty }, \end{aligned}$$

where c is a constant independent of n.

Proof

For any x, y, z, using (2.5), (3.2), we have for \(i=1, 2\),

$$\begin{aligned}&\Vert [(\mathcal {K}_{i,n}^M\psi _i)'(x)-(\mathcal {K}_{i,n}^M\psi _i)'(y)]z\Vert _\infty \nonumber \\&\quad = \Vert [\mathcal {P}_n(\mathcal {K}_i\psi _i)'(x)+(\mathcal {I}-\mathcal {P}_n)(\mathcal {K}_i\psi _i)'(\mathcal {P}_nx)\mathcal {P}_n\nonumber \\&\qquad -\mathcal {P}_n(\mathcal {K}_i\psi _i)'(y)-(\mathcal {I}-\mathcal {P}_n)(\mathcal {K}_i\psi _i)'(\mathcal {P}_ny)\mathcal {P}_n]z\Vert _{\infty }\nonumber \\&\quad \le \Vert \mathcal {P}_n[(\mathcal {K}_i\psi _i)'(x)-(\mathcal {K}_i\psi _i)'(y)]z\Vert _{\infty }+\Vert (\mathcal {I}-\mathcal {P}_n)[(\mathcal {K}_i\psi _i)'(\mathcal {P}_nx)\nonumber \\&\qquad -(\mathcal {K}_i\psi _i)'(\mathcal {P}_ny)]\mathcal {P}_nz\Vert _{\infty }\nonumber \\&\quad \le p_1M_ic_i\Vert x-y\Vert _{\infty }\Vert z\Vert _{\infty }+\Vert (\mathcal {I}-\mathcal {P}_n)[(\mathcal {K}_i\psi _i)'(\mathcal {P}_nx)-(\mathcal {K}_i\psi _i)'(\mathcal {P}_ny)]\mathcal {P}_nz\Vert _{\infty }. \qquad \qquad \end{aligned}$$
(B.1)

For \(i=1\), using (2.7), for \(r=1\), we have

$$\begin{aligned}&\Vert (\mathcal {I}-\mathcal {P}_n)[(\mathcal {K}_1\psi _1)'(\mathcal {P}_nx)-(\mathcal {K}_1\psi _1)'(\mathcal {P}_ny)]\mathcal {P}_nz\Vert _{\infty }\nonumber \\&\quad \le ch\Vert [((\mathcal {K}_1\psi _1)'(\mathcal {P}_nx)-(\mathcal {K}_1\psi _1)'(\mathcal {P}_ny))\mathcal {P}_nz]^{(1)}\Vert _{\infty }. \end{aligned}$$
(B.2)

Now using Leibniz rule, Lipschitz continuity of \(\psi _1^{(0,1)} (.,.)\) and estimate (2.5), we get

$$\begin{aligned}&\Vert [((\mathcal {K}_1\psi _1)'(\mathcal {P}_nx)-(\mathcal {K}_1\psi _1)'(\mathcal {P}_ny))\mathcal {P}_nz]^{(1)}\Vert _{\infty }\nonumber \\&\quad =\sup _{t\in [0,1]}|[((\mathcal {K}_1\psi _1)'(\mathcal {P}_nx)-(\mathcal {K}_1\psi _1)'(\mathcal {P}_ny))\mathcal {P}_nz]^{(1)}(t)|\nonumber \\&\quad \le \sup _{t\in [0,1]}\left| \frac{\partial }{\partial t}\int _{0}^{t} k_1(t,s)[{\psi _1}^{(0,1)}(s, \mathcal {P}_nx(s))-{\psi _1}^{(0,1)}(s,\mathcal {P}_ny(s))]\mathcal {P}_nz(s)ds\right| \nonumber \\&\quad \le \sup _{t\in [0,1]}\left[ |k_1(t,t)||{\psi _1}^{(0,1)}(t, \mathcal {P}_nx(t))-{\psi _1}^{(0,1)}(t,\mathcal {P}_ny(t))||\mathcal {P}_nz(t)|\right] \nonumber \\&\quad \quad + \sup _{t\in [0,1]}\left[ \left| \int _{0}^{t}\{\frac{\partial }{\partial t}k_1(t,s)\}[{\psi _1}^{(0,1)}(s, \mathcal {P}_n(s))-{\psi _1}^{(0,1)}(s,\mathcal {P}_ny(s))]\mathcal {P}_nz(s)ds\right| \right] \nonumber \\&\quad \le M_1c_1\sup _{t\in [0,1]}|\mathcal {P}_n(x-y)(t)||\mathcal {P}_nz(t)|+c_1\Vert k_1\Vert _{1,\infty }\sup _{s\in [0,1]}|\mathcal {P}_n(x-y)(s)||\mathcal {P}_nz(s)|\int _{0}^{t} ds\nonumber \\&\quad \le M_1c_1\Vert \mathcal {P}_n(x-y)\Vert _{\infty }\Vert \mathcal {P}_nz\Vert _{\infty }+c_1\Vert k_1\Vert _{1,\infty }\Vert \mathcal {P}_n(x-y)\Vert _{\infty }\Vert \mathcal {P}_nz\Vert _{\infty }\nonumber \\&\quad \le (M_1+\Vert k_1\Vert _{1,\infty })c_1p_1^2\Vert x-y\Vert _{\infty }\Vert z\Vert _{\infty }. \end{aligned}$$
(B.3)

Hence from (B.2) and (B.3), it follows that

$$\begin{aligned} \Vert (\mathcal {I}&-\mathcal {P}_n)[(\mathcal {K}_1\psi _1)'(\mathcal {P}_nx)-(\mathcal {K}_1\psi _1)'(\mathcal {P}_ny)]\mathcal {P}_nz\Vert _{\infty } \nonumber \\&\le ch(M_1+\Vert k_1\Vert _{1,\infty })c_1p_1^2\Vert x-y\Vert _{\infty }\Vert z\Vert _{\infty }. \nonumber \\ \end{aligned}$$
(B.4)

Combining estimates (B.1) (for \(i=1\)) and (B.4), the result follows

$$\begin{aligned} \Vert [(\mathcal {K}_{1,n}^M\psi _1)'(x)&-(\mathcal {K}_{1,n}^M\psi _1)'(y)]z\Vert _\infty \nonumber \\&\le [p_1M_1c_1+ch(M_1+\Vert k_1\Vert _{1,\infty })c_1p_1^2]\Vert x-y\Vert _{\infty }\Vert z\Vert _{\infty }. \end{aligned}$$

Now for \(i=2\), using (2.7), we have

$$\begin{aligned}&\Vert (\mathcal {I}-\mathcal {P}_n)[(\mathcal {K}_2\psi _2)'(\mathcal {P}_nx)-(\mathcal {K}_2\psi _2)'(\mathcal {P}_ny)]\mathcal {P}_nz\Vert _{\infty } \nonumber \\&\quad \le ch^r\Vert [((\mathcal {K}_2\psi _2)'(\mathcal {P}_nx)-(\mathcal {K}_2\psi _2)'(\mathcal {P}_ny))\mathcal {P}_nz]^{(r)}\Vert _{\infty }. \end{aligned}$$
(B.5)

Using Lipschitz continuity of \(\psi _2^{(0,1)} (.,.)\) and estimate (2.5), we get for \(j = 0,1,2,...,r\)

$$\begin{aligned}&\Vert [((\mathcal {K}_2\psi _2)'(\mathcal {P}_nx)-(\mathcal {K}_2\psi _2)'(\mathcal {P}_ny))\mathcal {P}_nz]^{(j)}\Vert _{\infty }\nonumber \\= & {} \sup _{t\in [0,1]}| [((\mathcal {K}_2\psi _2)'(\mathcal {P}_nx)-(\mathcal {K}_2\psi _2)'(\mathcal {P}_ny))\mathcal {P}_nz]^{(j)}(t)|\nonumber \\= & {} \sup _{t\in [0,1]}\left| \int _{0}^{1}\frac{\partial ^j}{\partial t^j}k_2(t,s)[\psi _2^{(0,1)}(s,\mathcal {P}_nx(s))-\psi _2^{(0,1)}(s,\mathcal {P}_ny(s))]\mathcal {P}_nz(s)ds\right| \nonumber \\\le & {} c_2\Vert k_2\Vert _{r,\infty }\Vert \mathcal {P}_n(x-y)\Vert _{\infty }\Vert \mathcal {P}_nz\Vert _{\infty }\nonumber \\\le & {} c_2\Vert k_2\Vert _{r,\infty }p_1^2\Vert x-y\Vert _{\infty }\Vert z\Vert _{\infty }. \end{aligned}$$
(B.6)

Hence (B.5) and (B.6) gives,

$$\begin{aligned}&\Vert (\mathcal {I}-\mathcal {P}_n)[(\mathcal {K}_2\psi _2)'(\mathcal {P}_nx)-(\mathcal {K}_2\psi _2)'(\mathcal {P}_ny)]\mathcal {P}_nz\Vert _{\infty } \nonumber \\&\le ch^rc_2\Vert k_2\Vert _{r,\infty }p_1^2\Vert x-y\Vert _{\infty }\Vert z\Vert _{\infty }. \end{aligned}$$
(B.7)

Combining estimates (B.1) (for \(i=2\)) and (B.7), we get

$$\begin{aligned}&\Vert [(\mathcal {K}_{2,n}^M\psi _2)'(x)-(\mathcal {K}_{2,n}^M\psi _2)'(y)]z\Vert _\infty \\&\le [p_1M_2c_2+ch^rc_2\Vert k_2\Vert _{r,\infty }p_1^2]\Vert x-y\Vert _{\infty }\Vert z\Vert _{\infty }. \end{aligned}$$

Hence the result follows. \(\square \)

Appendix C

We have

$$\begin{aligned}&\Vert [(\mathcal {K}_1\psi _1)^{'}(\mathcal {P}_nx_0)\mathcal {P}_nx]^{(1)}\Vert _{\infty }\nonumber \\&\quad = \sup _{t\in [0,1]}|(\mathcal {K}_1\psi _1)^{'}(\mathcal {P}_nx_0)\mathcal {P}_nx]^{(1)}(t)|\nonumber \\&\quad =\sup _{t\in [0,1]}\left| \frac{\partial }{\partial t} \int _{0}^{t}k_1(t,s)\psi _1^{(0,1)}(s, \mathcal {P}_nx_0(s))\mathcal {P}_nx(s)ds\right| \nonumber \\&\quad \le \sup _{t\in [0,1]}\left| \frac{\partial }{\partial t}\int _{0}^{t} k_1(t,s)[{\psi _1}^{(0,1)}(s, \mathcal {P}_nx_0(s))-{\psi _1}^{(0,1)}(s,x_0(s))]\mathcal {P}_nx(s)ds\right| \nonumber \\&\qquad + \sup _{t\in [0,1]}\left| \frac{\partial }{\partial t }\int _{0}^{t} k_1(t,s){\psi _1}^{(0,1)}(s,x_0(s))\mathcal {P}_nx(s)ds\right| . \end{aligned}$$
(C.1)

Using Leibniz rule and estimates (2.5), (2.7), we get

$$\begin{aligned}&\sup _{t\in [0,1]}\left| \frac{\partial }{\partial t}\int _{0}^{t} k_1(t,s)[{\psi _1}^{(0,1)}(s, \mathcal {P}_nx_0(s))-{\psi _1}^{(0,1)}(s,x_0(s))]\mathcal {P}_nx(s)ds\right| \nonumber \\&\quad \le \sup _{t\in [0,1]}\left[ |k_1(t,t)||{\psi _1}^{(0,1)}(t, \mathcal {P}_nx_0(t))-{\psi _1}^{(0,1)}(t,x_0(t))||\mathcal {P}_nx(t)|\right] \nonumber \\&\quad \quad +\sup _{t\in [0,1]}\left[ \left| \int _{0}^{t}\{\frac{\partial }{\partial t}k_1(t,s)\}[{\psi _1}^{(0,1)}(s, \mathcal {P}_nx_0(s))-{\psi _1}^{(0,1)}(s,x_0(s))]\mathcal {P}_nx(s)ds\right| \right] \nonumber \\&\quad \le M_1c_1\sup _{t\in [0,1]}|(\mathcal {P}_nx_0-x_0)(t)||\mathcal {P}_nx(t)|\nonumber \\&\qquad +c_1\Vert k_1\Vert _{1,\infty }\sup _{s\in [0,1]}|(\mathcal {P}_n-\mathcal {I})x_0(s)||\mathcal {P}_nx(s)|\int _{0}^{t} ds \nonumber \\&\quad \le M_1c_1\Vert (\mathcal {P}_n-\mathcal {I})x_0\Vert _{\infty }\Vert \mathcal {P}_nx\Vert _{\infty }+c_1\Vert k_1\Vert _{1,\infty }\Vert (\mathcal {P}_n-\mathcal {I})x_0\Vert _{\infty }\Vert \mathcal {P}_nx\Vert _{\infty }\nonumber \\&\quad \le (M_1+\Vert k_1\Vert _{1,\infty })cc_1p_1h^r\Vert x_0^{(r)}\Vert _{\infty }\Vert x\Vert _{\infty }. \end{aligned}$$
(C.2)

Again by using Leibniz rule and estimate (2.5), we obtain

$$\begin{aligned}&\sup _{t\in [0,1]}\left| \frac{\partial }{\partial t }\int _{0}^{t} k_1(t,s){\psi _1}^{(0,1)}(s,x_0(s))\mathcal {P}_nx(s)ds\right| \nonumber \\&\quad \le \sup _{t\in [0,1]}\left| \frac{\partial }{\partial t }\int _{0}^{t} k_1(t,s){\psi _1}^{(0,1)}(s,x_0(s))(\mathcal {P}_n-\mathcal {I})x(s)ds\right| \nonumber \\&\quad \quad + \sup _{t\in [0,1]}\left| \frac{\partial }{\partial t }\int _{0}^{t} k_1(t,s){\psi _1}^{(0,1)}(s,x_0(s))x(s)ds\right| \nonumber \\&\quad \le \sup _{t\in [0,1]}\left[ |k_1(t,t)||{\psi _1}^{(0,1)}(t,x_0(t))||(\mathcal {P}_n-\mathcal {I})x(t)| \right. \nonumber \\&\quad \quad \left. +\left| \int _{0}^{t}{\frac{\partial }{\partial t}k_1(t,s)}{\psi _1}^{(0,1)}(s,x_0(s))(\mathcal {P}_n-\mathcal {I})x(s)ds\right| \right] \nonumber \\&\quad \quad + \sup _{t\in [0,1]}\left[ |k_1(t,t)||{\psi _1}^{(0,1)}(t,x_0(t))||x(t)|+\left| \int _{0}^{t}{\frac{\partial }{\partial t}k_1(t,s)}{\psi _1}^{(0,1)}(s,x_0(s))x(s)ds\right| \right] \nonumber \\&\quad \le M_1d_1\Vert (\mathcal {P}_n-\mathcal {I})x\Vert _{\infty }\nonumber \\&\quad \quad +\sup _{t,s\in [0,1]}\left| \frac{\partial }{\partial t}k_1(t,s)\right| \sup _{s\in [0,1]}\left| {\psi _1}^{(0,1)}(s,x_0(s))\right| \left| (\mathcal {P}_n-\mathcal {I})x(s)\right| \int _{0}^{t} ds+M_1d_1\Vert x\Vert _{\infty }\nonumber \\&\quad \quad + \sup _{t,s\in [0,1]}\left| \frac{\partial }{\partial t}k_1(t,s)\right| \sup _{s\in [0,1]}\left| {\psi _1}^{(0,1)}(s,x_0(s))\right| \left| x(s)\right| \int _{0}^{t} ds\nonumber \\&\quad \le [M_1d_1+\Vert k_1\Vert _{1,\infty }d_1](2+p_1)\Vert x\Vert _{\infty }. \end{aligned}$$
(C.3)

Combining estimates (C.1), (C.2) and (C.3), we get

$$\begin{aligned}&\Vert [(\mathcal {K}_1\psi _1)^{'}(\mathcal {P}_nx_0)\mathcal {P}_nx]^{(1)}\Vert _{\infty }\nonumber \\&\quad \le [(M_1+\Vert k_1\Vert _{1,\infty })cc_1p_1h^r\Vert x_0^{(r)}\Vert _{\infty }+{(M_1d_1+\Vert k_1\Vert _{1,\infty }d_1)(2+p_1)}]\Vert x\Vert _{\infty }. \end{aligned}$$
(C.4)

Also using Lipschitz continuity of \(\psi _2^{(0,1)}(.,.)\), estimates (2.5) and (2.7), we have

$$\begin{aligned} \Vert [(\mathcal {K}_2\psi _2)^{'}(\mathcal {P}_nx_0)\mathcal {P}_nx]^{(r)}\Vert _{\infty }= & {} \sup _{t\in [0,1]}|(\mathcal {K}_2\psi _2)^{'}(\mathcal {P}_nx_0)\mathcal {P}_nx]^{(r)}(t)|\nonumber \\= & {} \sup _{t\in [0,1]}\left| \frac{\partial ^{r}}{\partial t^{r}}\int _{0}^{1} k_2(t,s)\psi _2^{(0,1)}(s, \mathcal {P}_nx_0(s))\mathcal {P}_nx(s)ds\right| \nonumber \\\le & {} \sup _{t\in [0,1]}\left| \frac{\partial ^{r}}{\partial t^{r}}\int _{0}^{1} k_2(t,s)[{\psi _2}^{(0,1)}(s, \mathcal {P}_nx_0(s)) \right. \nonumber \\&\left. -{\psi _2}^{(0,1)}(s,x_0(s))]\mathcal {P}_nx(s)ds\right| \nonumber \\&+ \sup _{t\in [0,1]}\left| \frac{\partial ^{r}}{\partial t^{r}}\int _{0}^{1} k_2(t,s){\psi _2}^{(0,1)}(s,x_0(s))\mathcal {P}_nx(s)ds\right| \nonumber \\\le & {} \sup _{t,s\in [0,1]}\left| \frac{\partial ^{r}}{\partial t^{r}} k_2(t,s)\right| \left| \int _{0}^{1}\left[ {\psi _2}^{(0,1)}(s, \mathcal {P}_nx_0(s)) \right. \right. \nonumber \\&\left. \left. -{\psi _2}^{(0,1)}(s,x_0(s))\right] \mathcal {P}_nx(s)ds\right| \nonumber \\&+ \sup _{t,s\in [0,1]}\left| \frac{\partial ^{r}}{\partial t^{r}} k_2(t,s)\right| \left| \int _{0}^{1}{\psi _2}^{(0,1)}(s,x_0(s))\mathcal {P}_nx(s)ds\right| \nonumber \\\le & {} \sup _{t,s\in [0,1]}\left| \frac{\partial ^{r}}{\partial t^{r}} k_2(t,s)\right| \int _{0}^{1}c_2\left| (\mathcal {P}_nx_0(s)-x_0(s))\right| \left| \mathcal {P}_nx(s)\right| ds\nonumber \\&+ \sup _{t,s\in [0,1]}\left| \frac{\partial ^{r}}{\partial t^{r}} k_2(t,s)\right| \sup _{s\in [0,1]}\left| {\psi _2}^{(0,1)}(s,x_0(s))\right| \left| \int _{0}^{1}\mathcal {P}_nx(s)ds\right| \nonumber \\\le & {} d_r\left[ c_2\Vert (\mathcal {P}_n-\mathcal {I})x_0\Vert _{\infty }+ d_2\right] \Vert \mathcal {P}_nx\Vert _{\infty }\nonumber \\\le & {} d_r\left[ c_2ch^{r}\Vert (x_0)^{r}\Vert _{\infty }+ d_2\right] p_1\Vert x\Vert _{\infty }. \end{aligned}$$
(C.5)

Appendix D

Using Lipschitz continuity of \(\psi _1^{(0,1)}(.,x(.))\) and Leibniz rule, and estimate (2.5), for any \(x\in B(x_0,\delta )\), we obtain

$$\begin{aligned}&\Vert [(\mathcal {K}_1\psi _1)'(\mathcal {P}_nx_0)-(\mathcal {K}_1\psi _1)'(\mathcal {P}_nx)\mathcal {P}_ny]^{1}\Vert _\infty \nonumber \\&\quad =\sup _{t\in [0,1]}|[((\mathcal {K}_1\psi _1)'(\mathcal {P}_nx_0)-(\mathcal {K}_1\psi _1)'(\mathcal {P}_nx))\mathcal {P}_ny]^{1}(t)|\nonumber \\&\quad =\sup _{t\in [0,1]}\left| \frac{\partial }{\partial t}\int _{0}^{t}k_1(t,s)[\psi _1^{(0,1)}(s,\mathcal {P}_nx_0(s))-\psi _1^{(0,1)}(s,\mathcal {P}_nx(s))]\mathcal {P}_ny(s)ds\right| \nonumber \\&\quad \le c_1 \sup _{t\in [0,1]}\left[ |k_1(t,t)||\mathcal {P}_n(x_0-x)(t))||\mathcal {P}_ny(t)| \right. \nonumber \\&\quad \quad \left. +\left| \int _{0}^{t}\frac{\partial }{\partial t}k_1(t,s)\mathcal {P}_n(x_0-x)(s)\mathcal {P}_ny(s)ds\right| \right] \nonumber \\&\quad \le c_1\left[ \sup _{t\in [0,1]}[|k_1(t,t)||\mathcal {P}_n(x_0-x)(t)||\mathcal {P}_ny(t)|] \right. \nonumber \\&\quad \quad \left. +\sup _{t,s\in [0,1]}\left| \frac{\partial }{\partial t}k_1(t,s)\right| \sup _{s\in [0,1]}|\mathcal {P}_n(x_0-x)(s)|\int _{0}^{t}|\mathcal {P}_ny(s)|ds\right] \nonumber \\&\quad \le c_1M_1\Vert \mathcal {P}_n(x_0-x)\Vert _\infty \Vert \mathcal {P}_ny\Vert _\infty +c_1\Vert k_1\Vert _{1,\infty }\Vert \mathcal {P}_n(x_0-x)\Vert _\infty \Vert \mathcal {P}_ny\Vert _\infty \nonumber \\&\quad \le c_1(M_1+\Vert k_1\Vert _{1,\infty })p_1^2\Vert x_0-x\Vert _{\infty }\Vert y\Vert _{\infty }\nonumber \\&\quad \le c_1(M_1+\Vert k_1\Vert _{1,\infty })p_1^2\delta \Vert y\Vert _{\infty }. \end{aligned}$$
(D.1)

Again we have,

$$\begin{aligned}&\Vert [((\mathcal {K}_2\psi _2)'(\mathcal {P}_nx_0)-(\mathcal {K}_2\psi _2)'(\mathcal {P}_nx))\mathcal {P}_ny]^{(r)}\Vert _\infty \nonumber \\&\quad = \sup _{t\in [0,1]}|[(\mathcal {K}_2\psi _2)'(\mathcal {P}_nx_0)-(\mathcal {K}_2\psi _2)'(\mathcal {P}_nx))\mathcal {P}_ny]^{(r)}(t)|\nonumber \\&\quad =\sup _{t\in [0,1]}\left| \frac{\partial ^r}{\partial t^r}\int _{0}^{1}k_2(t,s)[\psi _2^{(0,1)}(s,\mathcal {P}_nx_0(s))-\psi _2^{(0,1)}(s,\mathcal {P}_nx(s))]\mathcal {P}_ny(s)ds\right| \nonumber \\&\quad \le c_2\sup _{t, s\in [0,1]}\left| \frac{\partial ^r}{\partial t^r}k_2(t,s)\right| \sup _{s\in [0,1]}|\mathcal {P}_n(x_0-x)(s)|\int _{0}^{1}|\mathcal {P}_ny(s)|ds\nonumber \\&\quad \le c_2\Vert k_2\Vert _{r,\infty }\Vert \mathcal {P}_n(x_0-x)\Vert _\infty \Vert \mathcal {P}_ny\Vert _\infty \le c_2\Vert k_2\Vert _{r,\infty }p_1^2\delta \Vert y\Vert _\infty . \end{aligned}$$
(D.2)

Appendix E

Using Lipschitz continuity of \(\psi _1^{(0,1)}(.,x(.))\), Leibniz rule and estimate (2.7), we obtain

$$\begin{aligned}&\Vert [(\mathcal {K}_1\psi _1)(x_0)-(\mathcal {K}_1\psi _1)(\mathcal {P}_nx_0)y]^{1}\Vert _\infty \nonumber \\&\quad =\sup _{t\in [0,1]}|[((\mathcal {K}_1\psi _1)(x_0)-(\mathcal {K}_1\psi _1)(\mathcal {P}_nx_0))y]^{1}(t)|\nonumber \\&\quad =\sup _{t\in [0,1]}\left| \frac{\partial }{\partial t}\int _{0}^{t}k_1(t,s)[\psi _1(s,x_0(s))-\psi _1(s,\mathcal {P}_nx_0(s))]y(s)ds\right| \nonumber \\&\quad \le l_1 \sup _{t\in [0,1]}\left[ |k_1(t,t)||(x_0-\mathcal {P}_nx_0)(t))||y(t)|+\left| \int _{0}^{t}\frac{\partial }{\partial t}k_1(t,s)(x_0-\mathcal {P}_nx_0)(s)y(s)ds\right| \right] \nonumber \\&\quad \le l_1[\sup _{t\in [0,1]}[|k_1(t,t)||(x_0-\mathcal {P}_nx_0)(t)||y(t)|]\nonumber \\&\quad \quad +\sup _{t,s\in [0,1]}|\frac{\partial }{\partial t}k_1(t,s)|\sup _{s\in [0,1]}|(x_0-\mathcal {P}_nx_0)(s)|\int _{0}^{t}|y(s)|ds]\nonumber \\&\quad \le l_1M_1\Vert x_0-\mathcal {P}_nx_0\Vert _\infty \Vert y\Vert _\infty +l_1\Vert k_1\Vert _{1,\infty }\Vert x_0-\mathcal {P}_nx_0\Vert _\infty \Vert y\Vert _\infty \nonumber \\&\quad \le l_1(M_1+\Vert k_1\Vert _{1,\infty })ch^r\Vert x_0^{(r)}\Vert _\infty \Vert y\Vert _\infty . \end{aligned}$$
(E.1)

Lipschitz continuity of \(\psi _2^{(0,1)}(.,x(.))\) and estimate (2.7) imply

$$\begin{aligned}&\Vert [((\mathcal {K}_2\psi _2)(x_0)-(\mathcal {K}_2\psi _2)(\mathcal {P}_nx_0))y]^{(r)}\Vert _\infty \nonumber \\&\quad =\sup _{t\in [0,1]}|[(\mathcal {K}_2\psi _2)(x_0)-(\mathcal {K}_2\psi _2)(\mathcal {P}_nx_0))y]^{(r)}(t)|\nonumber \\&\quad =\sup _{t\in [0,1]}\left| \frac{\partial ^r}{\partial t^r}\int _{0}^{1}k_2(t,s)[\psi _2(s,x_0(s))-\psi _2(s,\mathcal {P}_nx_0(s))]y(s)ds\right| \nonumber \\&\quad \le l_2\sup _{t, s\in [0,1]}\left| \frac{\partial ^r}{\partial t^r}k_2(t,s)\right| \sup _{s\in [0,1]}|(x_0-\mathcal {P}_nx_0)(s)|\int _{0}^{1}|y(s)|ds\nonumber \\&\quad \le l_2\Vert k_2\Vert _{r,\infty }\Vert x_0-\mathcal {P}_nx_0\Vert _\infty \Vert y\Vert _\infty \le l_2ch^r\Vert k_2\Vert _{r,\infty }\Vert x_0^{(r)}\Vert _{\infty }\Vert y\Vert _\infty . \end{aligned}$$
(E.2)

Appendix F

We have

$$\begin{aligned} x_n^M-x_0= & {} (\mathcal {K}_{1,n}^M\psi _1)(x_n^M)+(\mathcal {K}_{2,n}^M\psi _2)(x_n^M)-(\mathcal {K}_1\psi _1)(x_0)-(\mathcal {K}_2\psi _2)(x_0)\nonumber \\= & {} \sum _{j=1}^{2}[(\mathcal {K}_{j,n}^M\psi _j)(x_n^M)-(\mathcal {K}_j\psi _j)(x_0)]\nonumber \\= & {} \sum _{j=1}^{2}[(\mathcal {K}_{j,n}^M\psi _j)(x_n^M)-(\mathcal {K}_{j,n}^M\psi _j)(x_0)+(\mathcal {K}_{j,n}^M\psi _j)(x_0)-(\mathcal {K}_j\psi _j)(x_0)]\nonumber \\= & {} \sum _{j=1}^{2}[(\mathcal {K}_{j,n}^M\psi _j)(x_n^M)-(\mathcal {K}_{j,n}^M\psi _j)(x_0)-(\mathcal {K}_{j,n}^M\psi _j)'(x_0)(x_n^M-x_0)]\nonumber \\&+ \sum _{j=1}^{2}[(\mathcal {K}_{j,n}^M\psi _j)'(x_0)(x_n^M-x_0)+(\mathcal {K}_{j,n}^M\psi _j)(x_0)-(\mathcal {K}_j\psi _j)(x_0)]. \end{aligned}$$
(F.1)

This implies

$$\begin{aligned}&(\mathcal {I}-(\sum _{j=1}^2(\mathcal {K}_{j,n}^M\psi _j)'(x_0)))(x_n^M-x_0)\nonumber \\&\quad = \sum _{j=1}^{2}[(\mathcal {K}_{j,n}^M\psi _j)(x_n^M)-(\mathcal {K}_{j,n}^M\psi _j)(x_0)-(\mathcal {K}_{j,n}^M\psi _j)'(x_0)(x_n^M-x_0)]\nonumber \\&\qquad +\sum _{j=1}^{2}[(\mathcal {K}_{j,n}^M\psi _j)(x_0)-(\mathcal {K}_j\psi _j)(x_0)]. \end{aligned}$$
(F.2)

Using mean value theorem, from estimate (F.1) and (F.2), we have

$$\begin{aligned} x_n^M-x_0= & {} (\mathcal {I}-(\sum _{j=1}^2(\mathcal {K}_{j,n}^M\psi _j)'(x_0)))^{-1}\left[ \sum _{j=1}^{2}(\mathcal {K}_{j,n}^M\psi _j)(x_n^M)\right. \nonumber \\&\left. -(\mathcal {K}_{j,n}^M\psi _j)(x_0)-(\mathcal {K}_{j,n}^M\psi _j)'(x_0)(x_n^M-x_0)\right] \nonumber \\&+(\mathcal {I}-(\sum _{j=1}^2(\mathcal {K}_{j,n}^M\psi _j)'(x_0)))^{-1}\sum _{j=1}^2\left[ (\mathcal {K}_{j,n}^M\psi _j)(x_0)-(\mathcal {K}_j\psi _j)(x_0)\right] \nonumber \\= & {} (\mathcal {I}-{\mathcal {T}_n^M}'(x_0))^{-1}\sum _{j=1}^{2}[{(\mathcal {K}_{j,n}^M\psi _j)'(x_0+\theta _{j1}(x_n^M-x_0))-(\mathcal {K}_{j,n}^M\psi _j)'(x_0)}(x_n^M-x_0)]\nonumber \\&+ (\mathcal {I}-{\mathcal {T}_n^M}'(x_0))^{-1}\sum _{j=1}^{2}[(\mathcal {K}_{j,n}^M\psi _j)(x_0)-(\mathcal {K}_j\psi _j)(x_0)], \end{aligned}$$
(F.3)

where \(0<\theta _{j1}<1\) for \(j=1,2\).

Appendix G

For \(i=1\), taking \(g_1(t,s)=k_1(t,s)\psi _1^{(0,1)}(s,x_0(s))\) and using estimates (E.1), (E.2), we have

$$\begin{aligned}&\Vert (\mathcal {K}_1\psi _1)'(x_0)\sum _{j=1}^{2}[(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_j\psi _j)(\mathcal {P}_nx_0)-(\mathcal {K}_j\psi _j)(x_0))]\Vert _{\infty }\nonumber \\&\quad =\sup _{t\in [0,1]}|(\mathcal {K}_1\psi _1)'(x_0)\sum _{j=1}^{2}[(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_j\psi _j)(\mathcal {P}_nx_0)-(\mathcal {K}_j\psi _j)(x_0))](t)|\nonumber \\&\quad =\sup _{t\in [0,1]}\left| \int _{0}^{t}k_1(t,s)\psi _1^{(0,1)}(s,x_0(s))\sum _{j=1}^{2}[(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_j\psi _j)(\mathcal {P}_nx_0)-(\mathcal {K}_j\psi _j)(x_0))](s)ds\right| \nonumber \\&\quad \le \sup _{t\in [0,1]}\left| \int _{0}^{1}k_1(t,s)\psi _1^{(0,1)}(s,x_0(s))\sum _{j=1}^{2}[(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_j\psi _j)(\mathcal {P}_nx_0)-(\mathcal {K}_j\psi _j)(x_0))](s)ds\right| \nonumber \\&\quad =\sup _{t\in [0,1]}\left| \int _{0}^{1}g_1(t,s)\sum _{j=1}^{2}[(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_j\psi _j)(\mathcal {P}_nx_0)-(\mathcal {K}_j\psi _j)(x_0))](s)ds\right| \nonumber \\&\quad =\sup _{t\in [0,1]}|<g_1(t,.), \sum _{j=1}^{2}[(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_j\psi _j)(\mathcal {P}_nx_0)-(\mathcal {K}_j\psi _j)(x_0))](.)>|\nonumber \\&\quad =\sup _{t\in [0,1]}|<g_1(t,.), [(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_1\psi _1)(\mathcal {P}_nx_0)-(\mathcal {K}_1\psi _1)(x_0))](.)>|\nonumber \\&\quad \quad +\sup _{t\in [0,1]}|<g_1(t,.), [(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_2\psi _2)(\mathcal {P}_nx_0)-(\mathcal {K}_2\psi _2)(x_0))](.)>|\nonumber \\&\quad =\sup _{t\in [0,1]}|<(\mathcal {I}-\mathcal {P}_n)g_1(t,.), [(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_1\psi _1)(\mathcal {P}_nx_0)-(\mathcal {K}_1\psi _1)(x_0))](.)>|\nonumber \\&\quad \quad +\sup _{t\in [0,1]}|<(\mathcal {I}-\mathcal {P}_n)g_1(t,.), [(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_2\psi _2)(\mathcal {P}_nx_0)-(\mathcal {K}_2\psi _2)(x_0))](.)>|\nonumber \\&\quad \le \Vert (\mathcal {I}-\mathcal {P}_n)g_1(t,.)\Vert _{L^2}\Vert (\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_1\psi _1)(\mathcal {P}_nx_0)-(\mathcal {K}_1\psi _1)(x_0))\Vert _{L^2}\nonumber \\&\quad \quad +\Vert (\mathcal {I}-\mathcal {P}_n)g_1(t,.)\Vert _{L^2}\Vert (\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_2\psi _2)(\mathcal {P}_nx_0)-(\mathcal {K}_2\psi _2)(x_0))\Vert _{L^2}\nonumber \\&\quad \le ch^{r+1}\Vert (g_1(t,.))^{(r)}\Vert _{\infty }[\Vert ((\mathcal {K}_1\psi _1)(\mathcal {P}_nx_0)-(\mathcal {K}_1\psi _1)(x_0))^{(1)}\Vert _{\infty }]\nonumber \\&\quad \quad + ch^{2r}\Vert (g_1(t,.))^{(r)}\Vert _{\infty }\Vert ((\mathcal {K}_2\psi _2)(\mathcal {P}_nx_0)-(\mathcal {K}_2\psi _1)(x_0))^{(r)}\Vert _{\infty }]\nonumber \\&\quad \le c\Vert (g_1(t,.))^{(r)}\Vert _{\infty }[h^{2r+1}l_1(M_1+\Vert k_1\Vert _{1,\infty })+h^{3r}l_2\Vert k_2\Vert _{r,\infty }]\Vert x_0^{(r)}\Vert _{\infty }. \end{aligned}$$
(G.1)

Appendix H

For \(i=2\), taking \(g_2(t,s)=k_2(t,s)\psi _2^{(0,1)}(s,x_0(s))\) and using estimates (E.1), (E.2), we have

$$\begin{aligned}&\Vert (\mathcal {K}_2\psi _2)'(x_0)\sum _{j=1}^{2}[(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_j\psi _j)(\mathcal {P}_nx_0)-(\mathcal {K}_j\psi _j)(x_0))]\Vert _{\infty } \nonumber \\&\quad =\sup _{t\in [0,1]}|(\mathcal {K}_2\psi _2)'(x_0)\sum _{j=1}^{2}[(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_j\psi _j)(\mathcal {P}_nx_0)-(\mathcal {K}_j\psi _j)(x_0))](t)|\nonumber \\&\quad =\sup _{t\in [0,1]}\left| \int _{0}^{1}k_2(t,s)\psi _2^{(0,1)}(s,x_0(s))\sum _{j=1}^{2}[(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_j\psi _j)(\mathcal {P}_nx_0)-(\mathcal {K}_j\psi _j)(x_0))](s)ds\right| \nonumber \\&\quad =\sup _{t\in [0,1]}\left| \int _{0}^{1}g_2(t,s)\sum _{j=1}^{2}[(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_j\psi _j)(\mathcal {P}_nx_0)-(\mathcal {K}_j\psi _j)(x_0))](s)ds\right| \nonumber \\&\quad =\sup _{t\in [0,1]}|<g_2(t,.), \sum _{j=1}^{2}[(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_j\psi _j)(\mathcal {P}_nx_0)-(\mathcal {K}_j\psi _j)(x_0))](.)>|\nonumber \\&\quad =\sup _{t\in [0,1]}|<g_2(t,.), [(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_1\psi _1)(\mathcal {P}_nx_0)-(\mathcal {K}_1\psi _1)(x_0))](.)>|\nonumber \\&\quad \quad +\sup _{t\in [0,1]}|<g_2(t,.), [(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_2\psi _2)(\mathcal {P}_nx_0)-(\mathcal {K}_2\psi _2)(x_0))](.)>|\nonumber \\&\quad =\sup _{t\in [0,1]}|<(\mathcal {I}-\mathcal {P}_n)g_2(t,.), [(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_1\psi _1)(\mathcal {P}_nx_0)-(\mathcal {K}_1\psi _1)(x_0))](.)>|\nonumber \\&\quad \quad +\sup _{t\in [0,1]}|<(\mathcal {I}-\mathcal {P}_n)g_2(t,.), [(\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_2\psi _2)(\mathcal {P}_nx_0)-(\mathcal {K}_2\psi _2)(x_0))](.)>|\nonumber \\&\quad \le \Vert (\mathcal {I}-\mathcal {P}_n)g_2(t,.)\Vert _{L^2}\Vert (\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_1\psi _1)(\mathcal {P}_nx_0)-(\mathcal {K}_1\psi _1)(x_0))\Vert _{L^2}\nonumber \\&\quad \quad +\Vert (\mathcal {I}-\mathcal {P}_n)g_2(t,.)\Vert _{L^2}\Vert (\mathcal {I}-\mathcal {P}_n)((\mathcal {K}_2\psi _2)(\mathcal {P}_nx_0)-(\mathcal {K}_2\psi _2)(x_0))\Vert _{L^2}\nonumber \\&\quad \le ch^{r+1}\Vert (g_2(t,.))^{(r)}\Vert _{\infty }[\Vert ((\mathcal {K}_1\psi _1)(\mathcal {P}_nx_0)-(\mathcal {K}_1\psi _1)(x_0))^{(1)}\Vert _{\infty }]\nonumber \\&\quad \quad +ch^{2r}\Vert (g_2(t,.))^{(r)}\Vert _{\infty }\Vert ((\mathcal {K}_2\psi _2)(\mathcal {P}_nx_0)-(\mathcal {K}_2\psi _2)(x_0))^{(r)}\Vert _{\infty }]\nonumber \\&\quad \le c\Vert (g_2(t,.))^{(r)}\Vert _{\infty }[h^{2r+1}l_1(M_1+\Vert k_1\Vert _{1,\infty })+h^{3r}l_2\Vert k_2\Vert _{r,\infty }]\Vert x_0^{(r)}\Vert _{\infty }. \end{aligned}$$
(H.1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Kant, K. & Kumar, B.V.R. Modified Galerkin method for Volterra-Fredholm-Hammerstein integral equations. Comp. Appl. Math. 41, 237 (2022). https://doi.org/10.1007/s40314-022-01945-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01945-9

Keywords

Mathematics Subject Classification

Navigation