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FACTORIZATION NUMBER AND SUBGROUP COMMUTATIVITY

DEGREE VIA SPECTRAL INVARIANTS

SEID KASSAW MUHIE, DANIELE ETTORE OTERA, AND FRANCESCO G. RUSSO

Abstract. The factorization number F2(G) of a finite group G is the number of all possible
factorizations of G = HK as product of its subgroups H and K, while the subgroup com-
mutativity degree sd(G) of G is the probability of finding two commuting subgroups in G at
random. It is known that sd(G) can be expressed in terms of F2(G). Denoting by L(G) the
subgroups lattice of G, the non–permutability graph of subgroups ΓL(G) of G is the graph
with vertices in L(G) \ CL(G)(L(G)), where CL(G)(L(G)) is the smallest sublattice of L(G)
containing all permutable subgroups of G, and edges obtained by joining two vertices X,Y

such that XY 6= Y X . The spectral properties of ΓL(G) have been recently investigated in
connection with F2(G) and sd(G). Here we show a new combinatorial formula, which allows
us to express F2(G), and so sd(G), in terms of adjacency and Laplacian matrices of ΓL(G).

1. Introduction and statement of the main result

In the present paper we shall be interested only in finite groups. The non-permutability graph

of subgroups ΓL(G) of a group G is the undirected and unweighted simple graph defined as
the ordered pair of vertices and edges

ΓL(G) = (V (ΓL(G)), E(ΓL(G))), (1.1)

where L(G) denotes the lattice of subgroups of G,

V (ΓL(G)) = L(G) \ CL(G)

(

L(G)
)

, (1.2)

E(ΓL(G)) = {(X, Y ) ∈ V (ΓL(G))× V (ΓL(G)) | X ∼ Y ⇐⇒ XY 6= Y X}, (1.3)

and CL(G)(X) is the set of all subgroups of L(G) commuting with X ∈ L(G). In other words

CL(G)(X) = {Y ∈ L(G) | XY = Y X}. (1.4)

Since the intersection
⋂

X∈L(G)

CL(G)(X) = {Y ∈ L(G) | Y X = XY, ∀X ∈ L(G)} (1.5)

is not (in general) a sublattice of L(G), we will consider the smallest sublattice of L(G)
containing (1.5). This is denoted by CL(G)(L(G)) and appears in (1.2) above.
The non-permutability graph of subgroups is motivated by a line of research in lattice theory,
which has analogies with the contributions [6, 7, 18], where combinatorial properties of graphs
and groups are discussed.
In our present work we shall also use some spectral properties and invariants of graphs in
order to get information on algebraic properties of corresponding groups.
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The adjacency matrix of ΓL(G) is the square matrix

A(ΓL(G)) = (aX,Y )X,Y ∈V (ΓL(G))
, where aX,Y =

{

1, if (X, Y ) ∈ E(ΓL(G)),
0, if (X, Y ) 6∈ E(ΓL(G)).

(1.6)

Note that the degree of a vertex X in (1.1) is defined by

deg(X) =
∑

Y ∈V (ΓL(G))

aX,Y . (1.7)

Since ΓL(G) is an undirected graph without loops, the Laplace matrix of ΓL(G) is the matrix

L(ΓL(G)) = D − A(ΓL(G)), (1.8)

where D = diag(deg(Xi)), for all Xi ∈ V (ΓL(G)) and i = 1, 2, · · · , m = |V (ΓL(G))|. These are
common notions, which are usually considered in spectral graph theory, see [4, 5].
On the other hand, we are also interested in the so-called subgroup commutativity degree of
G, studied in [1, 22, 29]. This is the probability that two subgroups of G commute, namely

sd(G) =
|{(X, Y ) ∈ L(G)× L(G) | XY = Y X}|

|L(G)|2
. (1.9)

If any two randomly chosen subgroups of G commute, then G is called quasihamiltonian,
and these groups were classified since long time by Iwasawa (see [25]). Abelian groups are
of course quasihamiltonian, but the quaternion group Q8 of order 8 is a nonabelian group of
sd(Q8) = 1. Evidently G is quasihamiltonian if and only if sd(G) = 1, therefore (1.9) is a
measure of how far is a group from being quasihamiltonian. It will be useful to introduce the
following sets

H(G) = {H ∈ L(G) | sd(H) 6= 1} and K(G) = {K ∈ L(G) | sd(K) = 1} (1.10)

which clearly determine a disjoint union of the form

L(G) = H(G) ∪ K(G). (1.11)

Note that permutable subgroups are subnormal, while normal subgroups are of course per-
mutable, see [25]. The combinatorial formulas, which were found in [19, Theorem 1.3, Propo-
sition 3.2, Corollary 3.3], illustrate important relations between (1.6), (1.8) and (1.9). For
instance, if

spec(A(ΓL(G))) = {λ1, λ2, · · · , λm} and spec(L(ΓL(G))) = {σ1, σ2, · · · , σm} (1.12)

are the spectrum of the adjacency and the Laplacian matrix respectively, then [19, (3.6)]
shows that for groups with sd(G) 6= 1

sd(G) = 1−
1

|L(G)|2

m
∑

i=1

λ2
i = 1−

1

|L(G)|2

m
∑

i=1

σi. (1.13)

Another important quantity which is associated to a group G is the factorization number

F2(G) = |{(H,K) ∈ L(G)× L(G) | G = HK}|; (1.14)

this denotes the number of all possible factorizations of G as product of two subgroups H
and K. In fact we say that a group G has factorization HK if there are two subgroups H
and K of G such that G = HK (see [15, 24]).
We also mention from [25, §1.1] that an interval of L(G) is the set

[K/H ] = {Z ∈ L(G) | H ≤ Z ≤ K}, (1.15)
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where H ≤ K. Note that [K/H ] is a sublattice of L(G). From [21] the Möbius function
µ : L(G)× L(G) → Z is recursively defined by:

∑

Z∈[K/H]

µ(H,Z) =







1, H = K,

0, otherwise.
(1.16)

In particular, the Möbius number of G is µ(G) = µ(1, G), considering [G/1] = L(G).
Our main result is the following:

Theorem 1.1. Let G be a group with sd(G) 6= 1. Then

F2(G) =
(

∑

K∈K(G)

|L(K)|2 µ(K,G)
)

+
(

∑

H∈H(G)

(

|L(H)|2 −
m
∑

i=1

σi

)

µ(H,G)
)

, (1.17)

where m = |V (ΓL(H))| and {σ1, σ2, · · · , σm} = spec(L(ΓL(H))). In particular,

sd(G) =
1

|L(G)|2

(

∑

S∈L(G)

∑

W∈K(S)

|L(W )|2 µ(W,S)+
∑

S∈L(G)

∑

U∈H(S)

(

|L(U)|2 −

k
∑

j=1

τj

)

µ(U, S)
)

,

(1.18)
where k = |V (ΓL(U))| and {τ1, τ2, · · · , τk} = spec(L(ΓL(U))).

We shall mention that the theory of the subgroup commutativity degree has been recently
discussed in [16, 17, 22, 23, 24, 29], but only in [18, 19] in connection with notions of spectral
graph theory on the line of [4, 5]. Therefore Theorem 1.1 belongs to the line of research
of [18, 19] and explores new connections with the theory of the factorization number in
[15, 23, 24]. Section 2 collects information of general nature on the references which are
pertinent to the topic, but also some classical results on the partitions of groups. Section 3
contains the proof of Theorem 1.1 along with some applications.

2. Groups with partitions, factorization number

and subgroup commutativity degree

In order to count the number of edges of the non-permutability graph of subgroups of a
group G, combinatorial formulas were found in [18, Lemma 2.10, Theorem 3.1] involving the
subgroup commutativity degree. We report some results from [18, 19] below:

Lemma 2.1 (See [19], Lemma 2.5). For a group G we have

2 |E(ΓL(G))| = |L(G)|2 (1− sd(G)). (2.1)

This formula shows that we can obtain the number of edges in ΓL(G) if we know sd(G), and
vice-versa. Moreover [19, Proposition 3.2] shows that sd(G) can be rewritten in terms of
spectral invariants of ΓL(G).

Lemma 2.2 (See [19], Theorem 1.2). Let G be a group with sd(G) 6= 1. Then sd(G) is

invariant under the spectrum of A(ΓL(G)). In particular,

sd(G) = 1−
1

|L(G)|2

∑

X,Y ∈V (ΓL(G))

aX,Y . (2.2)
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The above formula allows us to match an approach of spectral nature with another of com-
binatorial nature (see [1, 30, 16, 23]), since sd(G) may be obtained in terms of F2(G) by the
formula

sd(G) =
1

|L(G)|2

∑

H∈L(G)

F2(H). (2.3)

In fact (2.3) shows that the subgroup commutativity degree can be reduced to the computa-
tion of the factorization number. This has led to important numerical evaluations for sd(G)
via F2(H), because it was found that F2(H) may be expressed for several families of groups
via Gaussian trinomial integers. Consequently, we may connect the spectral invariants of
ΓL(G) to F2(G) as indicated below.

Corollary 2.3 (See [19], Lemma 2.6). For a group G we have

2 |E(ΓL(G))| = |L(G)|2 −
∑

H∈L(G)

F2(H). (2.4)

Now we report a few notions which are classical in the area of the theory of partitions of
groups, referring mostly to [3, 9, 10, 11, 32].

Definition 2.4 (See [10], Definition, §7.1). Given a prime p and a group G,

Hp(G) = 〈g ∈ G | gp 6= 1〉 (2.5)

is the Hughes subgroup of G.

From Definition 2.4, Hp(G) turns out to be the smallest subgroup of G outside of which all
elements of G have order p. Of course, if G has exp(G) = p, thenHp(G) = 1. Moreover Hp(G)
is a characterstic subgroup in G. The reader can refer to [10, Chapter 7] for more information
on Hughes subgroups and their role in the theory of groups with nontrivial partitions.

Definition 2.5 (See [32], p.575). A group G is said to be a group of Hughes-Thompson
type if it is not a p-group and Hp(G) 6= G for some prime p.

It can be shown that groups as per Definition 2.5 have Hp(G) nilpotent of |G : Hp(G)| = p,
see [9]. Omitting details of the definitions, we refer to [14, Definition 8.1, Kapitel V, §8] for
the notion of Frobenius group, and to [14, Bemerkungen 10.15, 10.17, Kapitel II, §10] for
the notion of Suzuki group Sz(22n+1). Originally, Baer, Kegel and Kontorovich [3, 9, 11, 32]
classified groups with partitions, but the result below is due to Farrokhi:

Theorem 2.6 (See [8], Classification Theorem, pp.119-120). Let G be a group with a non-

trivial partition. Then G is isomorphic to exactly one of the following groups

(i). S4;

(ii). a p-group with Hp(G) 6= G;

(iii). a group of Hughes-Thompson type;

(iv). a Frobenius group;

(v). PSL(2, pn) for pn ≥ 4;
(vi). PGL(2, pn) for pn ≥ 5 odd prime power;

(vii). Sz(22n+1).

We recalled Theorem 2.6 here, because the subgroup commutativity degree has been com-
puted for most of the groups with nontrivial partitions. Let’s see this with more details.
For instance, Farrokhi and Saeedi [23, 24] completely determined the factorization number of
groups in Theorem 2.6 (i), (v) and (vi).
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Proposition 2.7 (See [24], Theorem 2.4). The projective special linear group PSL(2, pn) has

F2(PSL(2, p
n)) =



































2|L(PSL(2, pn))|+ 2pn(p2n − 1)− 1 if p = 2 and n > 1,

2|L(PSL(2, pn))|+ pn(p2n − 1)− 1 if p > 2, n > 1, and (pn − 1)/2
is odd, but pn 6= 3, 7, 11, 19, 23, 59,

2|L(PSL(2, pn))| − 1 if p > 2, n > 1, and (pn − 1)/2
is even, but pn 6= 5, 9, 29.

In the other cases,

F2(PSL(2, p
n)) = 17, 27, 237, 1141, 2033, 4935, 17223, 48261, 68799, 780695

if pn = 2, 3, 5, 7, 9, 11, 19, 23, 29, 59, respectively.

Of course, one would like to evaluate numerically |L(PSL(2, pn))| in Proposition 2.7 and this
can be made in different ways. For instance, Shareshian [27] computed the Möbius function
(1.16) for PSL(2, pn) and this helps to find |L(PSL(2, pn))|. Another method is due to Dickson:
we may list all the subgroups of PSL(2, pn) and count them. Historically this was the first
method to investigate |L(PSL(2, pn))|.

Proposition 2.8 (Dickson’s Theorem, see [14], Hauptsatz 8.27, Kapitel II, §8).
The subgroups of PSL(2, pn) are the following:

(i). pn(pn ± 1)/2 cyclic subgroups Cd of order d, where d is a divisor of (pn ± 1)/2;
(ii). pn(p2n−1)/(4d) dihedral subgroups D2d of order 2d, where d is a divisor of (pn±1)/2

and d > 2 and pn(p2n − 1)/24 dihedral subgroups D4;

(iii). pn(p2n − 1)/24 alternating subgroups A4;

(iv). pn(p2n − 1)/24 symmetric subgroups S4 when pn ≡ 7 mod 8;
(v). pn(p2n − 1)/60 alternating subgroups A5 when pn ≡ ±1 mod 10;
(vi). pn(p2n − 1)/(pm(p2m − 1)) subgroups PSL(2, pn) where m is a divisor of n;
(vii). The elementary abelian group Cm

p for m ≤ n;
(viii). Cm

p ⋊ Cd, where d divides both (pn − 1)/2 and pm − 1.

A result, which is similar to Proposition 2.7, is available for projective general linear groups.

Proposition 2.9 (See [24], Theorem 2.5). For any p > 2 let M be the unique subgroup of

G = PGL(2, pn) isomorphic to PSL(2, pn). If pn > 29, then

F2(G) =







3pn(p2n − 1) + 4|L(G)| − 2|L(M)| − 3 if n even or p ≡ 1 (mod 4),

4pn(p2n − 1) + 4|L(G)| − 2|L(M)| − 3, if n odd and p ≡ 3 (mod 4).

In the other cases,

F2(G) = 177, 1103, 3083, 4919, 15549, 14529, 31093, 58429, 111567, 99527, 144297, 192349

if pn = 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, respectively.

Essentially, we may compute the factorization number for all the groups which are mentioned
in Theorem 2.6, referring to methods of combinatorics and number theory in [1, 2, 23, 24],
but let’s focus only on PSL(2, pn) and PGL(2, pn), in order to show significant applications
of the spectral invariants which we associated to ΓL(G).
From Propositions 2.7 and 2.9, a precise computation of the factorization number should
involve a numerical evaluation of the cardinalities of the subgroups lattices. There are details
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again in [23, 24] in this sense and the main idea is to introduce the Möbius function (1.16),
as originally made by Hall [13]. The case of p-groups is known since long time:

Lemma 2.10 (See [12]). In a p-group G of order pn we have µ(G) = 0, unless G is elementary

abelian, in which case we have µ(G) = (−1)np(
n

2).

In case of a symmetric group, µ(1, Sn) was compute by Shareshian [26] and Pahlings [20].

Proposition 2.11 (See [26], Theorems 1.6, 1.8, 1.10).

(i). Let p be a prime. Then µ(1, Sp) = (−1)p−1 p!
2
.

(ii). µ(1, Sn) =























−n!, if n-1 is prime and p=3 mod 4,

n!
2
, if n=22,

−n!
2
, otherwise,

(iii). Let n = 2α for an integer α ≥ 1. Then µ(1, Sn) =
−p!
2
.

In addition to symmetric groups, Shareshian [27] computed µ(1, G) also for projective general
linear groups, projective special linear groups and for Suzuki groups, see [26, 27].

3. Proof of the main theorem and some applications

Our main result connects the factorization number of a group with the spectrum of the
Laplacian matrix via the Möbius function.

Proof of Theorem 1.1. In a group G we have always that

F2(G) =
∑

T∈L(G)

sd(T ) |L(T )|2 µ(T,G) (3.1)

This is just an application of the Möbius Inversion Formula to (2.3).
Note from [18] that ΓL(G) is a null graph whenever G is quasihamiltonian. Then, in what
follows, we shall assume that G is not quasihamiltonian and K is an arbitrary subgroup of
G of sd(K) = 1. Consequently, ΓL(K) is the null graph. Similarly, we assume H to be an
arbitrary subgroup of G of sd(H) 6= 1. Consequently, ΓL(H) exists and is different from the
null graph. From Lemma 2.2, we have for mT = |V (ΓL(T ))|

sd(T ) = 1−
1

|L(T )|2

mT
∑

i=1

σi. (3.2)

and so we can use (3.1), obtaining

F2(G) =
∑

T∈L(G)

(

|L(T )|2 −

mT
∑

i=1

σi

)

µ(T,G). (3.3)

But if T ∈ K(G) in (1.11), then ΓL(K) is the null graph and so we may assume each σi = 0
with respect to L(ΓL(K)). Hence we get

F2(G) =
∑

K∈K(G)

(

|L(K)|2 −

mK
∑

i=1

σi

)

µ(K,G) +
∑

H∈H(G)

(

|L(H)|2 −

mH
∑

i=1

σi

)

µ(H,G) (3.4)
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=
∑

K∈K(G)

(

|L(K)|2µ(K,G)
)

+
∑

H∈H(G)

(

|L(H)|2 −

mH
∑

i=1

σi

)

µ(H,G),

where mH = m = |V (ΓL(H))| as claimed.
From (2.3) and (3.4), now we consider an arbitrary S ∈ L(G) and a corresponding partition
L(S) = H(S) ∪ K(S), as made for G in (1.11). We get

|L(G)|2 sd(G) =
∑

S∈L(G)

F2(S) (3.5)

=
∑

S∈L(G)

(

∑

W∈K(S)

|L(W )|2 µ(W,S) +
∑

U∈H(S)

(

|L(U)|2 −

k
∑

j=1

τj

)

µ(U, S)
)

=
∑

S∈L(G)

∑

W∈K(S)

|L(W )|2 µ(W,S) +
∑

S∈L(G)

∑

U∈H(S)

(

|L(U)|2 −

k
∑

j=1

τj

)

µ(U, S)

in correspondence of {τ1, τ2, · · · , τk} = spec(L(ΓL(U))). The result follows. �

Of course, we may repeat the proof of Theorem 1.1, replacing (3.2) with the first equation in
(1.13) and involving spec(A(ΓL(G))) instead of spec(L(ΓL(G))).

Corollary 3.1. Let G be a group with sd(G) 6= 1. Then

F2(G) =
(

∑

K∈K(G)

|L(K)|2 µ(K,G)
)

+
(

∑

H∈H(G)

(

|L(H)|2 −
m
∑

i=1

λ2
i

)

µ(H,G)
)

, (3.6)

where m = |V (ΓL(H))| and {λ1, λ2, · · · , λm} = spec(A(ΓL(H))). In particular,

sd(G) =
1

|L(G)|2

(

∑

S∈L(G)

∑

W∈K(S)

|L(W )|2 µ(W,S)+
∑

S∈L(G)

∑

U∈H(S)

(

|L(U)|2 −

k
∑

j=1

ρ2j

)

µ(U, S)
)

,

(3.7)
where k = |V (ΓL(U))| and {ρ1, ρ2, · · · , ρk} = spec(A(ΓL(U))).

We present a few applications of Theorem 1.1, but some relevant comments should be made.

Remark 3.2. Suppose to compute F2(G) for G = PSL(2, pn). We may proceed as below:

(1). Use Proposition 2.7 and compute |L(G)| applying Proposition 2.8.
(2). Apply (1.17) of Theorem 1.1, but in order to do this we should previously:

(a). Determine ΓL(H) and spec(L(ΓL(H))) in (1.17);
(b). Find the Möbius numbers µ(H,G) and µ(K,G) in (1.17).
(c). Find |L(H)| and |L(K)| in (1.17).

The method (1) has been introduced in [24, Lemma 3.2, Corollary 3.3]. The method (2) is
presented here for the first time and is apparently harder than (1), but softwares are available
such as GAP [31] and NewGraph [28] which can assist better with the steps (2a), (2b) and (2c).
Therefore it is very efficient. We sketch similar techniques for the corresponding subgroup
commutativity degrees.

Remark 3.3. Suppose to compute sd(G) for G = PSL(2, pn). We may proceed as below:

(I). Combine Propositions 2.7 and 2.8 for the computation of F2(H) where H ∈ L(G)
with the formula (2.3).
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(II). Apply (1.18) of Theorem 1.1, but in order to do this we should previously:
(a). Determine ΓL(U), L(ΓL(U)) and spec(L(ΓL(U))) in (1.18);
(b). Find the Möbius numbers µ(W,S) and µ(U, S) in (1.18).
(c). Find |L(U)| and |L(W )| in (1.18).

(III). Apply (1.13), after computing |L(G)| and spec(L(ΓL(G))).

The method (I) has been followed in [24, Theorem 3.4]. The method (II) is presented here
for the first time. The method (III) has been introduced in [19]. The difference is subtle
between (II) and (III): for small groups we prefer of course (III), but for large groups with
big K(S) in (1.18) and small H(S) (or viceversa) (II) gives soon a qualitative evaluation of
sd(G). For instance, a minimal nonabelian group M is a group which is nonabelian but all
of whose proper subgroups are abelian. In this situation, one has K(M) = L(M) \ {M} and
H(M) = {M} from the definitions. Then (II) is more convenient than (III) here. Note that
minimal nonabelian groups were classified by Redei [14, Aufgabe 14, Kapitel III, §5 ].
The following examples illustrate Theorem 1.1 in the spirit of Remarks 3.2 and 3.3.

Example 3.4. The symmetric group S4 is presented by S4 = 〈a, b, c | a2 = b3 = c4 = abc = 1〉,
where a = (12), b = (123) and c = (1234). It is well known that the set of all normal subgroups
forms a sublattice of the subgroups lattice of a given group (see [25]). In other words, the set
N(S4) of all normal subgroups of S4 is a sublattice of L(S4) and we have

N(S4) = {{1}, 〈(12)(34), (13)(24)〉, A4, S4}. (3.8)

Moreover, one can check that

CL(S4)(L(S4)) = N(S4), (3.9)

since we have

L(S4) = {{1}, 〈(12)〉, 〈(13)〉, 〈(23)〉, 〈(14)〉, 〈(24)〉, 〈(34)〉, 〈(13)(24)〉, 〈(14)(23)〉, 〈(12)(34)〉,

〈(123)〉, 〈(124)〉, 〈(134)〉, 〈(234)〉, 〈(1234)〉, 〈(1324)〉, 〈(1423)〉, 〈(12)(34), (13)(24)〉, 〈(13), (24)〉,

〈(14), (23)〉, 〈(12), (34)〉, 〈(123), (12)〉, 〈(124), (12)〉, 〈(134), (13)〉, 〈(234), (23)〉,

〈(1234), (13)〉, 〈(1243), (14)〉, 〈(1324), (12)〉, A4, S4}. (3.10)

There are 30 elements in L(S4) and these are divided into 11 conjugacy classes and 9 isomor-
phism types. It is easy to check that there are in L(S4)

- 9 subgroups isomorphic to C2;
- 4 subgroups isomorphic to C3;
- 3 subgroups isomorphic to C4;
- 3 subgroups isomorphic to C2 × C2;
- 4 subgroups isomorphic to S3;
- 3 subgroups isomorphic to D4.

In particular, we find that

|V (ΓL(S4))| = |L(S4) \ N(S4)| = 26. (3.11)

Now we are going to focus on special subgroups of S4. First of all, consider A4 and its
non-permutability graph of subgroups ΓL(A4). We have 7 vertices, namely

V (ΓL(A4)) = {〈(123)〉, 〈(124)〉, 〈(134)〉, 〈(234)〉, 〈(12)(34)〉, 〈(14)(23)〉, 〈(13)(24)〉}, (3.12)

since
CL(A4)(L(A4)) = N(A4) = {{1}, 〈(12)(34), (13)(24)〉, A4} (3.13)
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and a corresponding computation of edges can be done via [28], obtaining the graph below.

〈(13)(24)〉 〈(14)(23)〉 〈(12)(34)〉

〈123〉

〈124〉 〈134〉

〈234〉

Figure 1: The non-permutability graph of subgroups ΓL(A4).

Now we describe B = 〈(123), (12)〉 ≃ S3 and ΓL(B). Here we get a triangle, because

V (ΓL(B)) = L(B) \ CL(B)(L(B)) = L(B) \N(B) = {〈(12)〉, 〈(13)〉, 〈(23)〉} (3.14)

and again [28] can help with the computation of the edges. See below:

〈12〉

〈13〉

〈23〉

Figure 2: The non-permutability graph of subgroups ΓL(B) for B ≃ S3.

Finally, we consider C = 〈(1234), (13)〉 ≃ D4 which has ΓL(C) with four vertices and four
edges, namely

V (ΓL(C)) = L(C) \ CL(C)(L(C)) = {〈(13)〉, 〈(24)〉, 〈(14)(23)〉, 〈(12)(34)〉}. (3.15)

Again this is another very simple situation: the graph is a rectangle.

〈13〉

〈24〉

〈(14)(23)〉

〈(12)(34)〉

Figure 3: The non-permutability graph of subgroups ΓL(C) for C ≃ D4.
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From Theorem 1.1, we may compute F2(S4) in the following way:

F2(S4) =
(

∑

K∈K(S4)

|L(K)|2 µ(K,S4)
)

+
(

∑

H∈H(S4)

(

|L(H)|2 −

m
∑

i=1

σi

)

µ(H,S4)
)

, (3.16)

where K is a subgroup of S4 belonging to

K(S4) = {{1}, 〈12〉, 〈13〉, 〈23〉, 〈14〉, 〈24〉, 〈34〉, 〈(13)(24)〉, 〈(14)(23)〉, 〈(12)(34)〉, 〈123〉, 〈124〉,

〈134〉, 〈234〉, 〈1234〉, 〈1324〉, 〈1423〉, 〈(12)(34), (13)(24)〉, 〈(13), (24)〉, 〈(14), (23)〉, 〈(12), (34)〉},
(3.17)

and H a subgroup of S4 belonging to

H(S4) = {〈(123), (12)〉, 〈(124), (12)〉, 〈(134), (13)〉, 〈(234), (23)〉,

〈(1234), (13)〉, 〈(1243), (14)〉, 〈(1324), (12)〉, A4, S4}. (3.18)

Now we need to find µ(K,S4) and µ(H,S4) for all K and H , but it is enough to find these
values for each conjugacy classes only. Using Lemma 2.10 and Proposition 2.11 (iii), we find

µ({1}, S4) = −n! = −24, µ(〈12〉, S4) = 2, µ(〈(13)(24)〉, S4) = 0, µ(〈123〉, S4) = 1,

µ(〈(12)(34), (13)(24)〉, S4) = 3, µ(〈(13), (24)〉, S4) = 0, µ(〈1234〉, S4) = 0,

µ(〈(123), (12)〉, S4) = −1, µ(〈(1234), (13)〉, S4) = −1, µ(A4, S4) = −1. µ(S4, S4) = 1.
(3.19)

On the other hand, we may use [28], in order to find the spectra of the Laplacian matrices
L(ΓL(B)), L(ΓL(C)) and L(ΓS(A4)), obtaining

spec(L(ΓL(B))) = {0, 3, 3}, spec(L(ΓL(C))) = {0, 2, 2, 4}, spec(L(ΓL(A4))) = {0, 4, 4, 7, 7, 7, 7},
(3.20)

but we haven’t reported all the details of the non-permutability graph ΓL(S4), since it is very
technical. Just to give an idea,

spec(L(ΓL(S4))) = {0, 7.22863, 7.60860, 7.60860, 11.39978, 11.39978, 11.72495, 12.01650,

12.01650, 14, 14.56069, 14.56069, 14.56069, 15.61486, 16.33888, 16.33888, 16.33888,

17.29890, 17.29890, 18, 20.10043, 20.10043, 20.10043, 20.43156, 20.67622, 20.67622} (3.21)

is the spectrum of the Laplacian matrix L(ΓL(S4)).
Replacing the values which we found in (3.16), we get

F2(S4) = −24 + 6(22)(2) + 3(22)(0) + 4(22)(1) + (52)(3) + 3(42)(0) + 3(32)(0) + 4(62 − 6)(−1)

+ 3(102 − 8)(−1) + (102 − 36)(−1) + (302 − 378)(1) = 177. (3.22)

Note also that

µ({1}, A4) = 4, µ(〈(13)(24)〉, A4) = 0, µ(〈(12)(34), (13)(24)〉, A4) = −1,

µ(〈(123)〉, A4) = −1, µ(A4, A4) = 1, (3.23)

imply with a similar argument that

F2(A4) = 4 + 3(22)(0) + 4(22)(−1) + (52)(−1) + (102 − 36)(1) = 27. (3.24)

With our new method of computation, we have just seen that Theorem 1.1 shows an al-
ternative method of computational nature for F2(PGL(2, 3)) and F2(PSL(2, 3)). In fact
PSL(2, 3) ≃ A4 and PGL(2, 3) ≃ S4, then F2(PSL(2, 3)) = F2(A4) = 27 and F2(PGL(2, 3)) =
F2(S4) = 177, which are the same values found in Propositions 2.7 and 2.9.



FACTORIZATION NUMBER AND SUBGROUP COMMUTATIVITY DEGREE... 11

Note that some open problems were posed by Tarnauceanu [29] on the subgroup commuta-
tivity degree and the logic which we applied in Example 3.4, along with Theorem 1.1 and
[28], could bring solutions. In fact Remarks 3.2 and 3.3 suggest a methodology of general
interest which can be applied to large families of groups, so not necessarily to linear groups.
We show another application of our main results.

Example 3.5. From a direct computation, if we consider A4, then the denominator of (1.9)
is equal to 100, namely |L(A4)|

2 = 100 and the numerator of (1.9) is equal to 64, hence

sd(A4) =
16

25
(3.25)

according to [29, p.2510]. On the other hand, we may consider (3.20) and replace it in (3.2)

sd(A4) = 1−
σ1 + . . .+ σ7

|L(A4)|
2 = 1−

36

100
=

16

25
. (3.26)

Moreover, it is easy to check that A4 is minimal nonabelian, then K(A4) = L(A4) \ {A4}
and H(A4) = {A4}. Now we can apply (1.17) to obtain F2({1}) = 1, F2(〈(13)(24)〉) =
F2(〈(14)(23)〉) = F2(〈(12)(34)〉) = 3, F2(〈(123)〉) = F2(〈(124)〉) = F2(〈(13)〉) = F2(〈(234)〉) =
3, F2(〈(12)(34), (13)(24)〉) = 15 and F2(A4) = 27. Therefore, using(1.18)

sd(A4) =
1 + 7(3) + 15 + 27

|L(A4)|
2 =

16

25
(3.27)

which is the same value obtained in (3.25) and (3.26) in different ways.

Of course, we may repeat a similar arguments in Example 3.5, in order to find sd(S3), sd(S4)
and sd(D4) on the basis of the values which we have in Example 3.4, but we presented here
just the case of A4 supporting Remark 3.3 (III) and (II).
We end with the following problem, which we encountered in our investigations:

Problem 3.6. Study systematically the non-permutability graph of subgroups for the groups
in Theorem 2.6, developing a corresponding spectral graph theory for non-permutability graph
of subgroups of groups with nontrivial partitions. Determine the subgroup commutativity
degree of all the groups in Theorem 2.6 via spectra of Laplacian matrices of the corresponding
non-permutability graph of subgroups.
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lichkeitstheorie 2 (1964), 340–368. 3
[22] F.G. Russo, Strong subgroup commutativity degree and some recent problems on the commuting prob-

abilities of elements and subgroups, Quaest. Math., 39 (2016), 1019–1036. 2, 3
[23] F. Saeedi and M. Farrokhi, Factorization numbers of some finite groups, Glasgow Math. J., 54 (2012)

345–354. 3, 4, 5, 6
[24] F. Saeedi and M. Farrokhi, Subgroup permutability degree of PSL(2, pn), Glasgow Math. J., 55 (2013)

581–590. 2, 3, 4, 5, 6, 7, 8
[25] R. Schmidt, Subgroup Lattices of Groups, de Gruyter, Berlin, 1994. 2, 8
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