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Abstract
In this work, we obtain the group inverse of the combinatorial Laplacian matrix of distance-
biregular graphs. This expression can be obtained trough the so-called equilibrium measures
for sets obtained by deleting a vertex. Moreover, we show that the two equilibrium arrays
characterizing distance-biregular graphs can be expressed in terms of the mentioned equilib-
riummeasures. As a consequence of the minimum principle, we provide a characterization of
when the group inverse of the combinatorial Laplacian matrix of a distance-biregular graph
is an M-matrix.
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1 Introduction

One problemwith the theory of distance-regular graphs is that it does not apply directly to the
graphs of generalised polygons. Godsil and Shawe-Taylor (1987), overcame this difficulty by
introducing the class of distance-regularised graphs, a natural common generalisation. These
graphs are shown to either be distance-regular or distance-biregular. This family includes the
generalised polygons and other interesting graphs. Distance-biregular graphs, which were
introduced by Delorme et al. (1983) in 1983, can be viewed as a bipartite variant of distance-
regular graph: the graphs are bipartite and for each vertex there exists an intersection array
depending on the stable component of the vertex. Thus such graphs are to distance-regular
graphs as bipartite regular graphs are to regular graphs. They also are to non-symmetric
association schemes as distance-regular graphs are to symmetric association schemes. Since
their introduction, distance-biregular graphs have received quite some attention, see (van
den Akker 1990; Curtin 1999a, b; Delorme 1994; Fiol 2013; Howlader and Panigrahi 2022;
Mohar and Shawe-Taylor 1985) or (Brouwer et al. 1989, Chapter 4) for an overview.

In the first part of this paper we compute the group inverse of the combinatorial Laplacian
matrix of distance-biregular graphs. The group inverse matrix can be seen in the framework
of discrete potential theory as the Green’s functions associated with the Laplacian operator
and it can be used to deal with diffusion-type problems on graphs, such as chip-firing, load
balancing, and discrete Markov chains. For some graph classes, the group inverse is known.
Instances of it are the work of Urakawa (1997), Bendito et al. (2000, 2010) or more recently
the study of the Green function for forests by Chung and Zeng (yyy). Other generalized
inverses, such as the Moore–Penrose inverse, have been studied. For instance, the Moore–
Penrose inverse of the incidence matrix of several graphs has been investigated by Azimi and
Bapat (2019, 2018) and Azimi et al. (2019). Nevertheless, the problem of computing group
inverses still remains wide open for most graph classes. In the first part of this paper we
obtain an explicit expression for the group inverse of the combinatorial Laplacian matrix of
a distance-biregular graph in terms of its intersection numbers. This result, together with the
group inverse of a distance-regular graph found by Bendito et al. (2010), and independently,
by Chung and Yau (2000), completes the investigation for distance-regularised graphs.

In matrix theory, the Laplacian matrix is known to be a symmetric M-matrix (a symmetric
positive semi-definite matrix with non-positive off-diagonal elements). Nonnegative matri-
ces and M-matrices have become a staple in contemporary linear algebra, and they arise
frequently in its applications. Such matrices are encountered not only in matrix analysis,
but also in stochastic processes, graph theory, electrical networks, and demographic mod-
els (Kirkland and Neumann 1995). A fundamental problem related with M-matrices is the
so-called inverse M-matrix problem, that consists in characterizing all nonnegative matrices
whose inverses are M-matrices. For singular matrices, the inverse problem was originally
posed by Neumann, Poole and Werner as follows.

Question 1 (Deutsch and Neumann 1984; Neumann et al. 1982; Kirkland and Neumann
2013, Question 3.3.8) Characterize all singular and irreducible M-matrices for which its
group inverse is also an M-matrix.

This is an open problem that has been solved for some few family of matrices. In the graph
setting, this question has been answered for weighted trees byKirkland andNeumann (1998),
and for distance-regular graphs by Bendito et al. (2012). In a more general setting, Question
1 has been investigated for nonnegative matrices having few eigenvalues by Kirkland and
Neumann (1995), for periodic and nonperiodic Jacobi matrices by Chen et al. (1995) and for
general symmetric M-matrices whose underlying graphs are paths by Bendito et al. (2012)
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and Carmona et al. (2013). Recently, matrices whose group inverses are M-matrices were
investigated by Kalauch et al. (2021).

We answer Question 1 for distance-biregular graphs, completing, together with the known
results for distance-regular graphs (Bendito et al. 2012), the characterization of when the
group inverse of the combinatorial Laplacian matrix of a distance-regularised graph is an
M-matrix.

2 Preliminaries

The triple � = (V , E, c) denotes a finite network; that is, a finite connected graph without
loops or multiple edges, with vertex set V , whose cardinality equals n ≥ 2, and edge set E ,
in which each edge {x, y} has been assigned a conductance c(x, y) > 0. The conductance
can be considered as a symmetric function c : V × V −→ [0,+∞) such that c(x, x) = 0
for any x ∈ V and moreover, x ∼ y, that is vertex x is adjacent to vertex y, iff c(x, y) > 0.
We define the degree function k as

k(x) =
∑

y∈V
c(x, y)

for each x ∈ V . The usual distance from vertex x to vertex y is denoted by d(x, y) and
D = max{d(x, y) : x, y ∈ V } stands for the diameter of �. We denote as �i (x) the set
of vertices at distance i from vertex x , �i (x) = {y : d(x, y) = i}, 0 ≤ i ≤ D and define
ki (x) = ∣∣�i (x)

∣∣. Then,

Bi (x) =
i∑

j=0

k j (x)

is the cardinal of the i-ball centered at x . The complement of � is defined as the graph � on
the same vertices such that two vertices are adjacent iff they are not adjacent in �; that is
x ∼ y in � iff c(x, y) = 0. More generally, for any i = 1, . . . , D, we denote by �i the graph
whose vertices are those of � and in which two vertices are adjacent iff they are at distance
i in �. Therefore for any x ∈ V , �i (x) is the set of adjacent vertices to x in �i . Clearly �1

is the graph subjacent to the network � and �2 = � when D = 2.
The set of real-valued functions on V is denoted by C(V ). When necessary, we identify

the functions in C(V ) with vectors in R
|V | and the endomorphisms of C(V ) with |V |-order

square matrices.
The combinatorial Laplacian or simply the Laplacian of the graph� is the endomorphism

of C(V ) that assigns to each u ∈ C(V ) the function

L(u)(x) =
∑

y∈V
c(x, y)

(
u(x) − u(y)

)
= k(x)u(x) −

∑

y∈V
c(x, y) u(y), x ∈ V . (1)

It is well-known that L is a positive semi-definite self-adjoint operator and has 0 as its
lowest eigenvalue whose associated eigenfunctions are constant. So, L can be interpreted as
an irreducible, symmetric, diagonally dominant and singular M-matrix, that in the sequel
will be denoted as L . Therefore, the Poisson equation L(u) = f on V has solution iff

∑

x∈V
f (x) = 0
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and, when this happens, there exists a unique solution u ∈ C(V ) such that
∑
x∈V

u(x) = 0, see

(Bendito et al. 2000).
TheGreen operator is the linear operatorG : C(V ) −→ C(V ) that assigns to any f ∈ C(V )

the unique solution of the Poisson equation L(u) = f − 1
n

∑
x∈V

f (x) such that
∑
x∈V

u(x) = 0.

It is easy to prove that G is a positive semi-definite self-adjoint operator and has 0 as its
lowest eigenvalue whose associated eigenfunctions are constant. Moreover, if P denotes the
projection on the subspace of constant functions then,

L ◦ G = G ◦ L = I − P.

In addition, we define theGreen function asG : V ×V −→ R given byG(x, y) = G(εy)(x),
where εy stands for the Dirac function at y. Therefore, interpreting G, or G, as a matrix it is
nothing else but L# the group inverse inverse of L , that coincides with its Moore–Penrose
inverse. In consequence, L# is a M-matrix iff L#(x, y) ≤ 0 for any x, y ∈ V with x 	= y
and then L# can be identified with the combinatorial Laplacian matrix of a new connected
network with the same vertex set, that we denote by �#.

From now on we will say that a network � has the M-property iff L# is an M-matrix; that
is, if L provides an answer to Question 1.

In Bendito et al. (2000) it was proved that for any y ∈ V , there exists a unique ν y ∈ C(V )

such that ν y(y) = 0, ν y(x) > 0 for any x 	= y and satisfying

L(ν y) = 1 − nεy on V . (2)

We call ν y the equilibrium measure of V \ {y} and then we define capacity as the function
cap ∈ C(V ) given by cap(y) = ∑

x∈V
ν y(x).

Following the ideas in Bendito et al. (2000, 2012) and Urakawa (1997), we define, for
any y ∈ V , the equilibrium array for y as the set {ν y(x) : x ∈ V } of different values taken
by the equilibrium measure of y, and we consider the length of the equilibrium array to be
�(y) = ∣∣{ν y(x) : x ∈ V \{y}}∣∣. Since � is connected and n ≥ 2, we obtain that �(y) ≥ 1 for
any y ∈ V . On the other hand, since 0 = ν y(y) we obtain that {ν y(x) : x ∈ V } = {qi (y) :
i = 0, . . . , �(y)}, where 0 = q0(y) < q1(y) < · · · < q�(y)(y). In addition, given y ∈ V for
any i = 0, . . . , �(y), we define mi (y) = ∣∣{x ∈ V : ν y(x) = qi (y)}

∣∣. Clearly, for any y ∈ V
we have that

m0(y) = 1, n =
�(y)∑

i=0

mi (y), and cap(y) =
�(y)∑

i=1

mi (y)qi (y).

In (Bendito et al. 2000, Proposition 3.12) it was shown that, for any y ∈ V , the equilibrium
measure (and hence the equilibrium array) reflects the graph depth from y, since

ν y(x) = qi (y) 
⇒ d(x, y) ≤ i (3)

and hence

i∑

j=0

m j (y) ≤ Bi (y)

for any 0 ≤ i ≤ D. In particular, (3) implies that if ν y(x) = q1(y) then x ∼ y; that is, that
the minimum values of the equilibrium measure for y are attained at vertices adjacent to y
(in fact this a formulation of the so-called minimum principle).
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c1

c2 c3

x2 x1

x3
Fig. 1 Complete graph K3

In general, when d(x, y) = i , Property (3) only assures that ν y(x) ≥ qi (y), but the
inequality can be strict. In particular the length of some equilibrium arrays could be greater
than D.

Example 2 To illustrate the above statements, consider the complete graph K3 with vertex
set V = {x1, x2, x3} and conductances c1 = c(x1, x2), c2 = c(x2, x3) and c3 = c(x3, x1),
see Fig. 1.

Then, keeping in mind that the Laplacian matrix is

L =
⎛

⎝
c1 + c3 −c1 −c3
−c1 c1 + c2 −c2
−c3 −c2 c2 + c3

⎞

⎠ (4)

we find that

νx1 (x2) = 2c2 + c3
c1c2 + c2c3 + c3c1

,νx1 (x3) = 2c2 + c1
c1c2 + c2c3 + c3c1

,cap(x1) = 4c2 + c1 + c3
c1c2 + c2c3 + c3c1

νx2 (x1) = 2c3 + c2
c1c2 + c2c3 + c3c1

,νx2 (x3) = 2c3 + c1
c1c2 + c2c3 + c3c1

,cap(x2) = 4c3 + c1 + c2
c1c2 + c2c3 + c3c1

νx3 (x1) = 2c1 + c2
c1c2 + c2c3 + c3c1

,νx3 (x2) = 2c1 + c3
c1c2 + c2c3 + c3c1

,cap(x3) = 4c1 + c2 + c3
c1c2 + c2c3 + c3c1

.

So, D = 1, but �(x1) = 1 iff c1 = c3, �(x2) = 1 iff c1 = c2 and �(x3) = 1 iff c2 = c3.

The group inverse of the Laplacian matrix and the equilibriummeasures provide an equiv-
alent information about the network structure, since the expression of L# can be obtained
from equilibriummeasures and conversely. Specifically, see (Bendito et al. 2000, Proposition
3.9), the group inverse L# is given by

L#(x, y) = 1

n2
(
cap(y) − n ν y(x)

)
(5)

and this equality also implies that cap(y) = n2L#(y, y) and that

ν y(x) = n
(
L#(y, y) − L#(x, y)

)
, x, y ∈ V . (6)

Applying the above expressions for our small example, we will get that

L# = 1

9(c1c2 + c2c3 + c3c1)

⎛

⎝
4c3 + c1 + c2 −2(c2 + c3) + c1 −2(c1 + c2) + c3

−2(c2 + c3) + c1 4c2 + c1 + c3 −2(c1 + c3) + c2
−2(c1 + c2) + c3 −2(c1 + c3) + c2 4c1 + c2 + c3

⎞

⎠ .

In addition, the symmetry of the group inverse leads to the following relation for the equi-
librium measures

ν y(x) − νx (y) = 1

n

(
cap(y) − cap(x)

) = n
(
L#(y, y) − L#(x, x)

)
, x, y ∈ V . (7)
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From (5) the minimum principle states that a network � has the M-property iff for any
y ∈ V

cap(y) ≤ nν y(x) for any x ∼ y, (8)

see (Bendito et al. 2012, Theorem 1). In this case, � is a subgraph of the subjacent graph of
�#. In fact, to achieve the M-property it is sufficient to satisfy that

�(y)∑

i=1

mi (y)qi (y) ≤ nq1(y)

for any y ∈ V . Since this inequality trivially holdswhen �(y) = 1, and assuming the common
agreement that empty sum equals 0, we have that � has the M-property iff

�(y)∑

i=2

mi (y)
(
qi (y) − q1(y)

) ≤ q1(y) (9)

for any y ∈ V . Therefore, when �(y) = 1 for any y ∈ V , then � is a complete network
and moreover satisfies the M-property. As Example 2 shows, a complete network does not
necessarily satisfy the M-property: K3 has the M-property if and only if 3max{c1, c2, c3} ≤
2(c1+c2 +c3). In particular, if c1 = c2 = c3, then K3 has the M-property, but if for instance
c3 > 2(c1 + c2), then K3 does not satisfy the M-property.

3 Group inverse for distance-biregular graphs

We say that the graph � = (V , E) is semiregular if � is bipartite with V = V0 ∪ V1, where
the degree of each vertex in V0 and the degree of each vertex in V1 are (possibly different)
constants. Hereinafter, we denote these two constants as the numbers k0 and k1 such that
each vertex in V0 has k0 neighbors and each vertex in V1 has k1 neighbors. In this case, we
define D� = max{d(x, y) : y ∈ V , x ∈ V�}, � = 0, 1. Moreover, for � = 0, 1, we denote
by �̄ = 1− �. In the sequel without loss of generality we always suppose that 1 ≤ D0 ≤ D1.

A connected graph � is a distance-biregular graph if � is semiregular and for any two
vertices x and y at distance i , the numbers |�i−1(x) ∩ �1(y)| and |�i+1(x) ∩ �1(y)| only
depend on i and on the stable set where x is. Remember that a stable set is a subset S of V
containing no edges of �, so in this case these sets are V0 and V1.

Examples of distance-biregular graphs are the subdivision graph of minimal (k, g)-cages.
In particular, the subdivision graph of the Petersen graph is a distance-biregular graph, see
Fig. 2. Also, any bipartite distance-regular graph is a distance-biregular graph with k0 = k1.

For x ∈ V�, � = 0, 1, we define the intersection numbers by c�,i = |�i−1(x) ∩ �1(y)|
and b�,i = |�i+1(x) ∩ �1(y)|, i = 0, . . . , D�, with the usual agreement c�,0 = b�,D�

= 0.
Clearly, for � = 0, 1 it is satisfied that b�,0 = k�, c�,1 = 1, b�,1 = k�̄ − 1, � = 0, 1 and more
generally for any i ∈ {0, . . . , D�} the following holds

c�,i + b�,i =
{
k� if i is even,
k�̄ if i is odd.

Therefore, a distance-biregular graph has a double intersection array which will be denoted
by

{
k�; c�,1, . . . c�,D�

}
, � = 0, 1.
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Fig. 2 Petersen graph and its subdivision graph

If, for i ∈ {0, . . . , D�} and x ∈ V� we define k�,i = |�i (x)| and B�,i =
i∑

j=0
k�, j . Then,

k�,0 = 1, k�,1 = k� and n = B�,D�
, � = 0, 1 and moreover the following relationships hold,

see the Lemmas 2.1−2.8 in (van den Akker 1990, Section 2.1) and the references therein.

Lemma 3 If � is a distance-biregular graphs with intersection arrays
{
k�; c�,1, . . . c�,D�

}
,

� = 0, 1. Then,

(i) 0 ≤ D1 − D0 ≤ 1 and when D1 = D0 + 1, then D0 is odd.
(ii) For � = 0, 1,

k�,i =
i−1∏

j=0

b�, j

c�, j+1
, i = 0, . . . , D�

and hence,

k�,i b�,i = k�,i+1c�,i+1, i = 0, . . . , D�.

(iii) k0k1,2i+1 = k1k0,2i+1, for any i = 0, . . . , � D0−1
2 �.

(iv) c0,2i c0,2i+1 = c1,2i c1,2i+1 and b0,2i−1b0,2i = b1,2i−1b1,2i for any i = 1, . . . , � D0−1
2 �.

(v) For � = 0, 1, 1 ≤ c�,i ≤ c�̄,i+1 and b�,i ≥ b�̄,i+1 for any i = 0, . . . , D�̄ −1. Moreover,
b�,i ≥ c�̄,i+1, i = 1, . . . , D�̄ − 2.

(vi) For � = 0, 1, c�,2 ≤ (c�,3−1
c�̄,2−1

)
.

(vii) For � = 0, 1, if i + j is even and i + j ≤ D�, then c�,i ≤ b�, j .

(viii) For � = 0, 1, if i + j is odd and i + j ≤ D0, then c�,i ≤ b�̄, j and c�̄,i ≤ b�, j .

The properties (i i), (i i i) and (iv) imply that for � = 0, 1, the intersection numbers {c�,i , b�,i }
are determined by the intersection numbers {c�̄,i , b�̄,i }. In particular both sequences are the
same iff k0 = k1 and in this case � is a (bipartite) distance-regular graph.

Lemma 4 (van den Akker 1990, Corollary 2.11) Let � be a distance-bipartite regular graph.
We can assume w.l.o.g. that one of the following holds

1. D0 = D1 and k0 = k1; so � is a bipartite distance-regular graph.
2. D0 = D1 − 1 is odd and k0 > k1.
3. D0 = D1 is even and k0 > k1.
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We display some preliminary results about the intersection parameters of a distance-
biregular graphs, whose proofs are omitted since they follow trivially from (van den Akker
1990).

Lemma 5 If k0 > k1, then

b1,i
b0,i

<
k1
k0

<
c1,i
c0,i

, if i is even,

b0,i
b1,i

<
k1
k0

<
c0,i
c1,i

, if i is odd.

The result provides an explicit expression of the equilibriummeasure for sets V \{y},∀y ∈
V of distance-biregular graphs.

Proposition 6 Let� be a distance-biregular graph with V = V0∪V1. Then, for any � = 0, 1,
there exists an array q� of length D� such that if x ∈ V�, for any y ∈ V it holds

νx (y) = q�,m ⇐⇒ d(x, y) = m, m = 0, . . . , D�.

Moreover,

q�,m =
m−1∑

j=0

n − B�, j

k�, j b�, j
=

m∑

j=1

n − B�, j−1

k�, j c�, j
.

In particular, q�,1 = n − 1

k�

and q�,2 = n − 1

k�

+ n − 1 − k�

k�(k�̄ − 1)
.

Proof Take x ∈ V� with � = 0, 1. Assume that the value νx (y) depends only on the distance
from x to y, that is, there existsq�,i , i = 1, . . . , D� such that νx (y) = q�,i ⇐⇒ d(x, y) = i .
Moreover, we define q

�,D�+1 = 0. Note that, since the equilibrium system Lνx (y) = 1 for all
y ∈ V \ {x} has a unique solution, then if with our hypothesis we can solve the system, such
solution must correspond to the equilibrium measure νx (y) = q�,i .

In our case, Lνx (y) = 1 for all y ∈ V \ {x} is equivalent to the system

(b�,i + c�,i )q�,i − c�,i q�,i−1 − b�,i q�,i+1 = 1, i = 1, . . . , D�

where � = 0, 1. Multiplying by k�,i , we obtain

k�,i c�,i (q�,i − q�,i−1) − k�,i b�,i (q�,i+1 − q�,i ) = k�,i , i = 1, . . . , D�.

Since k�,i c�,i = k�,i−1b�,i−1 and denoting γ�,i = k�,i b�,i (q�,i+1 − q�,i ), then

γ�,i−1 − γ�,i = k�,i , for i = 1, . . . , D�.

Observing that γ
�,D�

= 0, then summing up

n − B�, j =
D�∑

i= j+1

k�,i = γ�, j − γ
�,D�

= γ�, j

for j = 0, . . . , D� − 1, it follows

q�,i+1 − q�,i = n − B�,i

k�,i b�,i
, for i = 0, . . . , D� − 1.
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Finally, since q�,0 = 0, it follows

q�,m =
m−1∑

j=0

n − B�, j

k�, j b�, j
, for m = 0, . . . , D�.

The expression for q�,m in terms of c�,i follows from Lemma 3 (i i). ��
The above propositionmotives the definition of equilibrium arrays for a distance-biregular

graph. If� is a distance-biregular graph,we call equilbriumarrays to the valuesq�,i , � = 0, 1
and i = 0, . . . , D�. Denote m�,i = ∣∣{y ∈ V : νx (y) = q�,i }

∣∣.

Corollary 7 Let � be a distance-biregular graph with y ∈ V� and x ∈ V
�̂
, �, �̂ = 0, 1. Then,

q�,d(x,y) = q
�̂,d(x,y) + (n − 1)

(
1

k�

− 1

k
�̂

)
.

Proof From (7) we know that ν y(x) − νx (y) = 1
n

(
cap(y) − cap(x)

)
. On the other hand,

cap(y) = cap(z) for any z ∈ V� and cap(x) = cap(w) for any w ∈ V
�̂
. So, for � 	= �̂, we

can choose z ∈ V� and w ∈ V
�̂
such that d(z, w) = 1, then

1

n

(
cap(y) − cap(x)

) = 1

n

(
cap(z) − cap(w)

) = q�,1 − q
�̂,1 = (n − 1)

(
1

k�

− 1

k
�̂

)
,

which implies that

q�,d(x,y) = q
�̂,d(x,y) + (n − 1)

(
1

k�

− 1

k
�̂

)
.

If � = �̂, the result trivially holds. ��
As an straightforward application of Proposition 6 we can find the intersection array of

a distance-biregular graph in terms of the equilibrium arrays, analogously as was done in
(Bendito et al. 2000, Proposition 4.5) for distance-regular graphs.

Proposition 8 Let � be a distance-biregular graph with equilibrium arrays q�,i for � = 0, 1
and i = 0, . . . , D�. Then, for any i = 0, . . . , D� − 1, it holds

k�,i = m�,i ,

b�,i = 1

m�,i (q�,i+1 − q�,i )

D�∑

j=i+1

m�, j ,

c�,i+1 = 1

m�,i+1(q�,i+1 − q�,i )

D�∑

j=i+1

m�, j .

The computation of the equilibrium measure is usually done using linear programming
(Bendito et al. 2000). In this regard, Proposition 8 provides a tool to calculate the intersection
arrays of a distance-biregular graph solving one linear system.

Another application of the equilibrium measure concerns the estimation of the effective
resistance of a resistive electrical network as well as the Kirchhoff Index, a well-known
parameter in the context of organic chemistry. As a consequence of Proposition 6, we deter-
mine the effective resistance of distance-biregular graphs.
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Corollary 9 Let � be a distance-biregular graph with y ∈ V� and x ∈ V
�̂
, �, �̂ = 0, 1. Then,

the effective resistance bewteen x, y is

R(x, y) = 2

n
q�,d(x,y) + (n − 1)

n

(
1

k
�̂

− 1

k�

)
.

Moreover,

K (�) = cap(y) + (n − 1)|V�̄|
(
1

k�̄

− 1

k�

)
.

Proof The result follows fromCorollary 7 taking into account that R(x, y) = νx (y) + ν y(x)

n
and from the fact that

K (�) = 1

2

∑

u,v∈V
R(u, v) = 1

n

(
|V�̄|cap(u) + |V�|cap(v)

)
,

see (Bendito et al. 2003). ��
The next results shows the group inverse of the Laplacian of a distance-biregular graphs

in terms of the intersection arrays.

Theorem 10 Let � be a distance-biregular graph. Then, for each y ∈ V� with � = 0, 1, the
group inverse of L is given by

L#(x, y) = 1

n

D�∑

j=d(x,y)+1

n − B�, j−1

k�, j c�, j
− 1

n2

D�∑

j=1

B�, j−1(n − B�, j−1)

k�, j c�, j
.

Proof From (5), we know that L#(x, y) = 1
n2

(cap(y)−nν y(x)). Take y ∈ V� with � = 0, 1.
Now, using Proposition 6,

cap(y) =
∑

x∈V
ν y(x) =

D�∑

m=0

k�,mq�,m =
D�∑

m=0

k�,m

m∑

j=1

n − B�, j−1

k�, j c�, j

=
D�∑

j=1

D�∑

m= j

k�,m(n − B�, j−1)

k�, j c�, j
=

D�∑

j=1

(n − B�, j−1)
2

k�, j c�, j
.

Therefore,

L#(x, y) =
D�∑

j=1

(n − B�, j−1)
2

n2k�, j c�, j
−

d(x,y)∑

j=1

n − B�, j−1

nk�, j c�, j

=
D�∑

j=d(x,y)+1

n − B�, j−1

nk�, j c�, j
−

D�∑

j=1

B�, j−1(n − B�, j−1)

n2k�, j c�, j
.

��
Remark 11 Observe that, since the intersection numbers of a distance-biregular graph are
related, from Theorem 10, the expression of the group inverse is equivalent to

L#(x, y) = 1

n

D�−1∑

j=d(x,y)

n − B�, j

k�, j b�, j
− 1

n2

D�−1∑

j=0

B�, j (n − B�, j )

k�, j b�, j
.
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Example 12 As an application of Theorem 10 we obtain the group inverse of the Laplacian
of a complete bipartite graph using its parameters:

D0 = 2, k0, c0,1 = 1, c0,2 = k0, b0,0 = k0, b0,1 = k1 − 1,
D1 = 2, k1, c1,1 = 1, c1,2 = k1, b1,0 = k1, b1,1 = k0 − 1,

}

⇒ n = k0 + k1.

Take x, x̂ ∈ V0, x̂ 	= x and y, ŷ ∈ V1, ŷ 	= y. Then,

L#(x, x) = 1

n2

[
(k0 + k1 − 1)2

k0
+ k1 − 1

k0

]
= (n − 1)2 + n − k0 − 1

n2k0
= n2 − n − k0

k0n2
,

L#(y, y) = 1

n2

[
(k0 + k1 − 1)2

k1
+ k0 − 1

k1

]
= n2 − n − k1

k1n2
,

L#(y, x) = n2 − n − k0
k0n2

− n(n − 1)

k0n2
= − 1

n2
= L#(x, y),

L#(x̂, x) = n2 − n − k0
k0n2

− n(n − 1)

k0n2
− n

k0n2
= − (n + k0)

k0n2
,

L#(ŷ, y) = − (n + k1)

k1n2
.

Observe that for a complete bipartite graph, it holds that L# is always an M-matrix. The
above expression is valid when D0 = D1 = 1, and D0 = 1 and D1 = 2; that is, for the star
graph.

4 Distance-biregular graphs with theM-property

In this section, we answer Question 1 for distance-biregular graphs, completing, together
with the known results for distance-regular graphs (Bendito et al. 2012), the characterization
of when the group inverse of the combinatorial Laplacian matrix of a distance-regularised
graph is an M-matrix.

Proposition 13 Let � be a distance-biregular graph. Then, � has the M-property if and only
if, it holds

D0−1∑

j=1

1

k0, j b0, j

( D0∑

i= j+1

k0,i
)2 ≤ (n − 1)

k0
.

Proof Weknow that a graph� satisfies theM-property if and only if the entries of L#(x, y) ≤
0 for all x ∼ y. The result follows from using that

k0,0 = 1, b0,0 = k0, and
D0∑

i=1

k0,i = n − 1.

��
Remark 14 The condition from Proposition 13 is equivalent to

D1−1∑

j=1

1

k1, j b1, j

( D1∑

i= j+1

k1,i
)2 ≤ (n − 1)

k1
. (10)

Using Proposition 13 we can also obtain the following necessary condition for a distance-
biregular graph having the M-property.
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Corollary 15 If � is a distance-biregular graph with the M-property and D0 ≥ 2, then

n < 2k1 + k0.

Proof Since D1 ≥ D0 ≥ 2, from Proposition 13 we obtain that

1

k1,1b1,1

( D1∑

i=2

k1,i
)2 ≤

D1−1∑

j=1

1

k1, j b1, j

( D1∑

i= j+1

k1,i
)2 ≤ (n − 1)

k1
.

Now, observing that

1

k1,1b1,1

( D1∑

i=2

k1,i
)2 = (n − k1 − 1)2

k1b1,1

we get

(n − k1 − 1)2 ≤ (n − 1)b1,1 = (n − 1)(k0 − 1) ⇐⇒
(n − 1)2 − 2k1(n − 1) + k21 ≤ (n − 1)(k0 − 1) ⇐⇒

n − 2k1 + k21
n − 1

− k0 ≤ 0,

and since
k21
n−1 > 0, the result follows. ��

Note that the inequality n < 2k1 + k0 turns out to be a strong restriction for a distance-
biregular graph to have theM-property. Observe that such condition implies that the distance-
biregular graph needs to be quite dense.

The following result generalizes the above observation by showing that only distance-
biregular graphs with small D� can satisfy the M-property. A related result appeared in
(Bendito et al. 2012, Proposition 5), where it was shown that the diameter of a distance-
regular graphs with the M-property must be at most 3.

Proposition 16 If � is a distance-biregular graph with the M-property, then D1 ≤ 4 and
D0 ≤ 3.

Proof By means of a contradiction, assume D0, D1 ≥ 4. Then,

1 + k� + k�,2 + k�,3 < 1 + k� + k�,2 + k�,3 + k�,4 ≤ n.

We can assume that k0 > k1, since otherwise � is a bipartite distance-regular graphs and
hence D0 = D1 ≤ 3, see (Bendito et al. 2012, Proposition 5). Then,

k0,2 = k0
b0,1
c0,2

≥ k0
c1,2
c0,2

> k0
k1
k0

= k1.

On the other hand, since b0,1 ≥ c0,3 and b0,2 ≥ c0,2, we obtain that

k0,3 = k0
b0,1b0,2
c0,2c0,3

≥ k0.

Finally, from Corollary 15 it follows that n + 1 < 1 + 2k0 + k1 ≤ n, a contradiction. ��
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As an application of Proposition 16, we classify distance-biregular graphs having the
M-property. We follow the notation from (van den Akker 1990).

Case 1: D0 = D1 = 1. This case corresponds to a digon that is a distance-regular and has
the M-property.

Case 2: D0 = 1, D1 = 2. This case corresponds to star graphs, which are known to have the
M-property, see (Carmona et al. 2014; Kirkland and Neumann 1998) or Example
12.

Case 3: D0 = D1 = 2. This case corresponds to a complete bipartite graph (see Example
12).

Case 4: D0 = D1 = 3. This case corresponds to a bipartite distance-regular graph (van den
Akker 1990, Section 5.1), and thus it was already studied in Bendito et al. (2012).
In this case, the intersection array is {k, k−1, k−μ; 1, μ, k}, where 1 ≤ μ ≤ k−1
and μ divides k(k − 1). They are antipodal iff μ = k − 1. Otherwise, they are the

incidence graphs of nontrivial square 2−
(
n
2 , k, μ

)
designs. Therefore, k−μ must

be a square, see (Brouwer et al. 1989, Th. 1.10.4).

Proposition 17 (Bendito et al. 2012, Proposition 13) A bipartite distance-regular graph with
D = 3 satisfies the M-property if and only if

4k

5
≤ μ ≤ k − 1

and these inequalities imply that k ≥ 5. In particular, if 1 ≤ μ < k − 1, then either � or
�3 has the M-property, except when k − 1 < 5μ < 4k, in which case none of them has the
M-property.

Case 5: D0 = 3, D1 = 4 with k0 > k1. In (van den Akker 1990, Proposition 5.3) it is shown that
� is the point-line incidence graph of a quasi-symmetric design with x = 0 if and only
if � is a distance-biregular graph with D0 = 3, D1 = 4 and intersection array

{
r; 1, λ, k
k; 1, y, kλ

y , k

}
.

Recall that a 2-(v, k, λ)quasi-symmetric design is a designwith two intersection numbers,
andwe are interested in those having x = 0 < y < k.Moreover, kλ needs to be amultiple
of y, that is, kλ = αy, α ∈ N. Also, recall that r > λ. Moreover, since B0,D0 = B1,D1 , it
holds that (y − 1)(r − 1) = (k − 1)(λ − 1), see also (Baartmans and Shrikhande 1982)
for a proof based on design techniques.

Next, using the condition in Proposition 13 with r = k0, k = k1, we obtain a necessary
and sufficient condition for a distance-biregular graph with D0 = 3, D1 = 4 to have the
M-property.

Proposition 18 A distance-biregular graph with diameters D0 = 3, D1 = 4 has the M-
property if and only if

(k − 1)(r − λ)
(
(k + r)2 − λk

)
≤ k2λ2.

Proof We use Proposition 13 to obtain:

1

k0,1b0,1

(
k0,2 + k0,3

)2 + 1

k0,2b0,2

(
k0,3

)2 ≤ (n − 1)

k0
.
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Keeping in mind that

k0 = r , b0,1 = k − 1, b0,2 = r − λ,

k0,0 = 1, k0,1 = r , k0,2 = r
(k − 1)

λ
, k0,3 = r

(k − 1)

λ

(r − λ)

k
,

we get that

n − 1

r
= 1 + (k − 1)

λk

(
k + r − λ

)
.

After performing some simplifications on the first inequality, the desired result follows. ��
Finally, we study the M-property for some classes of distance-biregular graphs with D0 =

3 and D1 = 4.

Example 19 Consider the point-line incident graph of the affine plane A(2, n) of order n,
whose intersection array is

{
n + 1; 1, 1, n
n; 1, 1, n, n

}
.

It is easy to check that it does not verify the inequality in Proposition 13 and hence it does
not verify the M-property.

Example 20 Let � = S(Kr+1) be the subdivision graph of the the complete graph Kr+1

of order r + 1. This provides a class of distance-biregular graphs with diameters D0 = 4,
D1 = 3 and parameters

D0 = 3, k0 = r , c0,1 = c0,2 = 1, c0,3 = 2, b0,0 = r , b0,1 = 1, b0,2 = r − 1;
D1 = 4, k1 = 2, c1,1 = c1,2 = 1, c1,3 = c1,4 = 2, b1,0 = 2, b1,1 = r − 1, b1,2 = 1,

b1,3 = r − 2;

which does not hold the condition from Proposition 13, and thus does not have the M-
property. In fact, we can find the group inverse. We denote L#

�, j = L#(x, y) when y ∈ V�

and d(x, y) = j . Then,

L#
0,0 = r(r + 3)(2r + 3)

(r + 1)2(r + 2)2
, L#

0,1 = (r + 3)(r2 − 2)

(r + 1)2(r + 2)2
, L#

0,2 = − r2 + 7r + 8

(r + 1)2(r + 2)2
,

L#
0,3 = − 2(r2 + 5r + 5)

(r + 1)2(r + 2)2
,

and

L#
1,0= (r+3)(r3+5r2+2r−4)

2(r+1)2(r+2)2
, L#

1,1= (r+3)(r2−2)

(r+1)2(r+2)2
, L#

1,2= r3−r2−18r−20

2(r + 1)2(r + 2)2
,

L#
1,3 = − 2(r2 + 5r + 5)

(r + 1)2(r + 2)2
, L#

1,4 = − (r + 3)(3r + 4)

(r + 1)2(r + 2)2
.

For the classification of existing quasi-symmetric 2-designs, see (Shrikhande 2007, Table
48.25). We should note that for the existing quasi-symmetric 2-designs with x = 0, none
passes the condition from Proposition 18.

The above discussion extends the results in Bendito et al. (2012) and completes the clas-
sification of distance-regularised graphs that have the M-property. There, it was shown that
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The M-matrix group inverse...

if there are distance-regular graphs with valency k ≥ 3 and diameter D ≥ 2 having the
M-property, then they have at most 3k vertices and D ≤ 3. Also in Bendito et al. (2012), it
was conjectured that there is no primitive distance-regular graph with diameter 3 having the
M-property. This conjecture was shown to be true except possibly for finitely many primitive
distance-regular graphs (Koolen and Park 2013, Theorem 1).

In view of the above results, we conclude this paper with the following conjecture.

Conjecture 21 There are no point-line incidence graphs of a 2-quasi-symmetric design with
x = 0 that have the M-property.

Acknowledgements The research of Á. Carmona, A.M. Encinas and M.J. Jiménez has been partly supported
by the Spanish Research Council (Ministerio de Ciencia e Innovación) under project PID2021-122501NB-
I00 and by the Universitat Politècnica de Catalunya under funds AGRUP-UPC. The research of A. Abiad is
partially supported by the FWO grant 1285921N.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

van den Akker JM (1990) Distance-biregular graphs. MSc thesis Eindhoven University of Technology
Azimi A, Bapat RB (2019) The Moore–Penrose inverse of the incidence matrix of complete multipartite and

bi-block graphs. Discr Math 342:2393–2401
Azimi A, Bapat RB, Estaji E (2019) Moore–Penrose inverse of incidence matrix of graphs with complete and

cycle blocks. Discr Math 342:10–17
Azimi A, Bapat RB (2018) Moore–Penrose inverse of the incidence matrix of a distance regular graph. Linear

Algebra Appl 551:92–103
Baartmans A, Shrikhande MS (1982) Designs with no three mutually disjoint blocks. Discr Math 40:129–139
Bendito E, Carmona A, Encinas AM, Mitjana M (2012) The M-matrix inverse problem for singular and

symmetric Jacobi matrices. Linear Algebra Appl 436:1090–1098
Carmona A, Encinas AM, Mitjana M (2013) On the M-matrix inverse problem for singular and symmetric

Jacobi matrices. Electron J Linear Algebra 24:237–254
Bendito E, Carmona A, Encinas AM (2000) Solving boundary value problems on networks using equilibrium

measures. J Funct Anal 171:155–176
Bendito E, Carmona A, Encinas AM (2003) Solving Dirichlet and Poisson problems on graphs by means of

equilibrium measures. Eur J Comb 24:365–375
Bendito E, CarmonaA, Encinas AM,MitjanaM (2010) Generalized inverses of symmetricM-matrices. Linear

Algebra Appl 432:2438–2454
Bendito E, Carmona A, Encinas AM (2000) Shortest paths in distance-regular graphs. Eur J Combin 21:153–

166
Bendito E, CarmonaA, Encinas AM,MitjanaM (2012) Distance-regular graphs having theM-property. Linear

Multilinear Algebra 60:225–240
Carmona A, Encinas AM, Mitjana M (2014) Discrete elliptic operators and their Green operators. Linear

Algebra Appl 442:115–134
Brouwer AE, Cohen AM, Neumaier A (1989) Distance-regular graphs. Ergebnisse der Mathematik und ihrer

Grenzgebiete, vol. 18. Springer-Verlag, Berlin
Chen Y, Kirkland SJ, Neumann M (1995) Group generalized inverses of M-matrices associated with periodic

and nonperiodic Jacobi matrices. Linear Multilinear Algebra 39:325–340
Chung F, Zeng J (2021) Forest formulas of discrete Green’s functions, arXiv:2109.01324

123

158Page 15 of 16

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2109.01324


 

Chung F, Yau S-T (2000) Discrete Green’s functions. J Combin Theory Ser A 91(1–2):191–214
Curtin B (1999) Bipartite distance-regular graphs, part i. Graphs Combin 15:143–158
Curtin B (1999) Bipartite distance-regular graphs, part II. Graphs Combin 15:377–391
Delorme C, Régularité métrique forte, Rapport de Reserche No. 156, Univ. Paris Sud, Orsay (1983)
Delorme C (1994) Distance biregular bipartite graphs. Eur J Combin 15:223–238
Deutsch E, Neumann M (1984) Derivatives of the Perron root at an essentially nonnegative matrix and the

group inverse of an M-matrix. J Math Anal Appl 102:1–29
Fiol MA (2013) The spectral excess theorem for distance-biregular graphs. Electron J Combin 20(3):21
Godsil CD, Shawe-Taylor J (1987) Distance-regularised graphs are distance-regular or distance-biregular. J

Combin Theory Ser B 43:14–24
Howlader A, Panigrahi P (2022) On the distance spectrum of minimal cages and associated distance biregular

graphs. Linear Algebra Appl 636:115–133
Kalauch A, Lavanya S, Sivakumar KC (2021) Matrices whose group inverses are M-matrices. Linear Algebra

Appl 614:44–67
Kirkland SJ, NeumannM (2013) Group inverses of M-matrices and their applications. Chapman & Hall, New

York
Kirkland SJ, Neumann M (1995) Group inverses of M-matrices associated with nonnegative matrices having

few eigenvalues. Linear Algebra Appl 220:181–213
Kirkland SJ, Neumann M (1998) The M-matrix group generalized inverse problem for weighted trees. SIAM

J Matrix Anal Appl 19:226–234
Koolen JH, Park J (2013) A note on distance-regular graphs with a small number of vertices compared to the

valency. Eur J Combin 34(6):935–940
Mohar B, Shawe-Taylor J (1985) Distance-biregular graphs with 2-valent vertices and distance-regular line

graphs. J Combin Theory Ser B 38(3):193–203
Neumann M, Poole GD, Werner HJ (1982) More on generalizations of matrix monotonicity. Linear Algebra

Appl 48:413–435
Shrikhande MS (2007) Quasi-symmetric designs. In: Colbourn CJ, Dinitz JH (eds) The handbook of combi-

natorial designs, 2nd edn. CRC Press, Boca Raton, pp 578–582
Urakawa H (1997) Heat kernel and Green kernel comparison theorems for infinite graphs. J Funct Anal

146:206–235

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

158 Page 16 of 16 A. Abiad et al.


	The M-matrix group inverse problem for distance-biregular graphs
	Abstract
	1 Introduction
	2 Preliminaries
	3 Group inverse for distance-biregular graphs
	4 Distance-biregular graphs with the M-property
	Acknowledgements
	References


