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Proteins carry out their functions by interacting with other proteins and small molecules, forming a complex
interaction network. In this review, we briefly introduce classical graph theory based protein-protein interaction
networks. We also describe the commonly used experimental methods to construct these networks, and the insights
that can be gained from these networks. We then discuss the recent transition from graph theory based networks to
structure based protein-protein interaction networks and the advantages of the latter over the former, using two
networks as examples. We further discuss the usefulness of structure based protein-protein interaction networks for
drug discovery, with a special emphasis on drug repositioning.
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INTRODUCTION

Proteins form the basic functional units of a cell. They
carry out their functions by interacting with other proteins
and small molecules. It is important to characterize the
protein-protein interaction interface to gain mechanical
insight into these interactions. On a systems level, these
interactions form a complex network responsible for
responding to both intracellular and extracellular pertur-
bations [1]. A number of experimental techniques have
been developed in recent years to comprehensively map
such networks. However, due to technical limitations, a
significant number of interactions, and in particular the
dynamic interactions in such networks, are yet to be
discovered.
In this review, we first discuss the experimental and

theoretical methods to construct “classical” protein-
protein interaction networks. We then summarize recent
progress on integrating structural information into these
interaction networks. We also discuss how interaction
networks are being utilized in rational drug design.

GRAPH THEORY BASED “CLASSICAL”
PPI NETWORKS

In the post genomic era, significant effort has been put
into identifying and understanding the role of various
coding and non-coding regions of the genome [2].
Knockout experiments, targeted mutations, functional
assays and other biochemical methods have been used to
gain insight into the functions of individual proteins [3].
As most proteins carry out their functions by interacting
with other proteins, a number of experimental methodol-
ogies, such as yeast two-hybrid (Y2H) [4–8], co-
immunoprecipitation [9,10] and co-expression data
[11,12], have been used to construct protein-protein
interaction networks.
Several databases, including DIP [13], MINT [14],

HPRD [15], BioGrid [16], BIND [17] and IntAct [18],
have then compiled this data from various sources. A brief
description of these databases can be found in Table 1.
Traditionally, PPI networks have been represented as

graphs (Fig. 1), where each node represents a protein and
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interactions between them are shown as edges. Several
analyses of these networks have illustrated the built-in
robustness of these networks by calculating the degree
(number of interactions) of each protein [19–24]. More-
over, the proteins/genes in these networks are not
randomly located; instead, proteins associated with a
particular function tend to form clusters [25–28], and
those associated with a disease have a large number of
protein-protein interactions [29,30]. However, the ele-
vated degree observed for disease-associated genes may
have some inherent bias because many studies have
focused on cancer genes alone and also, in general,
disease-associated genes might have higher reported
interactions because they attract more research interest
[31]. The graphical representation of the network is also
useful in tracing potentially perturbed / malfunctioning
proteins (nodes). However, this representation ignores the
structural information of the protein-protein interaction
interface.

STRUCTURE BASED PPI NETWORKS

High-throughput approaches like Y2H, co-immunopreci-
pitation and co-expression do not provide structural
details for protein-protein interactions, and sometimes
contain significant false positives [8,32–34]. High-
resolution structural protein-protein interaction data can
be obtained by X–ray crystallography [35] and NMR
spectroscopy [36], while cryo-EM provides low resolu-
tion structural data [37]. As of November 2012, more than
86000 structures have been deposited in the Protein Data
Bank (PDB) [38]. Although a significant number of
structures are now available, a portion of these are
monomeric and others may contain non-native packing
interactions [39].
Several computational methods have been designed to

complement experimental approaches. Docking meth-

odologies are widely used to predict the bound state of
two proteins. ZDOCK [40], PIPER [41], ClusPro [42],
HADDOCK [43], RosettaDOCK [44] and PatchDock
[45] are some of the most commonly used docking
methods. They can be broadly divided into two
categories: (i) methods that utilize Fast Fourier Transform
(FFT) to search for the best interaction conformation
during rigid body rotations/translations, (ii) methods that
use experimental information, such as interface residues
and NMR data. The critical assessment of predicted
interactions (CAPRI) is a community wide experiment,
held every two years, that aims to judge the performance
of existing methods [46]. Homology based methodologies
are also widely used, particularly for large-scale studies,
as docking methods are time intensive [47–50]. An
alternative approach to predict reliable protein-protein
interaction is to utilize only the interface information from
a homolog protein [51–54]. Interface-based approaches
take advantage of the observation that protein interaction
sites are more conserved than the remainder of the protein
surface [55–57]. A recent study on 231 enzyme families
showed that even a sequence identity of 45% between the
binding surface of the template protein and the modeled
protein could generate the interaction interface success-
fully [58]. Computational approaches that specialize in
identification of the protein-protein interaction sites for a
particular type of protein, e.g., membrane proteins, have
also been very successful [59–64]. The identification of
pockets on the protein surface has also been used
successfully by a number of groups to predict protein-
protein interaction sites [65–67]. A brief description of
computational tools to detect protein-protein interactions
can be found in Table 2.
Structural Protein-protein Interaction Networks provide

rich mechanistic insight into the regulatory mechanisms
of proteins. Not only do they provide information about
the important residues involved in the interactions, but

Table 1. A brief description of the databases that integrate protein-protein interaction data from various sources
Name Description Website

DIP [13] Catalogs experimentally determined interactions between proteins. The

data are curated both manually by expert curators and also automatically

using computational approaches

dip.doe-mbi.ucla.edu/

MINT [14] Focuses on experimentally verified protein-protein interactions mined from

the scientific literature

mint.bio.uniroma2.it/mint/

HPRD [15] Focuses on visual depictions of the domain architecture, post-translational

modifications, interaction networks and disease association for each protein

in the human proteome, extracted manually from literature

hprd.org/

BioGRID [16] Contains collections of protein and genetic interactions from major model

organism species. It includes a comprehensive set of interactions reported to

date in the primary literature for budding yeast, thale cress and fission yeast

thebiogrid.org/

BIND [17] Comprises data from peer-reviewed literature and direct submissions bond.unleashedinformatics.com/

IntAct [18] All interactions are derived from literature curation or direct user submissions www.ebi.ac.uk/intact/
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also indicate whether two proteins might simultaneously
interact or compete for a binding partner. If both proteins
bind to approximately the same surface on a protein, it is
more than likely that they will compete for the binding
interaction due to steric hindrances. On the other hand, if
the two proteins bind to different parts of a protein
surface, it is likely that they can interact with the protein
simultaneously. Most proteins interact with only a few
other proteins. However, some proteins (named hub
proteins) have a large number of protein-protein interac-

tions [70,71]. Hub proteins, can include families of
enzymes, transcription factors and intrinsically disordered
proteins, among others [72,73]. The number of interac-
tions in hub proteins is larger than the number of
interaction interfaces. Therefore, hub proteins often reuse
their PPI interfaces for multiple interactions. Intrinsically
disordered proteins achieve this by sampling the low
energy conformation landscape continuously. This
enables them to present different interaction interfaces
to different binding partners [72]. Studies have shown that
hub proteins are more likely to be associated with diseases
like cancer than non-hub proteins [30,74].
A human structural interaction network:Wang et al.

have used high quality binary interaction data and
homology modeling to construct a human structural
interaction network (hSIN) that consists of 2816 proteins
and 4222 structurally resolved interactions [75]. Utilizing
this structurally resolved protein-protein interaction net-
work, they were able to demonstrate that for the
corresponding diseases, the in-frame mutations were
enriched on the interaction interfaces of the proteins.
Moreover, they discuss the basis of pleiotropy of disease
genes and locus heterogeneity with experimental case
studies on the interactions of WASP protein with CDC42
and VASP proteins [75]. They also predicted 292
candidate genes to have 694 previously unknown
disease-to-gene associations by applying the guilt-by-
association principle on their structurally resolved inter-
action network, based on mutations of known disease
genes [75].
An extracellular signal-regulated kinase network:

PRISM (PRotein Interactions by Structural Matching) is
another useful tool for constructing structure based
protein-protein interaction networks [51,76,77]. PRISM
utilizes structural motifs derived from known non-
redundant binary interactions, evolutionary conservation
and flexible refinement to predict protein-protein interac-
tions on a proteome wide scale. The structural network of
the Extracellular signal-Regulated Kinases (ERK) in the
Mitogen-Activated Protein Kinase (MAPK) signaling
pathway was constructed using this approach [77]. This
network provides rich information about interactions that
can occur simultaneously, and those that are mutually
exclusive [77]. 64% of the 25 protein-protein interaction
interfaces in the network are utilized for two or more
interactions. Most notably, ERK protein is involved in
seven interactions using seven distinct interfaces [77].
Interacting proteins share at least some subcellular

localization. PPI networks have, therefore, also been used
to predict the subcellular localization of protein com-
plexes [78,79]. Interestingly, there is some evidence that
suggests that information on subcellular localization can
be used, in combination with other features, to predict
PPIs [80].

Figure 1. Classical graph theory based representa-
tion of a hypothetical protein-protein interaction

network. The nodes represent the proteins and the
interactions between them are shown as edges. Such a
representation does not allow for the inclusion of the

structural information for the interaction interface. (Main)
Structure-based representation of the hypothetical pro-
tein-protein interaction network shown in the inset.

Mechanistic information, such as where the proteins
bind and whether they compete for a binding interaction,
is incorporated in this representation. The red patches on
the proteins show predominantly positive charge in the

active site, while the blue patches represent predomi-
nantly negative charge. Some interactions occur only in a
particular oligomerization state, e.g., Protein D only

interacts with the AB protein complex and not with
proteins A or B individually. Such scenarios occur when
the binding surface for an interaction is dependent on the

interaction of two other proteins. Protein C can bind to
Protein A regardless of the binding events of Protein A to
Protein B and Protein D. The interactions are numbered
for clarity and do not represent a chronological order. The

two ends of an interaction are numbered the same to
specify which proteins/complexes are involved in the
interaction. The complex formed as a result of the

interaction is shown in the middle of each interaction
(edge).
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It is important to note that apart from PPI networks,
other types of networks that depict other cellular
activities, for example metabolic networks (KEGG [81],
EcoCyc [82], BioCyc [83], and metaTIGER [84]), have
also been used extensively in computational and experi-
mental studies.

PPI NETWORKS AND DRUG DESIGN

Structural protein-protein interaction networks are a
valuable resource for drug discovery. Proteins function

by interacting with other proteins. Therefore, interacting
proteins are likely to be involved in the same cellular
processes. As a result, perturbing these interactions can
result in a number of outcomes, including onset or
intensification of a disease such as cancer [85–87].
Perturbing these interactions can often cause loss of
function or gain of function [88]. With the availability of
the complete structural information of the interaction
interface, it is possible to design peptide inhibitors that
mimic the interaction partner and perturb a normal PPI
[89,90]. Moreover, the side effects of a drug can be

Table 2. A brief description of the tools that can be used to predict protein-protein interactions from protein structures
Name Description Website

ZDOCK [40] Performs full rigid-body searches of docking orientations

between two proteins

Zlab.bu.edu/zdock/

ClusPro [41,42] Includes rigid body docking data from PIPER, selection of

docked structures with favorable desolvation, and elec-

trostatics, and clustering of the retained complexes using a

pairwise RMSD criterion. It reports the centers of the

largest clusters

cluspro.bu.edu/

HADDOCK [43] Is a docking method that utilizes biochemical and/or

biophysical interaction data, such as chemical shift

perturbation data resulting from NMR titration experi-

ments, mutagenesis data or bioinformatic predictions

www.nmr.chem.uu.nl/haddock2.1/

RosettaDOCK [44] Identifies low-energy conformations of a protein-protein

interaction by optimizing rigid-body orientation and side-

chain conformations.

rosettadock.graylab.jhu.edu/

PatchDock [45] Uses geometric hashing and pose-clustering matching

techniques to match surface patches

bioinfo3d.cs.tau.ac.il/PatchDock/

InterPreTS [48] Uses alignments of homologs of the interacting proteins,

to assess the fitness of any possible interacting pair on the

complex by using empirical potentials

www.russelllab.org/interprets/

PrePPI [50] Predicts interactions based on structural, functional,

evolutionary and expression information

bhapp.c2b2.columbia.edu/PrePPI/

PRISM [51] Uses rigid-body structural comparisons of target proteins

to known template protein-protein interfaces, and flexible

refinement using a docking energy function

prism.ccbb.ku.edu.tr/prism_protocol/

IBIS [68] Uses conservation of structural location and sequence

patterns of protein-protein binding sites

www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi

TMBB-Explorer [64] Predicts the structure, oligomerization state, protein-

protein interaction sites, and thermodynamic properties of

the transmembrane domains of beta-barrel membrane

proteins using a physical interaction model, a simplified

conformational space for efficient enumeration, and an

empirical potential function from a detailed combinatorial

analysis

tanto.bioengr.uic.edu/TMBB-Explorer/

CASTp [66] Uses weighted Delaunay triangulation and the alpha

complex for shape measurements, and provides identifi-

cation and measurements of surface accessible pockets, as

well as interior inaccessible cavities, for proteins

sts.bioengr.uic.edu/castp/

PASS [69] Uses geometry to characterize regions of buried volume in

proteins, and identified positions likely to represent

binding sites based upon the size, shape, and burial extent

of these volumes

www.ccl.net/cca/software/UNIX/pass/overview.shtml
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predicted much more accurately using the structural and
topological information embedded in the structure based
interaction networks, as compared to just the topological
information in the classical graph-based interaction
networks [91].
The classical assumption of one drug target for one

drug to treat a single disease has been shown to be
inaccurate in a number of cases. This assumption might be
the reason for the high failure of new drugs in clinical
trials as a result of low efficacy and high toxicity [92–94].
So-called “Off-Target” binding generally contributes to
side effects and toxicity [95]. However, there have been a
few cases where “Off-Target” binding has been beneficial
[96]. Each known drug on average binds to 6 known
targets, and therefore it is predicted that on average there
will be 6 targets, known or unknown, for each newly
discovered drug [97]. To understand the side effects and
toxicity of rejected drugs, it is important to predict “Off-
Target” binding sites. A number of methods have used
clustering of proteins into families [98,99], global
structure similarity measurement [100,101] and interface
similarity measurement [102–105] to predict “Off-Target”
binding or to redesign drugs to enhance efficacy.
Lounkine et al. have used a similarity ensemble approach
to predict off-targets, based on whether a molecule will
bind to a target with similar chemical features to those of
known targets [106]. They further linked the off-targets to
adverse drug reactions (ADR) by using a guilt-by-
association pipeline that linked off-targets to the ADRs
of drugs for which the off-targets were primary targets
[106]. They computationally screened 656 drugs
approved for human use against 73 target proteins, and
verified their predictions by either searching in protein-
ligand databases or performing binding and functional
assays [106]. Moreover, they were able to construct a
three-way Drug-Target-ADR network that could be an
extremely useful starting point for future off-target and
ADR predictions [106]. The traditional approach to drug
design is to focus on the molecular level, while the
phenotypic outcomes in the clinical trial are measured at
the organism level. Therefore, in future it will be
extremely beneficial to predict off-target binding using
structure based PPI networks [85,107], and to predict the
drug targets [108], drug response [109,110] and even drug
resistance [111] well before entering the clinical trial
stage.
Drug repositioning: Due to the high failure rate and

huge costs involved with traditional drug design
[112,113], a new paradigm has emerged that identifies
new targets for existing approved drugs [114,115]. This
approach is based on the fact that each drug on average
binds more than one target, and that the cost of Phase I
clinical trials could be saved by re-using existing

approved drugs. The amount of chemical and biologic
data has increased exponentially in recent years, and
databases have been developed to integrate large amounts
of data arising from different sources. PROMISCUOUS
is one such database that integrates drug-protein interac-
tions, protein-protein interactions and side effect data for
drug repositioning studies [116]. Chem2Bio2RDF is
another useful database that integrates chemical and
drug data, protein and gene data, chemogenomics data,
protein-protein interaction and pathway data and side
effects data for designing multiple pathway inhibitors and
predicting adverse drug reactions [117]. Drug reposition-
ing can be particularly useful for rare and orphan diseases
[118,119]. Successful repositioning of drugs for novel
targets has been achieved not only using approved drugs
[120] but also using late stage failures [121,122]. With the
advent of structure based PPI networks this approach is
likely to become much more effective, as lead targets and
ADRs can be predicted much more accurately using
structure based PPI networks than graph theory based
classical networks.
Drug-drug interaction (DDI): Drug-drug interaction

(DDI) is often the cause of ADRs, particularly for patient
populations regularly taking multiple drugs. DDIs occur
when the pharmacologic response of a particular drug is
transformed by the action of another drug [123], resulting
in potentially harmful clinical effects. A recent algorithm
by Huang et al. for the systematic prediction of
pharmacodynamic DDIs that considers drug actions and
their clinical effects for the first time in the context of
complex PPI networks is a significant step forward for
predicting ADRs [124]. The authors show that the
integration of network topology, cross-tissue gene
expression correlations and side effect similarity can
predict DDIs with significant success. One of the major
avenues for improvement in future studies would be
utilization of a structure based PPI network, which would
provide a high confidence molecular network reducing
the number of false positives. This should also provide a
framework to study the mechanisms of Drug-protein
interactions. By integrating structural information, it will
be possible for the first time to assess the ratio of DDIs
occurring as a result of competitive binding, allosteric
effects or indirect influence.
Yet not all DDIs are bad side effects of drugs; some

DDIs provide a useful Drug Combination strategy.
Identification of drugs that could be prescribed simulta-
neously may improve efficacy and reduce side effects.
This strategy is particularly effective in accounting for
pathway redundancy. Several drug combinations have
already been reported, particularly for various types of
cancer [125–127] and Human Immunodeficiency Virus
(HIV) [128–130]. In the near future, the use of structure
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based PPI networks will provide more detailed informa-
tion to bring bioinformatics studies in the field of Drug
Combination strategies to the next level.

CONCLUDING REMARKS

Protein-protein interaction interfaces are a rich resource
for gaining insight into the mechanism of how a protein
carries out its functions. A complete structurally resolved
interaction network of all the proteins will be an
invaluable resource for not only understanding the
complex and essential functions associated with these
proteins, but will also help in designing novel therapeutic
strategies for the diseases associated with these proteins.
Due to experimental limitations, computational methods
are extremely useful for completing such interaction
networks, and for using these networks to predict the side
effects of new drugs and to reposition existing drugs.
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