
Modeling stochastic noise in gene regulatory systems

Arwen Meister, Chao Du, Ye Henry Li, and Wing Hung Wong*

Computational Biology Lab, Bio-X Program, Stanford University, Stanford, CA 94305, USA

Abstract

The Master equation is considered the gold standard for modeling the stochastic mechanisms of 

gene regulation in molecular detail, but it is too complex to solve exactly in most cases, so 

approximation and simulation methods are essential. However, there is still a lack of consensus 

about the best way to carry these out. To help clarify the situation, we review Master equation 

models of gene regulation, theoretical approximations based on an expansion method due to N.G. 

van Kampen and R. Kubo, and simulation algorithms due to D.T. Gillespie and P. Langevin. 

Expansion of the Master equation shows that for systems with a single stable steady-state, the 

stochastic model reduces to a deterministic model in a first-order approximation. Additional 

theory, also due to van Kampen, describes the asymptotic behavior of multistable systems. To 

support and illustrate the theory and provide further insight into the complex behavior of 

multistable systems, we perform a detailed simulation study comparing the various approximation 

and simulation methods applied to synthetic gene regulatory systems with various qualitative 

characteristics. The simulation studies show that for large stochastic systems with a single steady-

state, deterministic models are quite accurate, since the probability distribution of the solution has 

a single peak tracking the deterministic trajectory whose variance is inversely proportional to the 

system size. In multistable stochastic systems, large fluctuations can cause individual trajectories 

to escape from the domain of attraction of one steady-state and be attracted to another, so the 

system eventually reaches a multimodal probability distribution in which all stable steady-states 

are represented proportional to their relative stability. However, since the escape time scales 

exponentially with system size, this process can take a very long time in large systems.
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gene regulation; stochastic modeling; simulation; Master equation; Gillespie algorithm; Langevin 
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INTRODUCTION

Like any physical quantity, gene expression level measurements are subject to noise. In fact, 

the experimental techniques for measuring biological quantities tend to be much noisier than 

measurements in other scientific disciplines. The extrinsic noise arising from measurement 
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error can be mitigated by averaging many experimental replicates. However, in addition to 

straightforward extrinsic noise, gene expression is also characterized by intrinsic noise 

arising from the fundamental stochasticity of the underlying processes, which cannot be 

simply averaged away [1,2].

Experimental studies using single-cell biotechnologies have revealed that the biological 

mechanisms of gene regulation, including promoter activation and deactivation, 

transcription, translation, and degradation, are inherently stochastic [3–10]. Stochasticity can 

sometimes dramatically affect the behavior of gene regulatory networks [8,11,12] as 

stochasticity leads to different phase diagrams and can cause instability [13], and small 

molecular numbers can seriously impact system behavior [14]. These observations have 

important implications in synthetic biology, including the engineering of switches, feedback 

loops, and oscillatory systems [15–18].

A number of stochastic models have been applied to the gene regulation problem, since it is 

clear that in many cases, additive noise (independent of expression level) is not sufficient 

[19]. Since gene regulation depends on a series of chemical reactions (including the binding 

of TFs and RNAP to the promoter, transcription, translation, and degradation), it can be 

modeled with chemical equations [20,21]. A number of ad hoc approaches have also shown 

promise, including Poisson models (although expression regulation can lead to non-constant 

rates, disrupting the Poisson character), fluctuation noise analysis in small systems [4,22–

26], and structural inference on large networks based on noise correlation [27,28]. The 

highest quantitative resolution is obtained from more sophisticated analysis based on the 

Master equation [29], including approximation methods [25,30–33], and more accurate 

modeling via simulation or theoretical deduction [14,19,34–37].

While the Master equation is generally accepted as the gold standard for modeling the 

processes of gene regulation in molecular detail, it is too complex to solve exactly except in 

simple cases. Approximations are needed to make it useful, but researchers have still not 

reached a clear consensus about the proper way to carry them out. In this paper, we attempt 

to shed light on these issues by discussing theoretical approximations of the Master equation 

based on an expansion method due to N. G. van Kampen and R. Kubo, and simulation 

algorithms due to Gillespie and Langevin. The van Kampen expansion shows that the 

stochastic model reduces to a deterministic model in a first-order approximation, provided 

the system has a single stable steady-state. We also discuss additional theory due to van 

Kampen for modeling the complex behavior of stochastic systems with multiple stable 

steady-states. To illustrate the methods and provide further insight into the behavior of 

multistable system, we perform a detailed simulation study comparing the various 

approximation and simulation methods applied to synthetic gene regulatory systems with a 

variety of qualitative characteristics.

DYNAMICAL SYSTEM MODELS OF GENE REGULATION

Deterministic dynamical system models of gene regulation lay the groundwork for 

stochastic modeling efforts. Master equation models are discretized stochastic 

generalizations of dynamical system models, so we start by introducing these basic models 
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to provide context and clarify the basic modeling assumptions. For both dynamical system 

models and their stochastic counter-parts, the form of the RNA polymerase binding 

probability function is a key modeling choice, and researchers have considered many 

different possibilities. Linear functions yield the simplest models, but lead to dynamical 

systems (or stochastic systems) with only one steady-state, while nonlinear choices yield 

much more complex systems with multiple steady-states, like many of the most interesting 

biological systems. Lyapunov theory characterizes the stability of steady-states of a 

dynamical system and hence the system’s long term behavior; multi-stability will become an 

even more interesting and critical issue when stochasticity comes into play. In this section, 

we discuss dynamical system models, linear and nonlinear choices of binding probability 

function, and steady-states and their stability, in order to set the stage for stochastic models 

of gene regulation.

Dynamical system model

Before formulating the Master equation model for gene regulation, we introduce its natural 

precursor, a deterministic dynamical system model. Although dynamical system models do 

not account for intrinsic noise, they capture cells’ ability to assume different characters as 

they transition through their lifecycles and respond to stimuli, and their quantitative form 

means that they can be used to predict systems’ future behavior. They also lend themselves 

to inference algorithms that allow the structure of novel gene regulatory systems to be 

learned from data [38]. As we will see in a later section, the stochastic model reduces to the 

deterministic model in a first-order approximation.

In the standard dynamical system model of gene regulation, the levels of RNA and protein 

evolve according to a system of differential equations. The basic assumption is that each 

species of RNA is transcribed at a rate proportional to the probability of RNA polymerase 

(RNAP) binding to the gene promoter (as a function of the expression levels of the 

transcription factor (TF) proteins that regulate it) and degrades at a rate proportional to its 

current level, while the corresponding protein is translated at a rate proportional to the 

current RNA level and also degrades at a rate proportional to its own level.

Hence, the dynamical system model is given by

(1)

where x ∈ ℝn represents RNA concentrations and y ∈ ℝn represents protein concentrations 

corresponding to a set of n genes, f(y) is the probability that RNAP is bound to the promoter 

as a function of the concentrations of regulatory proteins, τi is the transcription rate when 

RNAP is bound to promoter, ρi is the translation rate, and  are the RNA and protein 

degradation rates, respectively.

In some situations, it is necessary or more appropriate to ignore the distinction between 

RNA and protein and use a model of the form:
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(2)

involving only the RNA concentrations x, which serve as a surrogate for the protein 

concentrations y. We will make similar modeling assumptions when we apply the Master 

equation to the gene regulation problem.

RNAP binding probability models

In Equation (1), the term f(y) represents the probability of RNAP binding to the gene 

promoter as a function of the protein concentrations y. There are many possible approaches 

to the modeling of the RNAP binding probability, yielding different functional forms of f.

The simplest approach is to use a linear function f(x) = Ax, where x ∈ , f : ℝn → ℝn, and A 

is an n×n matrix. Such a system can have only one steady-state, as we will discuss in more 

detail later on. Each coefficient aij represents the linear regulatory effect of gene j on gene i, 

and it is clear how perturbing the system and observing its response would allow for 

straightforward inference of these coefficients. If we are only interested in one specific 

steady-state of a biological system, this may be a good choice, and has led to success in 

many cases [39–42]. However, the usefulness of the linear model is severely limited by the 

fact that it cannot capture the ability of gene regulatory systems to maintain multiple stable 

steady-states, one of the key features that often motivate their study. Hence, we now turn our 

attention to nonlinear models.

Michaelis-Menten kinetics and the Hill equation are classical nonlinear model for activation 

or repression by a single factor, based on thermodynamic theory. Michaelis-Menten kinetics 

[43] can be applied to gene regulation by a single transcription factor by modeling 

transcription as the enzymatic reaction series

where X is an activator, D0 is an unbound promoter, D1 is an activator-bound promoter, P is 

an RNA polymerase, and Y is an RNA transcript. The corresponding kinetic equations are:

(3)

(4)

Let us assume that the reversible TF-promoter binding and RNAP-promoter binding 

reactions occur much faster than gene transcription, so that the quasi-steady-state 

assumption
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approximately holds. That is, the bound and unbound promoter states maintain equilibrium 

concentrations. Then we can rearrange to obtain

A model for gene repression can be derived in a similar manner by replacing Equation (4) 

with

(since now transcription only occurs for the unbound promoter), leading to

The Hill equation [44] is another classical model with a similar form, which models 

cooperative binding. For activation by a single transcription factor, for example, it has the 

form

where n is the Hill coefficient.

More sophisticated thermodynamic models can account for multiple regulatory mechanisms 

[45,46]. The Bintu et al formulation is most general thermodynamic model in common use, 

capable of capturing the full spectrum of network interactions [47,48]. The Bintu RNAP 

binding probability function takes the general form

(5)

where Sij lists the gene products that interact to form a regulatory complex, and bij, cij are 

nonnegative coefficients satisfying cij ≥ bij ≥ 0, which depend on the binding energies of 

regulator complexes to the promoter. bi0 and ci0 correspond to the case when the promoter is 
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not bound by any regulator (Πk ∈ Si0
 yk = 0), and the coefficients are normalized so that ci0 = 

1.

The form of fi can model many different types of regulation in quantitative detail. Terms that 

appear in the denominator only are repressors, and the degree of repression depends on the 

magnitude of the coefficient, while terms that appear in the numerator and denominator may 

act as either activators or repressors depending on the relative magnitudes of the coefficients 

and the current gene expression levels.

Despite its detail and generality, not even the Bintu et al model captures the full complexity 

of the situation. One of the key assumptions implicit in the Bintu model is that RNAP levels 

are approximately constant on the time scale of interest. A second assumption is that 

nonspecific binding energy is equal for all non-promoter locations the RNAP could occupy. 

Finally, the model omits several reversible intermediate reactions such as binding and 

unbinding of RNAP and TFs. Since these reactions typically occur very quickly relative to 

the transcription time scale, we can reasonably assume that the quantities involved are in 

thermodynamic steady-state. Hence we can apply the quasi-steady-state assumption to 

eliminate the reversible reactions from the model. (The same argument applies to the 

stochastic formulation of the next section, as Rao and Arkin demonstrate how to use the 

quasi-steady-state assumption to eliminate intermediate species from a multivariate Master 

equation [49].) Nevertheless, eliminating short lived intermediate species is an 

approximation.

Steady-states and stability

The ability of gene regulatory networks to maintain multiple distinct steady-states is one of 

their most crucial properties and a major motivation for their study. Since steady-states and 

stability will be central to our discussion, we need to establish the necessary mathematical 

groundwork. Fortunately, the classical theory for general dynamical systems due to A. 

Lyapunov (1857–1918) perfectly serves our purposes. We will only outline the key 

definitions and theorems here; for a complete discussion, see a text like Walker’s 

“Dynamical systems and evolution equations” [50].

Consider a general nonlinear dynamical system of the form

(6)

where x(t) ∈ ℝn, f : ℝn → ℝn, and f is continuous. Assume that this system has an 

equilibrium point xe, i.e., f(xe) = 0. If f is linear or affine, f(xe) = 0 has exactly one solution so 

the system has exactly one steady-state; if f is nonlinear, the system may have zero, one, or 

multiple steady-states. (We must therefore use nonlinear functions to model gene regulatory 

systems if we wish to capture their ability to maintain multiple stable steady-states.) Let 

 denote the unique solution trajectory x(t) corresponding to  Lyapunov defined 

stability and a stronger condition, asymptotic stability, as follows:
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Definition—The equilibrium xe is said to be stable if for all ε > 0 there exists δ > 0, such 

that

(where B(x, ε) denotes the open ball of radius ε centered at x).

It is said to be asymptotically stable if it is stable, and for all ε > 0 there exists δ > 0, such 

that

In essence, stability means that there exists a neighborhood of the steady-state such that 

trajectories that start inside that neighborhood remain there for all time. Asymptotical 

stability means that in addition to this, nearby trajectories are attracted to the steady-state 

and eventually get infinitely close to it. The next theorem provides the essential stability 

criterion.

Theorem—Assume f ∈ C1(ℝn), and set  (the Jacobian matrix at xe). If there 

exists a symmetric positive definite matrix P such that ATP = PA ≺ 0, then xe is 

asymptotically stable [50].

THE MASTER EQUATION

The basic approach to treating the stochasticity of gene regulation is to model gene 

expression level as a Markov process, whose future state depends probabilistically only on 

the current state. This is the most appropriate description for most processes in physics and 

chemistry [29], and this case is no exception: the mechanisms of transcription, translation, 

and degradation mean that the probability of each of these events depends only on the 

current quantity of each of the species involved in these processes, including RNAP, 

transcription factors, and ribosomes (each of which is the product of one or more genes, and 

can therefore be accounted for in our formulation). The Master equation is the natural model 

for gene regulation under the Markov assumption.

In this section we introduce the Master equation, which follows directly from the Markov 

property [29]. We will briefly discuss the general form of the Master equation, then turn our 

attention to the special case of birth-and-death processes, which provide an excellent model 

for gene regulation. We will need the multivariate form of the Master equation to treat 

systems with multiple genes. In the next subsection, we will apply the basic general theory 

outlined in this subsection to the gene regulation problem.
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Markov processes

A Markov process is a stochastic process such that for any t1 < t2 < ··· < tn,

Hence a Markov process is completely determined by the functions P(y1, t1) and the 

transition probabilities P(y2, t2|y1, t1). The Master equation holds for any Markov process: 

Appendix A contains a complete derivation of the Master equation as an equivalent form of 

the Chapman-Kolmogorov equation, which is a direct consequence of the Markov property 

(adapted from Chapters IV and X of van Kampen’s Stochastic Processes in Physics and 

Chemistry [29]). For a general Markov process Y, the Master equation reads

(7)

where W(y′ | y) = 0 is the transition probability per unit time from y to y′. If the range of Y is 

a discrete set of states labeled by n, then Eq. (7) reduces to

(8)

Birth-and-death processes—Birth-and-death (or one-step) processes are a special class 

of Markov processes whose range consists of integers n and whose transition matrix permits 

only jumps between adjacent sites:

(Note that this does not mean that it is impossible for the system to make two jumps within 

one time step Δt, but only that the probability is O(Δt2).) Hence the Master equation reduces 

to

(9)

The birth and death rates, gn, rn, respectively, can be arbitrary functions of n, even nonlinear 

ones. If only non-negative integers are allowed, then for n = 0 we must replace ṗ with

or alternatively we may define r0 = g−1 = 0.
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One important example of a one-step process with constant transition rates is the Poisson 

process: rn = 0, gn = q, pn(0) = δn,0, i.e.,

It is random walk over the integers taking steps to the right only, but at random times. The 

negative Poisson process (taking steps to the left) is a good model for protein degradation, as 

we will see shortly.

Multivariable birth-and-death processes—The generalization of the Master equation 

for birth-and-death processes to multiple variables is straightforward. Consider an n-

dimensional birth-and-death process X(t) ∈  with birth and death rates g; r :  → ℝn, 

respectively. That is, gj(k), rj(k) denote the birth and death rates, respectively, of the jth 

species when X = k ∈ . The Master equation governing this process is given by

where .

The Master equation model for gene regulation

Now we are ready to apply the basic theory of the previous subsection to the gene regulation 

problem. We will show how to model gene regulation as a birth-and-death process, where 

birth corresponds to transcription and death to degradation, and derive the appropriate 

Master equation model. In the one gene case, an explicit steady-state solution is available. In 

order to account for multiple genes and the distinction between RNA and protein, we require 

a multivariate formulation.

Gene regulation as a birth-and-death process—We now wish to develop a 

stochastic model for gene regulation. We will start simply, considering a system with a 

single gene, and temporarily ignoring the distinction between RNA and protein. Let X(t) be 

a discrete random variable representing the number of RNA transcripts present in the cell at 

time t. X(t) has a time-dependent probability distribution given by P(k, t) ≡ {X(t) = k}. 

Analogous to the deterministic model of section Dynamical system model, we can model 

X(t) as a birth-and-death process with birth rate τF(k) and death rate γk, where F models the 

RNAP-promoter binding probability as a function of the current number of transcripts (in 

the single-gene case, we can only account for self-regulation). If there are initially k RNA 

transcripts, then over an infinitesimal timestep Δt either a degradation event may occur with 

probability γkΔt, an RNAP-promoter binding event may occur followed by RNA 

transcription with probability τF(k)Δt, or neither may occur. (It is highly unlikely (O(Δt2)) 

that two or more of these events occur within a single timestep.) Hence, as Figure 1 shows, 

the probability P(k, t) increases by P(k − 1) times the probability transcription plus P(k,t) 
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times the probability of degradation, and decreases by P(k) times the probability of 

transcription plus the probability of degradation. The Master equation governing the 

evolution of P(k,t) over time is therefore:

(10)

Explicit steady-state solution for one gene systems—A general single-species 

birth-and-death process governed by the Master equation

has an explicit steady-state probability distribution given by

(11)

(van Kampen VI.3.8 [29]). The proof is by induction. Applied to a single-gene system, this 

becomes

(12)

This formula is very useful for studying one gene systems with minimal computation. For 

example, it can be used to directly compute the steady-state mean and variance of a single-

gene system.

Multiple genes—In order to study stochasticity in gene regulation, we must extend our 

framework to include multiple-gene systems as well. In order to do this we can apply the 

Master equation for multivariate birth-and-death processes. Consider a system with n genes, 

and let X(t) ∈  be a discrete random vector, where Xj(t) represents the number of RNA 

transcripts of gene j present in the cell at time t. X(t) has a time-dependent probability 

distribution given by P(k,t) ≡ (X(t) = k) = {Xj(t) = kj,1 ≤ j ≤ n}, for k ∈ . Similar to the 

one gene case, we can model X(t) as a birth-and-death process with Master equation:

where

(13)
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RNA and protein—Initially, we simplified the discussion by ignoring protein translation 

and focusing only on the number of RNA transcripts of each gene. The same multivariate 

Master equation that allowed us to handle multiple genes also allows us to model the 

stochasticity of protein translation. If we introduce another discrete random vector Y(t) ∈ , 

where Yj(t) denotes the number of protein translates of gene j, and define P(kr; kp; t) ≡ 

P(X(t) = kr;Y(t) = kp) the Master equation corresponding to the deterministic model (1) is

If we apply the quasi-steady-assumption discussed in section RNAP binding probability 
models to the translation step, that is, we assume that protein levels are approximately 

proportional to RNA levels at all times, then this equation reduces to the form (13) [49]. 

Although this assumption may not always be biologically accurate, model (13) is the only 

practical option in many cases, since experimental technologies for measuring both mRNA 

and protein levels concurrently are not yet available.

Any modeling effort is necessarily a compromise between accuracy and tractability, and this 

case is no exception. Since the biological mechanisms of gene transcription are 

extraordinarily complex and not completely understood, our model relies on a number of 

simplifying assumptions, both biological and physical in nature. One of the most explicit is 

the assumption that the rates of degradation, translation, and transcription (when RNAP is 

bound) are constant for each gene. In reality, the rates are affected by many other processes 

including chromatin remodeling, translational regulation, and protein folding. As discussed 

in section RNAP binding probability models, modeling the RNAP binding function also 

involves several simplifications and assumptions.

EXPANSION AND SIMULATION METHODS

The Master equation cannot be solved explicitly except in the simplest cases. For a one gene 

system, we have an explicit formula for the steady-state distribution (Equation (12)), but no 

such formula exist for multiple genes. Therefore, in order to make further progress we will 

need approximations of the Master equation and efficient simulation methods. Fortunately, 

much of the work has already been done by physicists studying the Master equation. 

Beginning in the 1970s, N. G. van Kampen [29] and Ryogo Kubo [51] developed a 

systematic expansion method for approximating the Master equation at any level of detail. 

Gillespie created a stochastic simulation algorithm to generate statistically correct 

trajectories of the Master equation; another simulation method based on the Langevin 

equation is less accurate but more efficient. We will summarize their findings in this section 

and show how they can be applied to the gene regulation problem. In the next section we 
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will perform simulation studies on simple synthetic gene regulatory systems to illustrate the 

application of these methods and understand their strengths and weaknesses.

The Gillespie algorithm

The Gillespie algorithm enables numerical simulation of statistically correct trajectories of a 

system governed by the Master equation. The iterative Monte Carlo procedure randomly 

chooses the next event that will occur and the intervening time interval, then updates the 

molecular numbers of each species and the trajectory time [52]. If the simulated system is in 

state X(t) ∈ ℝn at time t, the waiting time τ before its next jump is drawn from an 

exponential distribution, and the probability of jumping to state X(μ) is wμ ∝ W(X(μ)|X) (the 

Master equation transition probability for X → X(μ) per unit time). The basic steps of the 

algorithm are

1. Initialize the molecular numbers of each species, X1, …, Xn, and set t = 0.

2. Randomly choose the next event to occur, and an exponential waiting time τ, by 

generating uniform random numbers r1, r2 from Unif(0,1), and setting

3. Update the time and molecular numbers based on the chosen event and time

4. Repeat steps 2–3 until the simulation time reaches limit t > Tsim.

The Gillespie algorithm provides an exact simulation of the Master equation at a high 

computational cost, which increases rapidly with the number of species and the system size. 

While it is very attractive for small systems, alternative approaches are needed for gene 

regulatory systems with many genes and large systems sizes. In the next few sections, we 

will discuss theoretical approximations as well as an efficient but inexact simulation method 

based on the Langevin equation.

The van Kampen expansion

N. G. van Kampen provides a systematic approximation method involving an expansion in 

the powers of small parameter inversely related to the system size [29]. The Master equation 

can be approximated at any level of detail by truncating the expansion to omit the higher-

order terms. Ryogo Kubo, a contemporary of van Kampen, arrived at an equivalent 

formulation by a slightly different approach [51]. We will follow van Kampen’s 

development here since it is more transparent. For simplicity, we only describe the one-

dimensional expansion, but the multivariate case is similar; van Kampen Chapter X.5 shows 

how to extend the theory to multiple variables [29].

In order to establish the relative scales of macroscopic and microscopic (jump) events, van 

Kampen introduces a system-size parameter Ω, such that for large Ω the fluctuations are 
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relatively small. His approximation takes the form of an expansion in the powers of . A 

critical assumption is that the transition probability function W has the form

which means that the transition probabilities depend only on the macroscopic variable 

 and on the size of the jumps r ∈ . For our application, we assume that this is the 

case, and that the jumps can only have magnitude 1:

The expansion begins with the Ansatz that the probability distribution P(X, t) has a peak of 

order Ω tracking the macroscopic solution, with width of order  corresponding to the 

fluctuations:

(14)

The motivation for the Ansatz is the observation that the relative fluctuation effects in 

chemical systems tend to scale as the inverse square root of the system size [53]. It is 

justified a posteriori by the fact that P(x, t), expressed in terms of ξ, turns out to be 

independent of Ω to first approximation. As part of the expansion procedure, ϕ is chosen to 

track the peak, and turns out to be exactly the deterministic solution.

To compute the expansion, van Kampen redefines P(X, t) as a function Π of the new 

parameters ϕ, ξ via

rewrites the Master equation in terms of Ω, and proceeds to expand it in negative powers of 

Ω. To simplify the calculations, he defines the jump moments

(15)

The first jump moment corresponds to the deterministic equation:

For a birth-and-death process, this simplifies to
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in our case

(16)

For multiple genes, the first-order jump moments are just α1,i(y) = τifi(y) − γyi for 1 ≤ i ≤ n, 

but the second-order jump moments, α2,i,j, 1 ≤ i, j ≤ n, are more complex since they involve 

interactions: see van Kampen Chapter X.5 for further details.

The complete calculation (adapted from Chapter X of van Kampen) is provided in Appendix 

B. A crucial step in the expansion is the cancellation of terms of order , which cannot 

belong to a proper expansion for large Ω. The cancellation is made possible by choosing ϕ(t) 

(the macroscopic part of X) such that

That is, ϕ exactly satisfies the deterministic equation. The final result (to order Ω−1) is that

(17)

with jump moments αv defined by (15).

As we will discuss in greater detail later, the validity of the expansion relies on the 

assumption that the macroscopic equation  has a single stable stationary state 

(satisfying α1(ϕ) = 0, α′1(ϕ) ≤ −ε<0), which attracts all trajectories. If this is not the case, it 

is possible for a random fluctuation to send a stochastic trajectory out of the domain of 

attraction of the deterministic steady-state near which we would expect it to remain. For 

now, we will assume that the condition holds. Then the expansion is valid and can be 

truncated at the desired level of detail and translated back into the original variable via 

 to yield various approximation schemes.

The linear noise approximation—Restricting attention to the terms of order Ω0 = 1 in 

this expansion yields the linear noise approximation

(18)
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This is a linear Fokker-Planck equation, and the solution turns out to be a Gaussian (see van 

Kampen VIII.6 [29]). Hence it is completely characterized by the first and second moments 

of ξ, which are of the most interest to us anyway. Multiplying Equation (18) by ξ and ξ2, 

respectively, yields differential equations in the mean and variance of ξ (denoted 〈ξ〉, 〈〈ξ〉〉, 

respectively):

(19)

(20)

After solving for the mean and variance of ξ and solving the deterministic equation for ϕ, we 

can use the Ansatz (14) to find the mean and variance of X:

The initial condition P(X, 0) = δ(X − X0) implies ϕ0 = x0 and 〈ξ〉0 = 〈〈ξ〉〉0 = 0, hence 〈ξ〉t ≡ 

0. (Even if ξ has a nonzero initial distribution, if α′1(ϕ) < −ε<0 we still will have 〈ξ〉 ≤ e−εt 

→ 0. Hence the mean of the solution to the Master equation with initial distribution δx0 
approximately satisfies the deterministic equation:

(21)

This result extends to the multivariate case. If ξ ∈ ℝn, the mean becomes a vector in ℝn and 

the variance becomes an n × n covariance matrix. In Equations (19) and (20), the functions 

α′1, α2 are replaced with a Jacobian matrix and a matrix of second-order jump moments, but 

the basic structure of the expansion is similar, and (21) still holds. The multivariate case is 

discussed further in van Kampen Chapter X.5, and by Komorowski et al. (with different 

notation) [54].

Connection to nonlinear deterministic model—Equation (21) provides the link 

between the stochastic Master equation and the nonlinear deterministic dynamical system 

model (1). It shows that the deterministic equation is an approximate model for the evolution 

of the mean expression of the stochastic process. That is,

with error on the order of a single molecule. Therefore, under a few reasonable assumptions 

about system size and steady-state stability, the population mean still approximately satisfies 

the nonlinear deterministic equation
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One of the attractions of this model is an associated algorithm for learning an unknown 

underlying gene regulatory network from experimental data [38,55]. The algorithm selects 

terms to include in the model and estimates their coefficients without requiring any prior 

knowledge of the regulators, based on gene expression data at perturbed steady-states. Thus, 

relatively easy-to-acquire steady-state gene expression data can be used to learn a model that 

quantitatively describes the complete dynamical behavior of the system.

The Fokker-Planck and Langevin equations

In section The linear noise approximation, we saw that the linear noise approximation 

gave rise to a linear Fokker-Planck equation. Fokker-Planck or (mathematically equivalent) 

Langevin equations predate the van Kampen expansion and are still often used as 

approximations of the Master equation or directly as models of Markov processes with small 

jumps (although this sometimes leads to difficulties that must be resolved by van Kampen’s 

approach). In this section we will discuss these two types of equations and their applications 

on the gene regulation. Although the approximation is not entirely consistent due to the 

nonlinearity of the problem, the Langevin equation is the basis of an efficient simulation 

approach that enables large-scale simulations of multiple-gene systems.

The Fokker-Planck equation is a differential equation consisting of a “transport” and a 

“diffusion” term:

(22)

(For the multivariate version, see van Kampen VIII.6.1.) In the general form of the equation, 

α1, α2 are any real differentiable functions with α2 > 0, but in Planck’s derivation of the 

equation as an approximation to the Master equation [56], they are exactly the first and 

second jump moments (15). Since the Fokker-Planck equation is always linear in P, we 

follow van Kampen in appropriating the term linear to mean that α1 is linear and α2 

constant.

The Langevin equation is a stochastic differential equation (SDE) of the form

(23)

where W(t) is a Wiener process, or Brownian motion. Again, α1, α2 > 0 may be any C1 

functions in general, but in the case of interest to us, they represent the jump moments (15). 

Equations (22) and (23) are mathematically equivalent using the Ito interpretation of (23) 

(see van Kampen IX.4 [29] for the proof).
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These equations are very appealing for modeling physical processes since they are easy to 

derive and interpret. For both equations, α1, α2 (thought of for now as general functions, not 

as the jump moments) can be inferred without even knowing the underlying Master 

equation, using only the macroscopic law and fluctuations around the steady-state solution 

(known from statistical mechanics). The approach works very well in situations where the 

macroscopic law α1 is linear [56–59]. However, confusion can arise when α1 is nonlinear, 

since effects on the order of the fluctuations are invisible macroscopically [60]. One of the 

major motivations for van Kampen’s systematic expansion was the need to resolve 

disagreements between authors who had developed different but equally plausible 

characterizations of the noise in nonlinear systems using this approach.

For systems with linear deterministic equations, the van Kampen approximation agrees 

exactly with the Fokker-Planck model, since the linear noise approximation yields a linear 

Fokker-Planck equation. However, discrepancies may arise for nonlinear systems, and we 

should consider the van Kampen theory definitive in such cases. The error in the nonlinear 

Fokker-Planck model is that it retains the full functional dependence on the nonlinear 

functions α1, α2 (in effect, keeping infinitely many terms of their Taylor expansions) while 

cutting off their third-order and higher derivatives in the expansion about the deterministic 

path ϕ(t). In contrast, the truncated van Kampen expansion replaces α1, α2 by their Taylor 

polynomials at a level of detail consistent with the order of the approximation. The van 

Kampen expansion provides a completely consistent approximation of the Master equation 

to any desired order of accuracy, while the Fokker-Planck model is a slightly inconsistent 

second-order approximation only. Nevertheless, the discrepancy between the Fokker-Planck 

and van Kampen approximations is often not too serious (and a second-order approximation 

is typically good enough), so the models are still very useful in many cases.

The Langevin equation, in particular, lends itself to efficient simulation [37,53]. Simulation 

provides insight into the behavior of individual trajectories as well as moment information, 

and applies directly to multistable systems (while van Kampen requires alternative theory 

since the expansion method only applies to systems with one stable steady-state). However, 

simulation can be very expensive. The exact Gillespie algorithm and other direct simulation 

methods are only computationally feasible for very small systems. Fortunately, the Langevin 

simulation works well for large systems with many genes, since trajectories of the Langevin 

equation can be simulated by evolving a small system of stochastic differential equations, 

rather than accounting for every single reaction like the Gillespie algorithm. Hence the 

Langevin simulation is appropriate for large systems with complex qualitative structures.

With these risks and potential rewards in mind, we will show how to apply the Langevin 

approach to the gene regulation problem. In the next section we will compare the results of 

Langevin simulations with the more accurate predictions of van Kampen or the direct 

Master equation simulation where possible. Using the first- and second-jump moments (16) 

for our problem, the one-dimensional Langevin equation is

(24)
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where W1, W2 are independent Wiener processes.

Systems with multiple stable steady-states

We have alluded several times to the fact that stochasticity can lead to unexpected results for 

systems with multiple stable steady-states. The basic reason is that random fluctuations can 

send stochastic trajectories out of the domain of attraction of one deterministic steady-state 

and into the domain of another. Van Kampen treats these issues in detail in Chapter XIII of 

his book [29]. In this section, we will summarize the points that are most relevant to our 

topic. In the next chapter, simulation studies will illustrate these points and provide 

additional insight.

For simplicity, consider a birth-and-death process with two distinct stable steady-states, 

ϕa<ϕc and an unstable steady-state ϕb(ϕa<ϕb<ϕc). By this we mean that the corresponding 

deterministic equation dϕ/dt=α1(ϕ) has the following properties:

(25)

(26)

A deterministic trajectory will eventually converge to the nearest stable steady-state, that is, 

trajectories with initial conditions ≤ϕb will converge to ϕa, and those with initial conditions 

≥ϕb will converge to ϕc. (A trajectory with initial condition ϕb will remain there, but this is 

not physically meaningful even in the deterministic case since the slightest perturbation will 

send the trajectory toward ϕa or ϕb)

When we take stochasticity into account, it is also possible for a large fluctuation to send a 

trajectory out of the domain of attraction of ϕa and into that of ϕb. These large fluctuations 

are usually unlikely, so it may take a very long time before one occurs. For systems of 

macroscopic size, this escape time can be so long that the event may never be observed. In 

smaller systems, however, transitions between steady-state domains can be a fairly common 

occurrence.

For systems in which giant fluctuations are relatively rare, we can distinguish two time 

scales: a short time scale on which equilibrium is established within the domain of attraction 

of a particular steady-state, and a long time scale on which giant fluctuations occur (sending 

trajectories out of the domain of attraction of one steady-state and into another). The rate of 

occurrence of the giant fluctuations is roughly equal to the height of the steady-state 

distribution at the unstable point ϕb, which means that the escape time scales exponentially 

with the system size, Ω.

A system that starts out near the unstable point ϕb evolves in three basic stages. At first, 

each trajectory has a reasonable probability of moving toward either of the stable points ϕa 

or ϕc, so the distribution widens quickly, but fluctuations across ϕb are quite possible. In the 

next stage, the probability has split into two autonomous parts, and fluctuations across ϕb 

cease, since each trajectory has settled into the domain of attraction of either ϕa or ϕc. In the 
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final stage, the probability has reached a final bimodal stochastic steady-state distribution 

peaked at ϕa and ϕc. There is still a chance that fluctuations will send trajectories from one 

regime to another, but the probabilities are balanced so as to maintain the distribution.

A system that starts out near the stable point ϕa evolves differently, but eventually reaches 

the same bimodal stochastic steady-state distribution peaked at ϕa and ϕc (i.e., stage three), 

although it takes much longer to do so. Giant fluctuations can release trajectories from the 

domain of attraction of ϕa, but these occur on the long time-scale, so the probability peak at 

ϕc builds up much more slowly. Of course, if giant fluctuations are not particularly rare (in 

small systems, for example), then the initial condition has little impact on the time required 

to reach the steady-state distribution.

The relationship between the escape times and the probability of the regimes in the 

stochastic steady-state distribution is simple. Define the probabilities πa, πc of a trajectory 

ϕ(t) being in the domain of ϕa, ϕc, respectively, by

Let τac, τca represent the escape times, that is,  is the probability per unit time for a 

trajectory in the domain of ϕc to cross the boundary ϕb into the domain of ϕa. Then we have 

 [van Kanmpen XIII. 1.4]

At steady-state (π̇
a=π̇c=0),

We can identify the escape time τca with the mean first-passage time from ϕa to ϕc. For the 

one dimensional process defined by Equation (9), the mean first-passage time from ϕa to ϕc 

is given by

(27)

where ps is the stationary distribution (11), as shown in Appendix C. The escape rate is 

, the height of stationary distribution at the unstable point b, so the escape time scales 

exponentially with the system size [61].
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The relative stability of the two stable steady-states, , depends on the relative depths and 

widths of the two corresponding potential energy wells. To illustrate this, consider the 

Fokker-Planck equation modeling diffusion in a potential U:

(28)

Although this model is not even approximately appropriate for the gene regulation problem 

since the diffusion coeffcient is constant, while in the gene regulation problem it is a 

function of x, it helps clarify some important issues. To that end, suppose the derivative of U 

satisfies the bistability conditions (26), so that dU = dx and U have the shapes shown in 

Figure 2. dU/dx has zeros at the steady-states ϕa, ϕb, ϕc, and U has minima at the stable 

points ϕa, ϕc and a maximum at the unstable point ϕb.

The corresponding deterministic equation is  The stationary distribution is 

given by

and for small θ we can approximate

Hence the relative stability of the two stable steady-states depends on both the depths of the 

potential energy wells (U(a) and U(c)) and their widths (U″(a) and U″(c)). In Figure 2, ϕc is 

more stable than ϕa, since its potential energy is lower and energy well is wider. The relative 

stability in this example is about , meaning that at stochastic steady-state, about 

43% of trajectories will be near ϕa and 57% will be near ϕc at a given time (as shown in 

Figure 2, right pane). Similarly, we can approximate the escape time (mean first-passage 

time) by
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Hence the escape time depends on the height of the energy barrier U(b) and energy well 

U(a), and the widths U″ (a), U″ (b) of the well and barrier. Since the potential energy 

difference is O(Ω), we see again that the escape time scales exponentially with the system 

size. Diffusion in multiple dimensions is qualitatively similar; van Kampen discusses the 

two-dimension case in XIII.4 [29].

In order to extend some of these ideas to the gene regulation problem, at least 

approximately, we need a non-constant diffusion term in the Fokker-Planck equation. The 

Fokker-Planck approximation corresponding to the fully nonlinear Master equation used for 

gene regulation is given by

(As we noted earlier, although this does not technically constitute a consistent 

approximation, it works well in most cases.) The steady-state solution is given by

(29)

(In the multidimensional case, finding the steady-state solution is less straightforward, as 

discussed in van Kampen XI.4, but simulating the equivalent Langevin simulation would 

provide an approximate result.) We can define an “effective potential” by

(30)

and numerically evaluate πa, πc, and the relative stability, using

In the one-dimensional case, we could use the exact steady-state solution of the Master 

equation (12) instead, although the Fokker-Planck stationary solution may be more 

convenient. In the multivariate case, we must use the Fokker-Planck/Langevin approach, 

since there is no general approach to finding stationary solutions of multivariate Master 

equations.

Summary

Nonlinear Master equation models capture the stochastic mechanisms of gene regulation in 

full molecular detail. The Master equation can rarely be solved explicitly for multiple gene 

systems, but theoretical approximations and simulation algorithms can give insight into 

these systems. The Gillespie algorithm allows us to numerically simulate exact trajectories 
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of the Master equation, although the computational cost becomes prohibitive for large 

systems with many genes. The van Kampen expansion method allows us to rigorously 

approximate the Master equation at any level of detail we desire (the deterministic model (1) 

being the simplest), provided that the system has only one stable steady-state, and van 

Kampen provides alternative theory for analyzing systems with multiple stable steady-states. 

The Langevin equation (equivalent to the Fokker-Planck equation) is an inexact 

approximation to the Master equation and is the basis of a highly effcient simulation method 

that is well suited for large multiple-gene systems. In the next section, we will perform 

simulation studies on simple synthetic gene regulatory systems to illustrate the application 

of each of these methods and evaluate their performance. As one might expect, the behavior 

of systems with multiple stable steady-states is particularly interesting.

STOCHASTIC SIMULATION STUDIES

In this section, we study several small synthetic gene regulatory systems in order to gain 

insight into the effects of stochasticity on systems with different qualitative characteristics, 

and the suitability and accuracy of different approximation and simulation methods in 

various situations. The simulation studies will compare the true Master equation (when 

feasible), second-order van Kampen approximation, deterministic equation (linear-noise 

approximation), Gillespie simulation, and Langevin simulation, in order to understand the 

strengths and limitations of each.

One gene system with one stable steady-state

Consider a single self-repressing gene whose self-regulation is governed by the deterministic 

differential equation

(31)

It has a single (non-negative) deterministic steady-state at y = 1, satisfying f(y) − γy = 0. 

(The other solution, y = −2, is negative and therefore not physically meaningful, nor is it 

realizable by the system assuming a non-negative initial condition.) The corresponding 

Master equation is

(32)

where F(k) = Ωf(k/Ω). Numerical evolution of the Master equation by iteratively updating a 

vector of probabilities according to (32) is feasible in this case because the system is so 

simple. The Master equation also has the explicit steady-state solution:
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Figure 3 shows the stationary probability distributions for a range of values of Ω, revealing 

that as Ω increases, the distribution is increasingly sharply peaked at ys = 1. That is, the 

mean approaches ys = 1, and the variance goes to zero as Ω increases.

To second order, the van Kampen expansion gives

We can solve for the steady-state values of ϕ, 〈ξ〉, and 〈ξ2〉 by setting the left-hand-sides of 

all three equations to zero. The first equation is the deterministic evolution equation: we 

already know that its only non-negative solution is ϕs=1. Evaluating f and its derivatives at 

ϕs:

and plugging into the last two equations yields

Finally we obtain expressions for the steady-state mean and variance in terms of Ω:

The Langevin model for this system is given by the SDE

where W1(t), W2(t) are independent Wiener processes.

Figure 4 compares the exact Master equation, second-order van Kampen approximation, 

Gillespie simulation, and Langevin simulation for this system with initial condition ys = 1 

(the steady-state value) and three different values of Ω. As Ω increases, the agreement 

improves as the mean approaches the deterministic trajectory (that is, the steady-state value 

ys = 1), and the variance decreases. The discrepancy between the stochastic mean and the 

deterministic trajectory and the variance are both O(Ω−1) (as predicted by the van Kampen 

expansion).
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The Master equation governs the evolution of the probability distribution; Figure 5 shows 

the final probability distributions for each value of Ω. In each case, the initial probability is a 

delta-distribution centered at Ωys, and the probability spreads out over time to reach a 

steady-state distribution, which is extremely close to a Gaussian for Ω ≫ 1. For larger 

values of Ω, the final probability distribution remains sharply peaked around ys.

Two gene system with one stable steady-state

Next we consider a two gene system, again with a single stable steady-state, governed by the 

deterministic differential equation

(33)

(34)

It has a single deterministic steady-state at y1 = 1, y2 = 2. With two genes, directly evolving 

the Master equation is very expensive for moderately sized systems, as each probability 

distribution is now two-dimensional (in general, the computational cost of evolving the 

Master equation with system size Ω is O(Ωn) per timestep), so we omit this method and 

focus on the van Kampen approximation and the Gillespie and Langevin simulations. In the 

Langevin simulation, we neglected the interaction terms in the second-order jump moments 

for simplicity. Figure 6 shows that the situation is qualitatively similar to the one gene case 

we just discussed. The approximation and simulation means differ from the deterministic 

trajectory by O(Ω−1), and the variance is also O(Ω−1). For Ω = 1, the y2 variance and mean 

discrepancy of the Langevin simulation and the van Kampen approximation are slightly 

lower than those of the exact Gillespie trajectories. This inaccuracy arises from zero-

boundary effects and the non-Gaussianity of the probability distribution at small system 

sizes (on the order of a single molecule).

Constructing multistable systems

Gene regulatory systems with multiple stable steady-states are ubiquitous in nature as this 

property plays a key role in cellular lifecycles and responses to external stimuli. However, 

constructing synthetic systems with multiple stable steady-states with our chosen functional 

form (5) can be challenging. One approach, which Chickarmane et al. used to develop their 

ESC-inspired system [62], is to start with a well-understood biological network with 

multiple steady-states and use experimental data and knowledge of qualitative behavior to 

suggest the appropriate terms and parameter values. This can be an interesting and useful 

program, especially as the synthetic network may later be useful for gaining further insight 

into the behavior of the original biological network; however, there are very few biological 

networks well-understood enough to lend themselves to this type of modeling. Furthermore, 

it is limiting in the sense that it relies on existing known networks, and provides little insight 

into methods for generating original networks. Ideally, we would like to be able to create 

novel networks from scratch with specific properties of our own choosing. In this section we 
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will discuss our efforts toward this end. Although we have not fully solved this problem by 

any means and would encourage further work in this direction, we have developed a 

heuristic algorithm that, together with some trial-and-error, allowed us to generate the two 

multistable synthetic gene networks we study shortly.

Suppose we wish to construct an n-gene system with k stable steady-states e1, …, ek, of our 

choosing. That is, we want to find parameters bij, cij, i = 1, …, n, j = 1, …, m, where m is the 

number of terms in the model, so that

Furthermore, e1, …, ek should be stable, so we require

where Jf (y) denotes the n × n Jacobian matrix of f at y ∈ ℝn.

Hence, we wish to find bi, ci ∈ ℝm such that fi(ej) = γej,i while satisfying the Jacobian 

condition and the other constraints. That is, we want to solve the feasibility problem:

(35)

If the problem is feasible, then bi, ci parametrize a system with the desired properties. Not all 

choices of the ej necessarily lead to a feasible problem, so we may have to try several 

possibilities before we find a system with multiple stable steady-states.

The problem is nonconvex due to the rational form of f and the stability condition, so we can 

either use a nonconvex solver, or use heuristics and trial-and-error and solve with a convex 

solver. Specifically, we can use an iterative approach to enforce the stability constraint [63], 

and simply replace the denominator of each f with a constant value and add a constraint 

forcing the denominator to be equal to that constant. Of course, not all constant values lead 

to feasible problems, so if we use the heuristic approach, we must guess-and-check the 

denominator values as well as the steady-state locations.

One gene system with two stable steady-states

In this section, we study a one gene system with two stable steady-states (and one unstable 

steady-state) inspired by a synthetic system developed by Chao Du and refined using the 

algorithm of the previous section.
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(36)

gives rise to two stable steady-states: e1 ≈ 1.0431 and e2 ≈ 7.9845, and an unstable steady-

state e3 ≈ 4.0416.

At the end of the last section, we discussed methods from Chapter XIII of van Kampen’s 

book for analyzing the equilibrium behavior of systems with multiple stable steady-states. 

These tools provide a great deal of insight into long-term system behavior with minimal 

computation, since they only require the stationary probability distribution (which can be 

computed directly in the single-gene case using (12), or approximated using the Fokker-

Planck equation in general). These tools will allow us to predict some of the basic behavior 

of system (36) with very little effort. Simulations will confirm and complete the picture.

Let us first examine the most basic properties of the system with Ω = 1. As Figure 7 shows, 

the deterministic system is bistable. The deterministic function α1(x) = f(x) − γx has three 

zeros corresponding to the three deterministic steady-states. The derivative of the 

deterministic function is negative (dα1 = dt<0) at the stable steady-states, and positive at the 

unstable steady-state. The stationary distribution has a strong peak at the more stable steady-

state, e1, and a weaker one at the less-stable point e2. The system is three times as likely to 

be in the domain of e1 as in the domain of e2. We can use the relative stability of the two 

stable points to estimate the steady-state mean: π1e1 + π2e2 ≈ 2.78, which will be confirmed 

by our simulation study.

Next, let us examine the system with Ω = 10. Figure 8 shows the deterministic function, the 

effective potential, and the (approximate) stationary distribution, computed using the 

Fokker-Planck approach. The deterministic function and stationary distribution have the 

same qualitative properties as they did for Ω = 1, except that the e1 peak of the stationary 

distribution is now even higher relative to e2 (π1 ≈ 97%; π2 ≈ 3%) and the steady-state 

mean, 1.24, is therefore closer to e1. The effective potential has minima at the stable steady-

states, but the “energy” of the more stable state, e1, is much lower.

Simulations reveal how the mean, variance, and probability distribution of the system 

actually evolve. Figures 9, 12 and 13 compare the exact Master equation, second-order van 

Kampen approximation, and Master equation and Langevin simulations for Ω = 1,10, and all 

but the exact Master equation for Ω = 100 (due to instability), respectively. Unlike for the 

one gene system described by Equation (31), the exact Master equation and both simulations 

deviate dramatically from both the van Kampen approximation and the deterministic 

trajectory, at least for Ω = 1,10. The reason for this is the bistability of the system. 

Especially when Ω is fairly small (hence the variance is relatively large) each stochastic 

trajectory starting from steady-state e1 has a reasonably large probability of escaping from 

the domain of attraction of e1 and being attracted to e2, and vice versa. In the long run, the 

system settles to a bimodal steady-state distribution, in which both stable steady-states are 

represented proportional to their relative stability. Therefore, the steady-state mean 

regardless of the starting point converges to the roughly weighted average of the two 

deterministic stable steady-states predicted by the basic stability analysis described in Figure 
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7. The second-order van Kampen expansion centered at either of the two steady-states does 

not account for this blending effect and therefore underestimates both the variance and the 

deviation of the mean trajectory from the deterministic trajectory. In reality, the second-

order expansion should never have been applied in this case since it is only valid for systems 

with a single stable steady-state, as van Kampen explains in Chapter X of his book [29].

Figure 10 shows how the probability distribution evolves from two different initial 

conditions, peaked at e1 and e2, respectively. Regardless of the starting point, the probability 

distributions eventually converge to identical steady-state distributions with a strong, sharp 

peak near e1 and a weaker peak centered near e2. When the initial condition is a peak at e1, 

the probability spreads out over time and shifts some of its weight toward e2, and vice-versa, 

although much more weight is shifted from e2 to e1 than the other direction.

The system behavior with Ω = 10 is qualitatively similar, as Figure 12 shows, but the 

bimodal steady-state probability distribution is even more sharply peaked at e1 and the 

stochastic mean converges to an average closer to e1, in agreement with the analysis of 

Figure 8.

The situation appears to be different for Ω = 100, as shown in Figure 13. In fact, the system 

seems to behave much more like a single stable steady-state system. In that the stochastic 

mean remains close to the initial steady-state, the van Kampen approximation agrees well 

with the simulation results, and the variance and difference between the mean and 

deterministic trajectory are both on the order of O(Ω−1). The explanation is that for very 

large systems, the probability of a jump between e1 and e2 is extremely small, so the escape 

time is much longer than the length of the simulation. Figure 11 confirms that the escape 

time scales exponentially with the system size, as discussed in the previous section and 

Appendix C. Therefore, for a large system like this one, the stochastic trajectories are highly 

unlikely to diverge from the deterministic steady-state where they originated for the duration 

of the simulation. If the simulation ran long enough, some trajectories would eventually 

escape from their initial domains of attraction, and the same blending of the two steady-

states that we observed in the smaller systems would occur. The large system size means 

that the initial time period in which the two stable steady-states operate independently of 

each other takes up the entire simulation, however, so we never observe this blending.

Two gene system with two stable steady-states

We constructed a two gene system with two stable steady-states using the heuristic approach 

described in section Constructing multistable systems. We selected the two steady-states

and solved the optimization problem (35) for the coefficients bi, ci ci ∈ ℝm (where m is the 

number of terms in the model), for i = 1, 2, and Lyapunov matrices P1, P2 ∈ ℝn×n, to 

enforce the steady-state condition (fi(ej) = γej,i for i = 1, 2, j = 1, 2), and the stability 
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condition (Jf (ej)TPj + PjJf (ej) ≺ − ε at each steady-state j = 1, 2). The problem is non-

convex due to the rational form of f and the stability condition. For convenience, we found a 

solution using a convex solver and a series of heuristics, then checked that the result was 

indeed a solution of (35), but we could also have used a general solver to solve the 

feasibility problem (35) directly.

The deterministic model for the two gene system with two stable steady-states is

(37)

with bi, ci, i = 1, 2, given in Appendix D.

Figure 14 compares the second-order van Kampen approximation and the Gillespie and 

Langevin simulations for Ω = 10 and Ω = 1000 (where in the Langevin simulation, we again 

neglected the interaction terms in the second-order jump moments for simplicity). The 

qualitative behavior of this system is exactly the same as that of the bistable one gene 

system. For small system sizes, each stochastic trajectory has a reasonable probability of 

escaping from the domain of attraction of one stable steady-state and being attracted to the 

other, so in the long run, the system settles to a bimodal steady-state distribution. Hence, 

regardless of the initial condition, the steady-state mean converges to a weighted average of 

the two deterministic stable steady-states. The second-order van Kampen approximation 

centered at either of the two steady-states does not properly apply, and would seriously 

underestimate both the variance and the deviation of the mean trajectory from the 

deterministic trajectory. For very large systems, in contrast, the probability of a giant 

fluctuation between e1 and e2 is very small. Since the escape time scales exponentially with 

the system size, it can far exceed the length of the simulation for large systems. Therefore, 

the stochastic trajectories remain close to the deterministic steady-state where they 

originated for the duration of the simulation, and the van Kampen approximation is quite 

accurate within this timeframe.

Simulation summary

Our simulation studies support and illustrate the theory discussed in the last section by 

comparing the van Kampen expansion, Gillespie simulation, and Langevin simulation for 

systems with one or multiple stable steady-states, hence very different qualitative 

characteristics. For one gene systems, we can compare the performance of each approach to 

the exact trajectory of the Master equation. Our study of a one gene system with one stable 

steady-state shows that for system-size Ω, both the variance and the difference between the 

stochastic mean and deterministic trajectory are O(Ω−1), and the van Kampen expansion, 

Gillespie simulation and Langevin simulation are all in excellent agreement with Master 

equation, (except for slight inaccuracy in the van Kampen and Langevin approximations for 

very small systems). Furthermore, the deterministic and stochastic trajectories are almost 

identical for large systems. As the system size increases, the final probability distribution of 

the stochastic system becomes increasingly sharply peaked at the deterministic steady-state. 

The two gene system with one stable steady-state confirms these observations. The bistable 
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systems exhibit much more complex behavior. Rather than staying near the initial 

deterministic steady-state, the Gillespie and Langevin simulations (and exact Master 

equation, for the one gene system) deviate dramatically from both the (improperly applied) 

van Kampen expansion and the deterministic trajectory, at least for small Ω. The explanation 

is that each stochastic trajectory has a reasonable probability of escaping from the domain of 

attraction of one stable steady-state and being attracted to another. In the long run, the 

system settles to a bimodal steady-state distribution, in which both stable steady-states are 

represented proportional to their relative stability, and the mean is the weighted average of 

the two stable steady-states (as predicted by the alternative van Kampen theory for multiple 

stable steady-states). However, for large bistable systems, the escape time can far exceed the 

length of the simulation, since escape time scales exponentially with system size. Therefore, 

the stochastic trajectories remain close to the deterministic steady-state where they 

originated for the duration of the simulation.

CONCLUSIONS

We can draw several important conclusions from the theory of the earlier sections and the 

results of these studies. The first is that for large systems with a single stable steady-state, 

the deterministic model is sufficient for most practical purposes, since the probability 

distribution of the stochastic solution consists of a peak tracking the deterministic solution 

with variance inversely proportional to the system size. Multistable systems display more 

complex behavior since large fluctuations can cause trajectories to jump from the domain of 

attraction of one steady-state into another. Eventually, multistable systems settle to 

multimodal steady-state probability distributions peaked at the deterministic steady-states, 

with peak strengths proportional to the relative stability of the steady-states. Moderate-sized 

or randomly initialized multistable systems reach their final multimodal distribution 

relatively quickly, but since the escape time scales exponentially with the system size, the 

steady-states of large multistable systems may operate independently of each other 

practically indefinitely.

These observations are particularly relevant to the deterministic model-based inference 

method we presented in a earlier publication [38]. Since the deterministic model is very 

accurate for large systems with a single steady-state, the inference method applies directly to 

the mean of gene expression measurements for this type of system. For multistable systems, 

we can find the deterministic steady-state expression levels needed for the algorithm by 

locating the expression peaks rather than averaging the measurements. For the large system 

sizes typical in gene expression studies, these peaks will be extremely close to the 

deterministic steady-states. It is also worth specifically relating the effects of stochasticity to 

gene perturbations, which are central to our inference algorithm and many other 

applications. A gene regulatory system immediately following a perturbation like gene 

knockdown is not in steady-state, so the expression distribution will be in flux for some 

period of time before reaching a final stochastic steady-state consistent with the 

perturbation. This steady-state is, in general, a multimodal distribution different from the 

system’s natural steady-state distribution due to the perturbation. The peaks of the 

distribution correspond to deterministic stable steady-states consistent with the fixed 

expression levels of the perturbed genes. If there is only one such deterministic steady-state, 
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the final distribution will be unimodal; if there are multiple, the system will eventually 

explore them all. Generally, a perturbed system does not start out very close to a particular 

deterministic steady-state, so it has a reasonable probability of initial attraction to any 

possible state and the distribution quickly reaches its multimodal steady-state (on a very 

short time scale relative to the escape time, as discussed in section Systems with multiple 
stable steady-states). To collect data for the inference algorithm, the experimenter should 

apply each perturbation, wait for the system to settle to its stochastic steady-state 

distribution, and measure the expression peaks, which correspond to deterministic perturbed 

steady-states.

Stochastic effects become more dominant for small systems, where fluctuations have greater 

impact relative to the system as a whole. In particular, stochastic modeling can be critical for 

genes with very low expression numbers. In these cases, exact but expensive methods like 

the explicit Master equation solution for one gene systems or the Gillespie algorithm may be 

attractive. Our results indicate that the Langevin simulation is also reasonably accurate, 

especially for moderate-sized systems, at much lower computational cost than the Gillespie 

algorithm. For systems with one stable steady-state, the van Kampen expansion is excellent 

for approximating the Master equation at any level of detail desired, and alternative van 

Kampen theory can yield insight into the asymptotic behavior of multistable systems. We 

hope our discussion of gene regulation modeling via the Master equation and our analysis 

and demonstration of approximation and simulation methods will help future researchers 

treat stochasticity in gene regulation more confidently and effectively.
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APPENDICES

A Derivation of the Master equation

The following derivation, simplified and adapted from Chapters IV and X of van Kampen’s 

Stochastic Processes in Physics and Chemistry [29], is provided here for the reader’s 

convenience.

A.1 The Chapman-Kolmogorov equation

A Markov process is a stochastic process such that for any t1 < t2 < ··· <tn,

Hence a Markov process is completely determined by the functions P(y1, t1) and the 

transition probabilities P(y2, t2|y1, t1). For example, for any t1<t2<t3,

If we integrate this identity over y2 and divide both sides by P(y1, t1), we obtain the 

Chapman-Kolmogorov equation, which necessarily holds for any Markov process:

(38)

A.2 The Master equation

The Master equation (also known as the Kolmogorov Forward equation) is a differential 

form of the Chapman-Kolmogorov equation that is often more convenient and easier to 

relate to physical processes.

In order to derive it, we first assume for convenience that the process is time homogeneous, 

so we can write the transition probabilities as Tτ, i.e.,
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It can be shown (see van Kampen IV.6) that for small τ′, Tτ′(y2|y1) has the form

(39)

where W(y2|y1) is the y1 → y2 transition probability per unit time. The coefficient in front of 

the delta is the probability that no transition occurs during τ′, so

Inserting (39) in place of T′τ in the Chapman-Kolmogorov equation (38) yields

We can rewrite this equation as (7) from the main text as follows:

Or change the names of the variables:

B van Kampen’s expansion of the Master equation

This calculation is adapted from van Kampen, Chapter X [29]. It is simplified from the 

original by assuming a birth-and- death process, and provided here for the reader’s 

convenience. The Master equation for a birth-and-death process is given by
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Assume that the transition probabilities have the special form:

and define

For birth-and-death processes, r only takes the values ±1, so we have

Hence the Master equation becomes

(40)

As discussed in the main text, we make the Ansatz

and define Π by

The partial derivatives Π are given by
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Therefore we can rewrite (40) as

Taylor expanding  about ξ allows us to approximate 

(40) in terms of the jump moments α1, α2:

A second Taylor expansion of  about ϕ gives

We can cancel the  terms on the right- and left-hand- sides by choosing

This is the final form of the expansion. It can be truncated at any level of detail desired and 

translated back into the original variables to yield various approximations of the Master 

equation. Note that it is only applicable for systems with a single stable steady-state [29].

C Mean first-passage time

For a birth-and-death process with states 0, 1, 2, …, we can derive a simple formula for the 

mean first-passage time. Suppose the system starts at state m and we want to find the mean 

first-passage time to state n. Let τi denote the expected time to reach state n starting from 

state i. Clearly τn = 0, and the quantity of interest is τm. Let gk, rk denote the birth and death 
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rates of the chain, respectively, and tk denote the expected waiting time in state k before a 

transition. The waiting times and transition probabilities are related to the rates as follows:

Then we have

where ps is the stationary distribution (11). Observe that if n, m are stable points and l with 

m ≤ l ≤ n is an unstable point, then the stationary distribution will have peaks at n and m and 

a valley at l. The most important terms in the sum are therefore those with  being the 

denominator, and the inner sum is then πm, which is O(1). Hence the escape rate is on the 

order of ; that is,

The escape time scales as eΩ since the stationary distribution is approximately a mixture of 

Gaussians with peaks of order Ω at the stable points, so  is O(e−Ω).

D Coefficients of the bistable two gene system

The coefficients of system (37) are given by
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Figure 1. Informal derivation of the Master equation for gene regulation
In a infinitesimal timestep, P(k; t), the probability of k RNA transcripts, increases by P(k − 

1, t) times the probability, F(k − 1), of a transcription event (number of transcripts increases 

by one) plus P(k + 1, t) times the probability, γ(k + 1), of a degradation event (number of 

transcripts decreases by one). It decreases by P(k) times the probability of transcription plus 

P(k) time the probability of degradation.
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Figure 2. Bistability in a stochastic system modeled by a Fokker-Planck equation of the form 

(28), corresponding to deterministic equation 

The deterministic function  (left) has zeros at the three steady-states ϕa ≈ 1, ϕb ≈ 4, ϕc ≈ 

8. The points ϕa and ϕc are stable, while ϕb is unstable. The potential U(x) (center) has 

minima at ϕa and ϕc and a maximum at ϕb, corresponding to low energy (favorable) at the 

two steady-states and high energy (unfavorable) at the unstable state. ϕc is more stable than 

ϕa since its potential well is deeper and wider. The stationary distribution (right), to which 

the stochastic system will eventually converge, is bimodal with peaks at ϕa and ϕc. The peak 

at ϕc is higher since ϕc is more stable than ϕa.
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Figure 3. Steady-state probability distributions of a one gene system with one steady-state (31) 
for increasing system sizes Ω = 1,10,100
The distribution always peaks at the deterministic steady-state solution (y = 1), and the 

variance decreases as Ω increases. For smaller values of Ω, it is clear that the mean lies 

slightly above the deterministic solution, but as Ω increases, the distribution becomes quite 

symmetric.
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Figure 4. One gene system with one steady-state (31)
Mean (left) and variance (right) trajectories via Master equation (black), van Kampen 

approximation (blue), and average of 100 trajectories of the Gillespie (red) and Langevin 

simulation (cyan) with Ω = 1,10,100 (top to bottom, respectively). There is excellent 

agreement between simulations, van Kampen approximation, and exact Master equation for 

both mean and variance. Discrepancy between the stochastic mean and deterministic 

trajectory and magnitude of the variance are both O(Ω−1).
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Figure 5. Final probability distributions of the exact Master equation for a one gene system with 
one steady-state (31), with Ω = 1,10,100
The probabilities converge to approximately Gaussian steady-state distributions peaked near 

the deterministic steady-state. For larger system sizes, the distribution is more Gaussian and 

the peak is sharper.
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Figure 6. Two gene system with one stable steady-state (34)
Mean (left) and variance (right) trajectories of van Kampen approximation (blue) and 

average of 100 trajectories of Gillespie (red) and Langevin simulation (cyan) with Ω = 

1,10,100 (top to bottom, respectively). As with the one gene system, agreement between the 

simulations and the van Kampen approximation is excellent, and both the variance and the 

discrepancy between the mean and deterministic trajectory are O(Ω−1). The only exception 

is for Ω = 1, where slight inaccuracy of the Langevin simulation and van Kampen expansion 

arises from the non-Gaussianity of the probability distribution.
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Figure 7. The deterministic function α1(x) = f(x) −γx for the system (36), with Ω= 1, has three 
zeros corresponding to the three deterministic steady-states, e1, e2, e3
The derivative of the deterministic function is negative (dα1 = dt < 0) at the stable steady-

states e1, e2, and positive at the unstable steady-state e3. The stationary distribution 

(computed with Equation (12)) has a strong peak at e1 and a weaker one at e2. The system is 

much more likely to be in the domain of e1 (x < e3) than in the domain of e2 (x > e3): 

specifically, π1 ≈ 0.75, and π2 ≈ 0.25. The steady-state mean is given by π1e1 + π2e2 ≈ 

2.78.
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Figure 8. The deterministic function, effective potential, and (approximate) stationary 
distribution for system (36) with Ω = 10, computed with the Fokker-Planck approximation and 
Equations (29,30)
(The result is nearly identical to what we would have obtained with the explicit equation 

(12)). The deterministic function and stationary distribution have the same qualitative 

properties as they did with Ω= 1, except that the e1 peak in the stationary distribution is now 

even higher relative to e2 (π1 ≈ 97%; π2 ≈ 3%), and the steady-state mean is shifted toward 

e1: π1e1 + π2e2 ≈ 1.24. The effective potential has minima at the two stable steady-states e1, 

e2, and a maximum at e3. The more stable steady-state, e1, has lower “energy”.
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Figure 9. One gene system with two stable deterministic steady-states (36), Ω = 1
Mean (left) and variance (right) trajectories via the Master equation (black), the (improperly 

applied) van Kampen expansion (blue), and the average of 100 trajectories of the Gillespie 

(red) and Langevin simulation (cyan). Regardless of the starting point, the stochastic mean 

trajectory eventually converges to the weighted average of the two deterministic stable 

steady-states predicted by the analysis of Figure 7: π1ei ≈ + π2e2 ≈ 2.78. The (improperly 

applied) van Kampen expansion seriously underestimates the discrepancy between the mean 

and the deterministic trajectory since, as an expansion about e1, it effectively ignores e2, and 

vice versa; van Kampen’s stability analysis is therefore the correct theoretical approach in 

this case.
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Figure 10. Initial (left), intermediate (center), and final (right) probability distributions of the 
exact Master equation for the one gene system with two stable steady-states (36), starting from e1 
(top) or e2 (bottom), with Ω= 1
The probability distributions start out peaked at their respective initial conditions. Over time, 

some of the probability begins to flow from one deterministic steady-state to the other. 

Regardless of the initial condition, the system eventually reaches a single bimodal stochastic 

steady-state (the same distribution shown in Figure 7), with a stronger peak at e1 (the more 

stable of the two points) and a weaker peak at e2.
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Figure 11. 
Escape time τ2,1 versus system size Ω for system (36) (left), computed as mean first-passage 

time via Equation (27). The plot of log(τ2,1) vs. Ω(right) is linear, confirming that the escape 

time grows exponentially with the system size.
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Figure 12. One gene system with two stable steady-states (36), Ω= 10
Just as in Figures 9 and 10, regardless of the initial condition, the probability converges to a 

bimodal distribution with a strong peak at e1 (π1 = 97%) and weaker peak at e2 (π2 = 3%), 

and the mean converges to the weighted average π1ei + π2e2 ≈ 1.24 predicted in our 

stability analysis for Ω= 10.
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Figure 13. One gene system with two stable steady-states (36), Ω= 100
Mean (left) and variance (right) trajectories via (improperly applied) van Kampen 

approximation (blue) and average of 100 trajectories of the Gillespie (red) and Langevin 

simulation (cyan). The exact Master equation calculation suffered from instability 

(oscillations) so the trajectory is not shown here. Since escape time scales exponentially 

with the system size, the escape time for this system far exceeds the length of the simulation. 

Therefore the stochastic trajectories remain close to the deterministic steady-state where 

they originated for the duration of the simulation. Since the two deterministic steady-states 

operate mostly independently of each other in the simulation timeframe, the van Kampen 

approximation agrees quite well, unlike for smaller system sizes. The variance and 

difference between the mean and deterministic trajectory are both on the order of O(Ω−1).
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Figure 14. Two gene system with two stable steady-states (37), with Ω= 10 (top) and Ω= 1000 
(bottom)
mean and variance via van Kampen approximation (blue), and average over 100 simulations 

of the Gillespie (red) and Langevin simulation (cyan). For small systems (Ω= 10), the 

stochastic mean trajectory converges to a weighted average of e1 and e2 corresponding to a 

bimodal stochastic steady-state. Since escape time scales exponentially with system size, the 

escape time for the large system (Ω= 1000) is very long and the trajectories remain near their 

initial conditions for the duration of the simulation, hence the van Kampen approximation is 
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quite accurate (though technically not applicable) and the variance and mean-deterministic 

discrepancy are both O (Ω−1).
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