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Theory allows studying why Evolution might select core genetic commitment circuit topologies over alternatives. The
nonlinear dynamics of the underlying gene regulation together with the unescapable subtle interplay of intrinsic
biochemical noise impact the range of possible evolutionary choices. The question of why certain genetic regulation
circuits might present robustness to phenotype-delivery breaking over others, is therefore of high interest. Here, the
behavior of systematically more complex commitment circuits is studied, in the presence of intrinsic noise, with a
focus on two aspects relevant to biology: parameter asymmetry and time-scale separation. We show that phenotype
delivery is broken in simple two- and three-gene circuits. In the two-gene circuit, we show how stochastic potential
wells of different depths break commitment. In the three-gene circuit, we show that the onset of oscillations breaks the
commitment phenotype in a systematic way. Finally, we also show that higher dimensional circuits (four-gene and
five-gene circuits) may be intrinsically more robust.
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INTRODUCTION

Mathematics sheds light on commitment and
evolution

The realization that bifurcation theory underlies Conrad
Waddington’s historical metaphor for cellular differentia-
tion [1] adds mathematical substance to the original
insight; see Ferrell in [2]. There, the author stresses the
need to identify what type(s) of bifurcation(s) underlie
commitment. We use the word “commitment” for the
notion that a dynamical system permits, affects and
maintains a chosen state from a set of alternates. At issue
is whether alternate fates are still available to a committed
cell beyond a bifurcation. In the case of a supercritical
pitchfork bifurcation [3], alternative states persist past the
decision point (Waddington’s original conjecture). How-
ever, in the case of a saddle/node bifurcation, the
alternative state disappears. Ferrell argues for the latter
[2]: Nature picks a framework.
The related notion that dynamical systems theory is

also offering a plausible unifying framework for under-

standing the evolution of gene regulatory systems seems
very deep. This aspect was recently reviewed by Jaeger
and Monk [4]. Thus, mathematics underpins the process
of not only understanding “how” living systems work, but
much more interestingly, “why” they do so in particular
ways, rather than others. Hence, insight is to be gained
through the study of not only the genetic circuits
implemented by Nature, but from others as well, so as
to address the “why”.

Biochemical noise contributes in subtle ways

In recent years, we have learned that biochemical
fluctuations (i.e., “noise”) are an integral part of how
living systems not only mechanistically work, but also
why Evolution picked certain regulation schemes over
others [5–12]. Therefore, it is not only continuous
nonlinear dynamics that is relevant, but it is also
stochasticity induced by the paucity of some key
molecular regulator(s) in the system. Thus, the notion of
stochastic potential is of paramount importance (see
Wang et al. [13–23]). The role of energy in the
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establishment and maintenance of living systems at
steady-states far from equilibrium is related, but is not
addressed here (see Qian et al. [24–29]).

Robustness to parameter asymmetry and time-scale
separation induced fragility

In this study, we investigate core commitment gene
regulation circuit topologies and the relationship to the
commitment phenotype. Recently, much understanding
on the relationship of circuit topology and parameter
space to delivered phenotype, was acquired via massive
computerized search and analysis that, in essence, can be
argued to recapitulate Evolution in-silico [30,31]. Herein
however, the focus is on a few key circuit topologies
rather than massive exploration, relying heavily on
bifurcation analysis for effective parameter space explora-
tion. Moreover, the central driving idea of the present
work is the realization that Nature does not appear to fine
tune parameters of gene regulation circuits to achieve
phenotype. Therefore, some degree of robustness can be
expected to exist in order to effectively fend off
phenotype-spoiling effects induced by unavoidable para-
meter asymmetry. Parameter asymmetry is understood to
be the level of inequality of strengths in otherwise
corresponding but directionally opposite regulation
branches (edges linking nodes) of a commitment circuit.
The current work thus attempts to parcel out how circuit
topology may assist in providing robustness against
asymmetry and what the role of noise might be, in the
light of time-scale separation between translation and
transcription, the two basic underlying manifolds of the
non-linear dynamical systems involved.

RESULTS

The core genetic commitment circuits focused on are
shown on Figure 1. The circuit shown on Figure 1A,
which will be referred to as DS1, is a canonical mutually
repressive positively auto-regulating commitment switch.
The circuit shown on Figure 1B, DS2, is the general-
ization of DS1 to three genes. The circuits on Figure 1C,
DS3, and Figure 1D, DS4, are progressive generalizations
of the same. For all circuits, mRNA transcription
regulation is assumed to be additive. This means the
effect of two different transcription factors is modeled by
the addition of their respective terms. Why focus on these
circuits? DS1 is a simple two mutually exclusive gene
circuit with positive parity that yields bi-stability [32].
The concept of bi-stability underlies β-galactosidase
induction in bacteria, lysis-lysogeny decision in bacter-
iophage l and maturation of Xenopus oocytes, and cell
differentiation [2] and references within. DS2, DS3 and
DS4 are the simplest tractable systematic generalizations

of DS1 that possess the same requirements for multi-
stability. Since the purpose of the study is theoretical, no
requirement is placed at the outset that these circuits must
be found implemented exactly as such in Nature or not, to
justify investigating what features in their dynamics could
make them suitable or unsuitable. Discovering reasons
supporting either outcome is interesting.

The regulation of DS1

Parameter-asymmetry breaks the commitment phenotype

Figure 2A and 2B shows a bifurcation diagram of “2D”
DS1 under two basic modes of regulation. Here “2D”
refers to the infinite time-scale separation version of the
circuit. In the 2D circuit, there are only two state
variables, the protein levels X1 and X2. The first mode
of regulation is one in which there is no parameter
asymmetry in the circuit (bmod = 1, continuous lines).
The second mode of regulation is one where there is a
modest 10% parameter asymmetry in the circuit (bmod =
0.9, dash-dot lines). Here, “bmod” is a helper multi-
plicative parameter that acts in only one branch of the
circuit, and not the other. Thus, it acts asymmetrically by
multiplying the mutual repression parameter “b” of that
branch only. This kind of parameter is a convenient device
to make the analysis more straightforward. Herein it is
referred to as “asymmetry provider” parameter.
It is evident from Figure 2 (A and B) that just a modest

amount of parameter asymmetry (here, 10%) completely
spoils the delivery of the phenotype. This core regulatory
circuit is well-known [2]. In the parameter-symmetric
version (bmod = 1) of DS1, the circuit delivers bi-modal
commitment beyond a bifurcation, here located at b~0.3.
Beyond the bifurcation, stability of the steady state
switches from stable to unstable, and the dynamics opens
up to two alternative stable states: one at high protein
expression and the other one at low protein expression. In
terms of the underlying stochastic potential, out of one
valley are born two valleys separated by an intervening
ridge appearing at the bifurcation.
However, in the parameter-asymmetric version of DS1

(bmod = 0.9), the delivery of the phenotype is clearly
broken. As can be seen on the diagram, over a wide range
of the repression parameter “b” up to about b~.38, only
one high X1 (or one low X2) steady state is available in the
dynamics. But further above b~.38, beyond a saddle/node
bifurcation topologically disconnected from the main
branch, the dynamics reverts to one similar to the
parameter symmetric case: high and low steady states
separated by an unstable one. On Figure 2 (C and D), the
equivalent “4D” DS1 model bifurcation behavior is
shown. In the 4D version of DS1, there are 4 state
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variables: the protein levels X1, and X2, and the messenger
RNA levels mRNAX1 and mRNAX2. Apart from the
occurrence of unphysical states (paired negative-concen-
tration unstable steady states) that can be ignored since
they have no biological meaning, the dynamical behavior
is the same as the 2D version.

Time-scale separation breaks the commitment phenotype

Figure 3 shows the phase diagram of DS1. Tracks are
numerically integrated starting from different initial

conditions S1 and S2 on the phase plane. From location
S2, both the 2D and 4D tracks head for stable fixed point
#3. From S1 however, the 2D track reaches fixed point #1,
but the corresponding 4D track reaches fixed point #3.
The simulation was performed for a parameter asymmetry
of 0.9. Compared to the 4D version of DS1, the 2D
version has infinite intrinsic time-scale separation
between the mRNA and protein manifolds; the 2D
version is obtained by setting the mRNA dynamics at
rest in the 4D version. These results reveal a key
biologically significant point: intrinsic time-scale separa-

Figure 1. (A) Canonical two-gene mutually repressive, self-promoting differentiation circuit. (B) Canonical three-gene
differentiation circuit generalized from the corresponding two-gene version shown on panel A. The mutual regulation is negative.
The auto-regulation is positive. Parameter asymmetry provider bcommon = b13= b32= b21 (colored boxes). (C) Canonical four-gene

differentiation circuit generalized from the corresponding three-gene version shown on panel B. The mutual regulation is negative.
The auto-regulation is positive. Parameter asymmetry provider bcommon = b13= b32= b21= b14= b43= b42 (colored boxes). (D)
Canonical five-gene differentiation circuit generalized from the corresponding four-gene version shown on panel C. The mutual
regulation is negative. The auto-regulation is positive. Parameter asymmetry provider bcommon = b13= b32= b21= b14= b43= b42=

b35= b52= b51= b45 (colored boxes).
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tion between translation and transcription is a handle on
the commitment phenotype.

Noise and time-scale separation break the commitment
phenotype

Figure 4 shows how intrinsic noise impacts commitment
in DS1. The noise is sourced only in biochemical
fluctuations induced by the small size of molecular
populations in the system. Figure 4 (A and B), each show
the average residency metric from one hundred indepen-
dent stochastic simulations. Residency measures the
probability of the stochastic system to be at a certain
value of X1 and X2 (see Methods). The higher the
residency, the higher the probability and consequently, the
lower the stochastic potential well depth. Plots are base 10
logarithmic in residency. DS1 is simulated in low time-
scale separation (TSS) (configuration #5) on Figure 4A,
and in high time-scale separation on Figure 4B (config-
uration #5.2). Simulations are all started near the upper
fixed point. The study reveals that, in low time-scale
separation, the depths of the stochastic potential wells
underlying the two fixed points differ drastically. As
shown on Figure 4A, the upper well is much deeper than
the lower well. Thus, in low time-scale separation, the
upper fixed point dominates the commitment phenotype.
In contrast, in high time-scale separation (Figure 4B), the
alternative fate is almost as likely. Although the
simulations are still all started near the upper fixed

point, in high time-scale separation, the DS1 dynamics
populates each well more equally. Hence, in high time-
scale separation, both fixed points have similar well
depths and similar residency. In Figure 4A, the location of
the 2D and 4D deterministic separatrix (see Methods)
differs markedly but on panel B they are seen to overlap.
The 2D system has, by construction, infinite time-scale
separation compared to the 4D system (see Methods).
Thus this study reveals an unintuitive aspect of

stochastic dynamics absent from deterministic dynamics:
the underlying stochastic potential well depth associated
with fixed points of the dynamics depends strongly on the
time-scale separation present in the system. Time-scale
separation is a handle on the commitment through the
depths of the stochastic potential wells. The depth of a
stochastic potential well greatly impacts the trapping
ability of a realistic biological system in any dynamical
state (here static but elsewhere, dynamic). This aspect of
stochastic dynamics was encountered previously, albeit in
a completely different context, as described in previous
work [11,12].

A moving separatrix breaks the commitment phenotype

Figure 5 summarizes the effect of changing the mutual
repression parameter “b” and “bmod” in the system. On
the four panels, the results of a numerical search
algorithm (see Methods) used to locate the position of
the deterministic separatrix (2D and 4D) as function of

Figure 2. A and B show the bifurcation diagram of DS1, 2D. Blue and black are for bmod = 1. Red and green are for bmod = 0.9.
Stable steady states are shown in solid line. Unstable steady states are shown in dashed line. (A) Displays X1 vs. the repression
parameter “b”. (B) Displays X2 vs. “b”. The effect of a 10% difference in parameters on the bifurcation is discussed in the text. The

equations and parameters of the calculation are in Supplementary Table 1. C and D show the bifurcation diagram of DS1, 4D. Blue
and black are for bmod = 1. Red and green for bmod = 0.9. Stable steady states are shown in solid line. Unstable steady states are
shown in dashed line. (C) Displays X1 vs. the repression parameter “b”. (D) Displays X2 vs. “b”. Negative concentration solutions

paired with positive ones have no biological meaning and can be ignored, as explained in the text. C shows the equations and the
parameter values used in the study. The equations and parameters of the calculation are in Supplementary Table 2.
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“b” and asymmetry parameter “bmod” are reported. In the
case of the parameter-symmetric circuit (bmod = 1, panel
B and D), no matter the value of “b”, the 4D and 2D
separatrix always overlap. Furthermore, the separatrix
remains immobile, always bisecting the phase plane at
π/4.
However, in the case of the parameter-asymmetric

circuit (bmod = 0.9, panel A and C), particularly at lower
values of “b”, the 4D and 2D separatrix differ
significantly. Specifically, we see that the separatrix is
no-longer immobile with “b” changing; it no-longer
simply bisects the phase plane at π/4 for all “b”. Instead,
Figure 5 shows that as “b” increases, the separatrix
location moves significantly over the phase plane. Why is
this significant? The reason is because the separatrix is the
boundary between the two basins of attraction in the
system: a moving separatrix will result in a switchover

between alternate fates, as the controlling parameter(s)
(“b”, “bmod” and time-scale separation) is (are) changed,
with all other conditions remaining unchanged. This was
verified to be the case (data not shown for brevity). Note
that the stochastic system is intrinsically 4D, and thus the
4D separatrix compares to the stochastic system, and does
so exactly in the limit of infinite number of molecules.
These studies demonstrate that both parameter asymmetry
and time-scale separation together impact DS1 commit-
ment in un-intuitive ways.

The regulation of DS2

The parameter-symmetric DS2

New simulation and analysis software necessary to
conduct studies of circuit DS2 (and others) was built
(see Methods). Figure 6 shows the X1, X2, X3 phase
volume of DS2. The surfaces shown are three null-
surfaces of the X1, X2 and X3 manifolds, respectively. A
stochastic simulation in the volume is also shown. The
infinite time-scale separation version of DS2 has three
state variables: X1, X2 and X3, thus it is three dimensional
(3D). In contrast, the 6D version has both transcription
and translation manifolds and six state variables (X1, X2,
X3, mRNAX1, mRNAX2 and mRNAX3) thus it is referred to
as the 6D model. All stochastic simulations intrinsically
use a 6D model. Figure 6B show the “generalized
separatrix” surface that delineates the various basins of
attractions of the system. Specialized software to scan the
phase volume and discover the location of this surface
was developed (see Methods). Discovery of this surface
requires sampling a discretized grid. The algorithm is
highly computer time intensive. We note that the
separatrix surface is comprised of three planar structures,
each one made out of three leaves. The shape of this
surface changes with asymmetry. More will be discussed
below.

A new computational approach to study parameter
asymmetry is needed

To begin a study of parameter asymmetry, the bifurcation
diagram of the 3D version of DS2 vs. “b21”was computed
(data not shown for brevity). Parameter “b21” is one of the
several similar modifiers of repression parameters in the
circuit that are specifically designed to study parameter-
asymmetry. These parameters will be referred to as
“asymmetry provider” parameters. The DS2 bifurcation
behavior vs. “b21” (or any other asymmetry provider
parameter) is extremely intricate; the dynamics exhibits
multiple saddle-node bifurcations. In order to better
understand the DS2 circuit, it was quickly realized that
new efficient numerical algorithms needed to be devel-

Figure 3. DS1 phase plane showing vector field
(arrows omitted). Green and red lines show X1 and X2

nullclines. The small circles of matching color on the
nullclines are “4D nullclines” are explained in the text.

The fixed points of the dynamics are indicated by blue
circles and are numbered 1, 2 and 3 (stable node,
saddle node and stable node, respectively). The cyan

line is the location of the 2D separatrix as computed by
time-reversed integration originating from the saddle
(middle fixed point). The solid magenta lines are 2D

integrations. The dashed magenta lines are 4D integra-
tions. 2D and 4D trajectories originate at the same
locations, S1 and S2, in the X1 X2 plane. However, for
S1, the end point of the trajectory differs: the 2D

trajectory goes to fixed point #1 while the 4D trajectory
goes to fixed point #3. In the case of S2, both 2D and 4D
trajectories terminate at fixed point #3. The parameters

of the simulation, fixed point locations, eigenvalues and
stability assignment are in Supplementary Table 3.
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oped (see Methods). These algorithms were employed to
discover the intersections of the three null-surfaces. At
these intersection points, the global dynamics of the
circuit is at rest: these are the fixed points of the dynamics.
Since the surfaces are very intricate and the fixed point
locations are often rendered difficult to discover due to
very complicated and fast changing (with X1, X2, X3

coordinates) null-surface shapes, a brand new and
efficient method of fixed point finding was also devised
(see Methods). As shown on Figure S1 (for which b21=
0.5), the location of the intersection of any two null-
surfaces is first discovered numerically and is graphically
denoted by elongated clouds of locator points. These
intersections are referred to as “bi-null-surface intersec-
tions”. Any global fixed point of the dynamics must occur
at the intersection of any two different such bi-null-
surface intersections e.g., the “12”— intersection and the
“13”— intersection together locate “123”— global fixed
points. Thus the three possible bi-null-surface intersec-
tions (“12”, “13” and “23”) will redundantly locate the
global fixed points of the dynamics. Stated differently, the
global fixed points arise where two different-color clouds
of locator points intersect, and the three possible different-
color clouds will all intersect together at the fixed points
of the dynamics.

Discrete parameter asymmetry in DS2

The computational approach described above is particu-

larly useful to elucidate saddle-node bifurcations in the
variation of “b21”. Figure S1B shows that one of the bi-
null-surface intersection clouds (black color) diverges up
and away from the other two, thus causing the loss of a
stable fixed point. Hence, the approach imparts new
understanding of the effect of parameter asymmetry in the
circuit. On Figure S1 (b21= 0.5) there are only two stable
fixed points, rather than three on Figure 6 (b21= 1).
At a different higher value of asymmetry provider

parameter “b21”, b21= 0.85, as shown on Figure S2, the
unique saddle of Figure S1 splits into two; so now two
saddles co-exist in the system. The bi-null-surface
intersections are particularly useful to better understand
the changing dynamical topology of the system, thus
yielding additional insight to the dynamics of the DS2
circuit in this new regime.

A common asymmetry-provider: “bcommon”

Because of the high complexity of studying the behavior
of DS2 vs. every asymmetry-provider parameter in the
system, the three key asymmetry providers were
regrouped under a single asymmetry provider called
“bcommon”. Specifically, b21= b13= b32= bcommon.
Figure 1B shows that “bcommon” follows the continuous
directed clockwise path in the circuit that involves all state
variables in a row. This method of installing common
asymmetry will be emulated in other circuits so as to
permit meaningful comparisons.

Figure 4. Average residency over 100 statistically independent stochastic simulations. The axes are linear. All simulations

set bmod = 0.9 and Ω = 100. The color indicates the base 10 logarithm of the residency as shown on the scales to the right. All
simulations are started near the upper fixed point. (A) Run 75.1 through 75.100 (configuration #5): Low Time-Scale Separation. The
2D and 4D separatrix locations differ significantly. The upper fixed point stochastic potential well is much deeper than that of the

lower fixed point. (B) Run 76.1 through 76.100 (configuration #5.2): High Time-Scale Separation. The 2D and 4D separatrix overlap.
The fixed point stochastic potential wells are of much more similar depths.
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Dynamical behavior of DS2 vs. “bcommon”

In order to further understand the dynamical behavior of
DS2 vs. asymmetry-provider parameter “bcommon”, the
bifurcation behaviors of DS2 6D and of DS2 3D were
computed. The results are shown on Figure 7. The 3D
calculations (Figure 7C) reveal three basic regimes:
oscillatory to the left, oscillation free in the center and
oscillatory on the right. There are two Hopf bifurcations

with corresponding limit cycles, and multiple saddle-node
bifurcations in the center. On the left, the oscillatory
regime terminates at homoclinic orbit/saddle node colli-
sions (α, β). On the right, with increasing “bcommon”, the
amplitude of the oscillatory regime steadily decreases
from the (β, γ) homoclinic orbit/saddle node collision
points, to eventually vanish at the second Hopf. The
behavior seen in the 6D circuit (Figure 7A and B) is more
intricate. From the first Hopf on the left arises a large

Figure 5. Computation of the location of the 2D (thin red) and 4D (thin blue) separatrix in DS1. (A) Show computations
performed with the asymmetry parameter bmod = 0.9. (B) Show computations done with bmod = 1.0. Both A and B computations
have the mutual suppression parameter b = 0.4. At this value of suppression strength (b = 0.4), in the presence of asymmetry in the
suppression (bmod = 0.9), the 4D separatrix differs markedly from the 2D separatrix (A). As “b” is increased, the agreement is

increased (C). (C and D) Similar to A and B except the mutual suppression strength “b” is much higher (x10); parameter b = 4.0. At
this value of suppression strength (b = 4.0), even in the presence of asymmetry in the suppression (bmod = 0.9), the 2D and 4D
separatrix agree over a wide (but not complete) range. As the strength of mutual suppression “b” is increased, 2D and 4D agreement

is increased (compare A and C). When there is no asymmetry in suppression (bmod = 1), the 2D and 4D separatrix always agree
(compare C and D). All computations were performed on a 50x50 grid using a numerical search algorithm as explained in Methods.
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unstable limit cycle that does not extend in the positive
range of “bcommon”. From the second Hopf arises a
stable limit cycle that ends in the homoclinic orbit / saddle
node collisions (α, β). Markedly different from the 3D
behavior however, is the oscillatory regime on the right
that arises from the (β, γ) collision points but with
oscillation amplitude ever growing with increasing
“bcommon”. Thus 6D differs from 3D principally in
that oscillations persist as “bcommon” increases.
In the paragraphs below, the impact of stochasticity and

time-scale separation is studied as a function of parameter
asymmetry “bcommon”.

Stochasticity and time-scale separation break
commitment in DS2

Figure S3 shows the dynamical behavior of DS2 at
bcommon = 0.85. In this figure, “2” refers to a complex
dynamical region, to be discussed later. Figure S3C shows
details of stochastic and deterministic simulations.
Depending on different initial seeds, different stable
steady states (#3 and #4) are reachable from the same
initial location in the phase volume. Stochastic run #3 and
#4 reach steady state #3 and #4, respectively. This is
completely consistent with finite stochasticity. Further-

more, depending on the amount of time-scale separation
intrinsic to the 6D deterministic system, one particular
stable steady state or another can be reached. Specifically,
starting from the same location in the phase volume, a
finite time-scale separation deterministic 6D track reaches
stable fixed point #3, while the counterpart infinite time-
scale separation 3D track reaches fixed point #1. The 3D
deterministic track is, by construction, the infinite time-
scale separation version of the 6D track. Effectively, the
reachable steady state can be selected by the amount of
time-scale separation in the system. Thus, time-scale
separation in the DS2 circuit strongly impacts commit-
ment. This is analogous to the situation in DS1.
On Figure 8, three stochastic tracks with differing

seeds, but common initial location in the phase volume
reach, in turn, any and all of the three stable fixed points.
Here again, stochasticity impacts commitment. But in
contrast to the situation above, because of sufficient
intrinsic time-scale separation in the 6D deterministic
system, the 3D and the 6D tracks are very close so both
reach the same fixed point.

Parameter asymmetry breaks commitment in DS2

Figure S4 shows several time-series of 6D deterministic

Figure 6. (A) Phase diagram of DS2 dynamics for configuration #5. Here, bcommon = 1. This configuration does not enforce full

time-scale separation. The three null-surfaces are shown in cyan, yellow and blue respectively. The fixed points numbered 1, 2, 3
and 4 are located at their common intersections (stable node, saddle node, stable node and stable node, respectively). A stochastic
track showing dwelling in the saddle area, eventually reaching fixed-point #3 is shown. (B) Phase diagram with null-surfaces
removed and general separatrix surface added. Numerical fixed point locators are shown as “clouds” of black dots used to compute

the accurate location of fixed points (shown by red crosses), as explained in the text. The generalized separatrix surface (three
planes of red dots) is a symmetrical three-leaved surface centered on the saddle (fixed point #2). The same stochastic track is
shown, traveling from the saddle area to stable fixed-point #3. The fixed point locations, eigenvalues and stability assignments are

given in Supplementary Table 4.

26 © Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Hongguang Xi and Marc Turcotte



Figure 7. (A and B) Bifurcation diagrams of the 6D DS2 circuit in parameter set 12.1 at reference time-scale separation.
Computation performed with MATCONT. “H” stands for “Hopf”, “(H)” for “neutral saddle”, “LP” for “limit point” bifurcations, “u” for

unstable, “s” for stable. The leftmost unstable limit cycle is entirely in the negative “bcommon” range. The stable limit cycle (l. c.) born
at the second Hopf on the left ends in homoclinic orbit/saddle collisions (α, β). Minima and maxima of l. c. are shown in red. On the
right, a large l. c. exists throughout the dynamics, ending in homoclinic orbit saddle collisions (γ, δ). (B) Blowup of central dynamical
region (dashed rectangle on A). The homoclinic orbit/saddle collision points are shown by α, β, γ, δ. (C) Bifurcation diagram of the 3D

DS2 circuit. Computation performed with Oscill8 using configuration #12.1 (infinite time-scale separation). There are two oscillation
regimes (one on the left, and one on the right) interspaced by a non-oscillatory regime in the middle. Oscillations begin on the left at a
Hopf bifurcation and on the right, at another Hopf bifurcation. “H” stands for Hopf. The saddle homoclinic orbit collisions that demark

the limits of the left (right) oscillatory regime are shown by α, β (γ, δ). SN stands for “saddle node collision”, “s” for stable, “u” for
unstable.
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tracks with varying amount of asymmetry (different
“bcommon”). All tracks start at the same location in the
phase volume. Between bcommon = 1.1 and bcommon =
1.15, a switchover occurs between the upper and lower
fixed points. Thus the amount of asymmetry in the system
selects the reachable fixed point. The mechanism for the
switchover to occur — for breaking commitment— is
time-scale separation affecting the separatrix surface
(shape and position), initial conditions remaining the
same. Hence, this is the corresponding effect to the
moving separatrix seen in DS1.

Parameter asymmetry and time-scale separation impact
oscillations and break commitment in DS2

Figure S4 also shows that between bcommon = 1.175 and

bcommon = 1.2, there is dynamical regime switchover
from “escape to stable fixed points” to “oscillations” i.e.
the attractor switches type, from static to dynamic. This is
consistent with the 6D and 3D bifurcation analyses shown
on Figure 7 (“bcommon” crossing points γ and δ).
Crossing the onset of oscillations banishes commitment.
As mentioned earlier, the dynamical region in the

center of the DS2 phase volume is complex. Here, this
region is studied in more details. At bcommon = 1.2, as
shown on Figure 9, the system clearly presents a 3D stable
limit cycle. The stability of the central fixed point #7 is
subtle. The first eigenvalue is real and negative, and the
first eigenvector direction is along the unit vector centered
on the fixed point. Thus along that direction the dynamics
is attractive to the fixed point. The other two eigenvalues
are complex conjugate of each other and thus rotation

Figure 8. (A) The 3D DS2 circuit behavior in parameter set 12.1 (bcommon = 0.85). Three stochastic tracks with different initial

seeds originating at the same location near fixed point “2” alternatively reach any of the three stable fixed points of the dynamics (#1,
#3 and #4). However, 3D and 6D deterministic tracks both reach fixed point #1. (B) Details of the trajectories. Due to finite noise in
the system, the stochastic tracks wander considerably. The “cloud” of black dots numerically approximate the location of fixed point

“2”. The 6D and 3D deterministic tracks are close because there is high time-scale separation intrinsic to the 6D. They do not overlap
perfectly because the time-scale separation is not infinite.
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Figure 9. (A) DS2 circuit in configuration #15 for which bcommon = 1.2 but otherwise similar to #12.1, hence with high time-scale

separation. There are seven fixed points #1 to #7 (stable node, stable node, stable node, saddle node, saddle node, saddle node,
stable spiral). (B) Details showing a 3D deterministic track originating near fixed point #7, but not exactly at the fixed point (X3 is
displaced slightly: start = [0.62373, 0.62373, 0.61805]). The track reaches a surrounding stable limit cycle. Similar tracks started
anywhere in the basin of attraction of the limit cycle behave similarly. The basin of attraction is the triangular region defined by saddle

#4, #5 and #6. However, any track started anywhere directly along the eigenvector #1 direction, centered on fixed point #7, falls into
fixed point #7 (data omitted). (C) Diagram explaining the stability of fixed point #7. Tracks started on the first eigenvector direction fall
into fixed point #7. But tracks started elsewhere spiral outward to the surrounding stable limit cycle. These results are also valid in

6D. More details in text. The fixed point locations, eigenvalues and stabilities are in Supplementary Table 5. For fixed point #7, the
eigenvector elements are also listed.
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about this first eigenvector arises everywhere else. Direct
integration verifies that the dynamics is drawn to the
surrounding stable limit cycle. However, since the real
parts of the second and third eigenvalues are negative,
very close to the first eigenvector, the dynamics must
actually be attractive. Consequently, a small diameter
unstable spiral must separate the two dynamical regions,
but its size is below numerical accuracy for determination.
For completeness, Figure S5 shows the agreement of 6D
and 3D tracks; specifically showing this 6D limit stable
cycle (Figure S5C). The green stochastic track on Panel D
has 101/2 less intrinsic biochemical noise than the blue
track on Figure S5A or S5B, but otherwise is similar. The
computation shows that it does not, however, escape to
fixed point #2. Instead, it reaches the surrounding limit
cycle. Because it is less noisy, it already behaves more
like the 6D deterministic track (yellow) that spirals out to
the dynamic attractor. In the limit of zero intrinsic noise
(thermodynamic limit), the agreement between stochastic
and deterministic computations is expected to be exact.
Similar to the situation described earlier, the switchover
between static and dynamic attractor again breaks
commitment.
The DS2 dynamics at bcommon = 1.6 is shown in

Figure 10. As is expected from the 3D bifurcation analysis
shown in Figure 7C, there is no 3D stable limit cycle. This
is because this value of “bcommon” lies above the second
Hopf in the system. The stable limit cycle has already
disappeared. However, as further shown in Figure 10C
and 10D, the system does present a 6D deterministic limit
cycle. Why is this important? In the absence of a limit
cycle, the dynamics will be drawn to a stable fixed point,
but in the presence of the limit cycle, starting from within
its basin of attraction, the dynamics will instead be drawn
to the dynamic attractor. Since the controlling parameter
is time-scale separation, time-scale separation therefore
breaks commitment.
At bcommon = 2.0, as shown in Figure S6, there is only

one single global (stable) fixed point of the dynamics,
consistent with the single intersection of all the elongated
clouds of locator points along the bi-null-surface inter-
sections. Interestingly, the flat remnants of the three
saddle regions are still visible near locations α, β, and γ
(Figure S6B). Figure S6D shows three 6D deterministic
tracks. The first one, (i) is seen to be falling, from outside,
into a stable limit cycle. The second one, (ii) is seen to be
falling into the same limit cycle, but from inside. The third
one, (iii) is seen falling directly into the unique central
stable fixed point. Clues to the 6D dynamics can be
obtained from the 3D stability analysis. Because the first
eigenvalue is real and negative, the system dynamics is
therefore attractive to the fixed point anywhere on the first
eigenvector. The first eigenvector lies in the unit vector
direction, centered on the fixed point. The other two

eigenvalues are complex conjugates of each other so,
everywhere else, the dynamics exhibits rotation about the
first eigenvector. Direct 6D integration shows that the
dynamics is drawn to the surrounding limit cycle. As on
Figure 9, real parts of second and third eigenvalues are
actually negative, thus the dynamics very close to the axis
of the first eigenvector must be attractive. Therefore, the
existence of a small diameter unstable spiral around the
first eigenvector can be inferred, but it is beyond
numerical accuracy to determine. At bcommon = 2.0, the
rotational aspects of the 6D and 3D systems differ
markedly. Figure 7 shows that in the low time-scale
separation case, the dynamics presents a limit cycle; in the
infinite time-scale separation case however, it does not.
There, the dynamics presents a single stable fixed point.
So again, time-scale separation breaks commitment.

In other regions of DS2, time-scale separation does not
break commitment

For completeness, on the other side of the dynamics, at
bcommon = 0.5, both 3D and 6D bifurcation analyses
(Figure 7) present stable limit cycles. The integration of
the 3D and 6D systems shown on Figure S7 are in
complete agreement with this. Contrasted to the regions
above bcommon = 1, here, no matter what time-scale
separation is, the system presents a limit cycle, so this
mechanism will not yield to breaking commitment.

The regulation of DS3 and DS4

The regulation schemes of DS3 and DS4 circuits
(Figure 1C and 1D) are progressive generalizations of
the two- and three-gene commitment circuits discussed
above. Each additional gene introduced in the system is
mutually repressive to all the other genes in the circuit,
and is positively regulated to itself. All mRNA regulation
is additive. In the DS3 circuit, asymmetry was installed in
the only possible scheme that maintains its continuous
end-to-end application, in a strict clockwise manner,
starting from X1 to any other gene, and beyond, except for
one gene (here, chosen to be X2) that must act to return the
clockwise path back onto X1. This can be seen to precisely
mirror the asymmetry pattern applied in DS2. In the DS4
circuit, the same asymmetry scheme is used, except that in
this five-gene network, there are two genes that return the
path onto X1: here X2 and X5. Thus, in all gene networks,
parameter asymmetry was installed in a consistent manner
allowing meaningful comparison.
Figure 11 shows the phase volume of DS3 in unit

asymmetry (bcommon = 1). The colored clouds of dots
map the location of the four three-variable (“123”, “124”,
“134” and “234”) null-surfaces in the 4D infinite time-
space separation system (protein only). Their common
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intersections (redundantly) define a total of nine fixed
points; 4 peripheral stable fixed points, 4 intervening
unstable saddles and one central stable fixed point. The
black dots are located at the global four-variable (“1234”)
fixed points of the dynamics. Local linear analysis is
provided on the figure. The generalization of previous
circuits is clear. Computational limitations restricting the
grid size already begin to affect the practicality of a full
fine-grid map of the dynamics. For DS4, the additional
dimension (DS4 infinite time-scale separation is 5-
dimensional) prevents obtaining a full comprehensive
map of the system; only local areas around fixed points
are possible.

DISCUSSION

The focus of the present work is the impact of time-scale

separation and parameter asymmetry in the mutually
repressive strengths between all pairs of genes of fully
connected core regulation networks delivering the
commitment phenotype. It is interesting to notice that,
for example, in the case of the SOS pathway in E. coli, the
core genetic regulatory circuit involves as many as nine
genes arranged in a fully-connected pattern [33]. In the
case of the core transcriptional gene regulatory network of
human and mouse embryonic stem-cells, the OCT4,
SOX2 and NANOG genes are also presenting a fully
connected network [34]. We wondered why Nature seems
to have preferentially evolved more topologically com-
plex core gene regulatory networks over simpler ones. By
carefully studying progressively more complex idealized
— hence tractable— core gene regulatory networks, we
hoped to first, show how commitment is broken by
parameter asymmetry and time-scale separation and,

Figure 10. (A) DS2 circuit in configuration #18 for which bcommon = 1.6, but otherwise similar to #12.1, hence with high time-scale

separation. Elongated clouds of locator points along the bi-null-surface intersections locate 7 fixed points. (B) The surface in red is
the generalized separatrix computed on a 30�30�30 grid. (C) 3D and 6D tracks. In one case, both 3D and 6D tracks reach stable
fixed point #5. In the other, the 6D track falls into the stable orbit surrounding (6D-unstable) fixed point #4 while the 3D track falls into

the (3D-stable) fixed point #4. (D) Same as C, but showing only the 6D deterministic tracks, for clarity. The 6D limit cycle is clearly
visible. In 3D however, at bcommon = 1.6, there is no limit cycle.
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ultimately, to shed light on how necessary robustness may
be a property of topologically more complex networks.

DS1 commitment circuit

The DS1 circuit is a simple commitment circuit between
two fates. Impact of parameter asymmetry is profound.
Figure 2 (C and D) clearly demonstrates that the circuit’s
ability to deliver the phonotype is not robust to
asymmetry. Here the phenotype is understood to be the
switch over from mono-stability to bi-stability. Interest-
ingly, when the system is symmetric (Figure 5, B and D),
time-scale separation is immaterial; the commitment
switchover location between fixed points, is independent
of time-scale separation. But more interestingly, in the
biologically significant situation of even modest para-
meter asymmetry (10%), A and C of Figure 5 show that
time-scale separation has a profound effect on the
switchover commitment location. So the DS1 system is
seen to be both fragile to time-scale separation and
parameter asymmetry in the sense that it is non-robust to
phenotype delivery.

DS2 commitment circuit

Time-scale separation induces large (small) effects on the
rightmost (leftmost) limit cycles

The effect of increasing the intrinsic time-scale separation

between transcription and translation manifolds was
studied via bifurcation analysis on the 6D system.
Bifurcation curves were computed for reference, �2,
�10 and �1000 time-scale separation. The results are
combined on Figure 12. For clarity, an unstable limit
cycle that lies entirely in the unphysical negative
“bcommon” range is omitted. The graph presents the
behavior of the system for all biologically meaningful
values of the asymmetry parameter “bcommon”. The
dynamical region for which bcommon< 1 is referred to as
the “leftmost region”; the dynamical region for which
bcommon> 1 is referred to as the “rightmost region”.
Limit cycles terminate at homoclinic/saddle collision
points (α, β) on the left, and (γ, δ) on the right.
In the leftmost region, for all values of time-scale

separation, there is only one Hopf. In the rightmost
region, the number of on-scale Hopf bifurcations depends
on the time-scale separation. For reference, �2, �10 and
�1000 time-scale separation, there are 0, 2, 2 and 1
rightmost Hopf bifurcations, respectively. In the time-
scale separation regimes that present two Hopf bifurca-
tions on scale (�2 and �10), one of the Hopfs is at lower
value of asymmetry than the other. As the time-scale
separation is increased, there is little effect on the leftmost
limit cycle except that its associated Hopf moves to
slightly higher values of asymmetry (towards bcommon
= 1). However, concurrently, the lowest of the rightmost
two Hopf bifurcations and the highest one move apart
from each other. The lower bifurcation moves towards

Figure 11. DS3 phase volume at asymmetry bcommon = 1.0 (fully symmetric). (A) X1, X2, X3 phase volume. (B) X1, X2, X4

phase volume. The colored clouds of dots on both panels locate the 3-variable null-surfaces (yellow: 123, cyan: 124, green: 134 and
magenta: 234). The black dots locate the global (1, 2, 3, 4) fixed points of the 4D dynamics. At this value of asymmetry (bcommon =
1), there are five stable fixed points (four peripheral #1, #3, #5, and #7) and one central (#9) dynamically separated by four

intervening saddles (#2, #4, #6 and #8). The fixed point locations eigenvalues, eigenvectors and stability assignments are in
Supplementary Table 6.
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lower asymmetry. The higher bifurcation moves towards
higher values of asymmetry. Thus, in contrast to the
situation on the left, time-scale separation induces a
dramatic effect on their limit cycles. In the reference time-
scale separation, a limit cycle exists throughout much of
the rightmost dynamics. That limit cycle’s asymmetry
range of existence is terminated at the lower end by
homoclinic orbit / saddle collisions (γ and δ points). At the
upper end, the asymmetry range of existence extends all
the way to the highest values of asymmetry. As the time-
scale separation increases, the limit cycle range of
existence splits into two separate regions. The end of
one region attaches to the upper Hopf. The end of the
other region attaches to the lower Hopf. This creates an
asymmetry gap devoid of oscillations in between the two
rightmost Hopfs (�2 and �10). As time-scale separation
is further increased, the upper rightmost Hopf bifurcation
(along with its attached limit cycle) proceeds to move to
higher values of asymmetry (�10) and, eventually, it
disappears altogether from range (�1000). Thus, as
timescale separation is increased, the large stable limit
cycle on the right is effectively removed from the
dynamics altogether. However, �2, �10 and �1000
results also show that, upon increasing time-scale
separation in the system, the lower Hopf bifurcation on
the right of the dynamics slides to lower values of
asymmetry, and, as it does, so does the end of its attached
limit cycle. This limit cycle ranges from homoclinic/
saddle collision points (γ and δ) all the way to the lower of

the rightmost Hopf bifurcation location, where it
terminates. For�1000 time-scale separation, the behavior
is the same as the behavior exhibited by the 3D system
(Figure 7C) which has (by construction) infinite intrinsic
time-scale separation.

Time-scale separation leaves the location of fixed points
and their stability invariant

Whereas changing intrinsic time-scale separation induces
effects on the limit cycles- slight effects on the limit cycle
in the bcommon< 1 range, and major effects on the limit
cycle(s) in the bcommon> 1 range- most of the dynamical
features of the system remain invariant. In particular, the
locations of the four homoclinic orbit/saddle collision
points (α, β, γ, and δ) remain invariant. Even more
strikingly, the locations of all the fixed points in the
system (and their stability) remain invariant. Specifically,
in Figure 12, for all time-scale separation, fixed point
curves do not change. Thus, time-scale separation only
affects the rotational aspects of the dynamics (Hopf
bifurcations and their limit cycles are shifted), but it
leaves other features invariant.

Time-scale separation impacts commitment by removing
oscillations from the rightmost region

As time-scale separation increases, the region above the γ,

Figure 12. The locations of all fixed points in the DS2 6D bifurcation analyses performed over widely different time-scale
separations (reference, �2, �10 and �1000) are invariant. All branches of the steady-state dynamics overlap. However, the
rotational dynamics differs due to the changing location of the Hopf bifurcations (shown by red *). Time-scale separation affects the

rotational dynamics on the right of the central region, more than on the left. However, the homoclinic orbit/saddle collision points (α,
β, γ and δ) locations are invariant.
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δ collision points (Figure 12) is of particular interest. As
stated above, while the locations of the fixed points and
the collision points remain invariant, the rotational
aspects of the dynamics markedly change. The large
amplitude stable limit cycle asymmetry range of existence
splits into two. As time-scale separation is increased, one
end of the range moves to higher “bcommon” values and,
as time-scale separation is further increased, the asso-
ciated limit cycle moves completely out of range.
Concurrently, the other end of the limit cycle asymmetry
range of existence shifts to lower values of “bcommon”.
This particular orbit becomes a permanent feature of the
high time-scale separation dynamics. Naturally, this limit
cycle is also found in the 3D infinite time-scale separation
version of the system.
Overall, the most significant effect of increasing time-

scale separation on the DS2 circuit dynamics is the
effective removal of oscillations over an ever increasing
range of parameter asymmetry (controlled by “bcom-
mon”). This happens for “bcommon” above ~1.8 (saddle/
node annihilation point). As oscillations are removed, it
leaves the system in this region subject to only a stable
fixed-point attractor. Thus, in this way, time-scale
separation directly impacts commitment. In contrast, in
the range of parameter asymmetry where there is co-
existence of oscillations and fixed-point attractors
(between the γ, δ points and bcommon~1.8) the presence
of a dynamic attractor is expected to act as a stochastic
dynamic mixer in system. Hence, as time-scale separation
increases, the gradual effective removal of oscillations is
expected to also remove stochastic mixing effects.
In sections below, the two flanking dynamical regions

where oscillations and fixed points coexist are studied in
more details.

Parameter asymmetry and time-scale separation impact
commitment in DS2

The general separatrix surface delimits the various
attractors in the system. Below, several studies reveal
how the general separatrix surface changes with para-
meter asymmetry. Studies of its changing nature shed
light on the impact of parameter asymmetry on commit-
ment. Earlier, it was shown that time-scale separation
impacts only the dynamic attractors. Therefore these
studies also permit delineation of the concomitant impact
of time-scale separation on commitment via limit cycles.

The flanking dynamical regions present coexisting
oscillations with fixed point attractors

Because time-scale separation particularly influences
rotational dynamics in the region of “bcommon” above

the γ, δ collision points and below the saddle/node
annihilation points (bcommon~1.8), detailed computa-
tions of the general separatrix surfaces in two contrasting
parameter asymmetry regimes were performed. The first
regime investigated is at bcommon = 1.2 where both 3D
(at infinite time-scale separation by definition) and 6D (set
at reference time-scale separation for greater contrast)
present limit cycles. The second regime is at bcommon =
1.5 where 6D still presents a limit cycle, but 3D does not.

Parameter asymmetry and time-scale separation break
commitment where oscillations coexist with fixed point
attractors

Figure S8A shows an overlay of the 6D and 3D general
separatrix surfaces at bcommon = 1.2 (configuration #24;
6D: reference time-scale separation, 3D: infinite time-
scale separation). Here, an attractive limit cycle and
attractive fixed points of the dynamics coexist both in 6D
and in 3D. Because the limit cycles in both finite and
infinite time-scale separation are (in this region) of similar
size, the two general separatrix surfaces are very close in
shape and size. Figure S8B shows the basin of attraction
of the dynamic attractor: the location in phase space of all
X1, X2, and X3 initial conditions for which the 6D
dynamics is attracted to the limit cycle. The initial
conditions for falling into the rotational attractor are
confined to smaller values of (X1, X2) for X3 small. As the
X3 level increases, the extent of allowed values of (X1, X2)
grow lesser, matching the triangular shape of the limit
cycle. The equivalent 3D figure is omitted because it is
very similar: at each increased X3 level, the extent of
allowed (X1, X2) values is slightly smaller than that in 6D.
The 3D dynamics is the infinite time-scale separation
version of the 6D dynamics.
Figure S8 (C and D) show the corresponding situation

at bcommon = 1.5 (parameterization #24.1; 6D: reference
time-scale separation, 3D: infinite time-scale separation).
Figure S8C shows the overlay of the 6D and 3D general
separatrix surfaces. In 3D, there is no limit cycle because
bcommon = 1.5 is located beyond the Hopf bifurcation.
Irrespective of the lack of limit cycle in 3D, the two
surfaces are nevertheless close in shape and size. Thus in
3D, the dynamics switches from the three attractive fixed
points (1, 2 and 3) to the center fixed point (7). In 6D
however, the switch is to the limit cycle (a stable but
dynamic attractor). The stability of fixed point #7 in 6D
has been discussed earlier. Except for initial locations
along the eigenvector directions for which dynamics falls
into #7, elsewhere, dynamics falls into the surrounding
limit cycle. Panel D shows the phase volume locations for
which the 6D dynamics falls into the limit cycle.
Figure S8 illustrates clearly how commitment to a fixed

point changes by way of parameter asymmetry and time-
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scale separation. We see that the general separatrix
surfaces are similar between 3D and 6D in either system.
Yet by changing the parameter asymmetry from 1.5 to 1.2,
a system committed to a stable state in infinite time-scale
separation (3D) may switch to a dynamical state (limit
cycle). This switch cannot occur in 6D (reference time
scale separation) since both regimes present limit cycles.

The oscillations-free central dynamical region remains
unaffected by time-scale separation

This region is of particular biological interest from the
point of view of the commitment phenotype. Figure S9
shows an overlay of the generalized separatrix surfaces
over the central dynamical region of DS2, computed for
the reference time-scale separation case. However, since
there is no oscillations in this region, time-scale
separation does not affect it (see previous sections).
Therefore, the computation is valid for all time-scale
separations. In the symmetric case (bcommon = 1), the
separatrix surface is a striking three-leaved multi-planar
surface. Each of its three leaves is, in turn, comprised of
three layers. The two outer layers delimit the basin of
attraction of the nearest surrounding stable fixed points.
The middle layer is the attractive manifold of the central
fixed point of the dynamics, in this case a saddle (in the
symmetric case only). On Figure S9, one of these central
layers is indicated by an arrow. The other two are omitted
because they are hidden from this viewpoint. In the two
asymmetric cases however (bcommon = 0.79 and 1.15),
the three leaves of the general separatrix surfaces are not
planar and each one is single-layered. This is due to the
fact that the central fixed point, in these cases, is an
unstable spiral, so it has no attractive manifold.

In the oscillations-free central region, parameter asym-
metry switches commitment among fixed point attractors
by changing the shape of the general separatrix surface

The central dynamical region is devoid of oscillations.
The shape deformation of the general separatrix surface
with changing parameter asymmetry (“bcommon”) in
DS2 is reminiscent to the situation seen in the two-gene
version of the circuit (DS1). But here in DS2, we see that
parameter asymmetry induces both a rotation of the
surfaces about the eigenvector of the central fixed point,
and a deformation of separatrix planes into curved
surfaces. The changing surfaces with parameter asym-
metry directly impact commitment.

In the flanking dynamical regions, noisy oscillations and
parameter asymmetry break commitment

The flanking dynamical regions where oscillations coexist

with stable fixed points are of particular interest because
they reveal the manner in which the commitment
phenotype is broken by parameter asymmetry. Figure 13
shows the behavior of ten independent stochastic tracks,
all started at a common location in phase space: precisely
on the axis of the eigenvector of the central fixed point
(#7). The expectation is that, because of noise, rather than
falling into the central fixed point, the tracks should pick
up rotation and (noisily) coalesce into the limit cycle, thus
becoming trapped in the dynamic attractor. However, the
same noise that permits the dynamics to escape the
attractive fixed point along the axis of the eigenvector also
lets dynamics escape from the dynamic attractor. One
might expect that all three fixed points should have equal
probability of being selected, thus noise not selecting
commitment. Something more subtle is observed how-
ever. In fact, at low bcommon =.7250 and high bcommon
= 1.2, noisy dynamics selects different fixed points, #3
and #1, respectively.
The reason for this unintuitive behavior is that, at finite

time-scale separation, the axis of rotation of the 6D limit
cycle and the 3D eigenvector counterpart do not quite line
up, such that the approach to one or another saddle is

Figure 13. DS2 in the reference time-scale separation,
A (bcommon =.7250, configuration #24.2) and B (bcom-

mon = 1.2, configuration #24) show out of 10 stochas-
tically independent tracks all starting at the same
location in phase space denoted by X on B (hidden on

A), only those 6 tracks that fluctuate out of the stable
limit cycle. The other four tracks remain on the limit
cycle. At asymmetry bcommon =.7250, stable fixed

point #3 is selected, at bcommon = 1.2, stable fixed
point #1 is selected.
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favored. Stated differently, the protein subspace of the 6D
eigenvector is not perfectly aligned with the (protein-
only) 3D eigenvector. This, combined with the pitch of
the outward spiral leads to preferential selection of one
deflecting saddle over another, and consequently of its
associated stable fixed point. It is by way of the
intervening saddle that the stochastic track is deflected
into an associated attractive fixed point. In Figure 13, the
majority (six, in both cases) of the ten tracks fluctuates out
of the dynamic attractor and heads for a preferred, but
asymmetry-dependent, stable fixed point. The four tracks
that do remain on the dynamic attractor (limit cycle) have
been omitted from the figure, for clarity. This behavior has
been verified for higher time-scale separation as well (data
not shown for brevity). Thus, these simulations show that,
in a noisy dynamical regime, parameter-asymmetry does
break the commitment phenotype but, it does so in an
unintuitive way. The onset of oscillations could be
expected to spread the commitment equally between all
three fixed points, but in fact, in this low-noise regime,
because of the intricate noisy dynamics involved,
commitment becomes tied to the amount of parameter
asymmetry in the system. Note that in the noise-free
system, tracks initiated precisely along the eigenvector
belonging to fixed point #7 of Figure 13, as expected,
head for the fixed point (data not shown for brevity).

More noise, more surprises: oscillations entrain noisy
dynamics to break commitment

Figure 14 presents the dynamical behavior of the system
for 10x the noise level, again at bcommon =.7250 (Figure
14A) and also at bcommon =.9 (Figure 14B). This noisy
regime is achieved by scaling down the number of
molecules and the volume of the system both by the same
factor of 100, thus leaving biochemical concentrations
unaltered. From Figure 12A, at bcommon =.7250 there is
coexistence of a limit cycle with three attractive fixed
points. But at bcommon =.9, the dynamics is absent of the
limit cycle, presenting only the fixed points. The
combination of a noisy regime with the driving effect of
the limit cycle is striking. As seen on Panel A, one single
stochastic trajectory visits all three fixed points in the
system, systematically, in a counter-clockwise manner
matching the direction of rotation of the limit cycle. This
behavior was verified by following the stochastic track in
time (data not shown for brevity). The stochastic
dynamics is not composed of random hopping from one
fixed point to any of the other two located on either side of
it. Instead it is observed to be driven in a counter-
clockwise cyclic dynamics. Specifically, the stochastic
dynamics settles in one basin of attraction for some time,
until it hops to the next one over, entrained by the nearby
limit cycle, in a strict counter-clockwise direction. This

process is repeated over and over again. Thus, presence of
the parameter-asymmetry induced limit cycle breaks the

Figure 14. (A) Shows the DS2 phase space at
bcommon = 0.7250 where one large limit cycle co-exists

with the three stable fixed points labeled 1, 2 and 3.
Here, one single stochastic track (shown in green)
imparted with 10x previous noise level now visits all
three fixed points in a row, without end, and without

getting permanently trapped in any. This occurs
because the dynamics is driven by the presence of the
inner limit cycle (3D in magenta, 6D in blue). The

commitment phenotype is broken. The initial conditions
of the 3D trajectory are: X1=X2=X3= 0.1. The initial
conditions of the 6D and of the stochastic trajectories

a re : X 1= X 2= X 3= 0 . 1 ; mRNAX 1= mRNAX 2=
mRNAX3=.01. In contrast, (B) shows the phase space
at bcommon = 0.9 where the dynamics is absent of any
limit cycles. Here, ten independent stochastic tracks are

shown in blue. Each track gets permanently trapped into
one single fixed point, and never escapes. This is due to
the absence of any limit cycle; there is no driving effect.

The commitment phenotype is preserved. In both Panel
A and B, the initial conditions of all tracks is the same.
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commitment phenotype. This is further verified on Panel
B which shows a close-by dynamical regime that lacks
any limit cycle. There, 10 statistically independent tracks
each reach one, and only one, of the fixed points. Once the
dynamics has entered the basin of attraction of a particular
fixed point, it permanently remains in the basin of
attraction of that fixed point. Hence, in this contrasting
situation lacking any limit cycle driving effect, the
commitment phenotype is preserved.
Note that from an inspection of Panel A, one should

expect that whether the commitment phenotype would be
broken by the presence of the asymmetry-induced limit
cycle and biochemical noise should depend on the relative
sizes of the limit cycle and of the noise clouds over the
basins of attraction of the fixed points. Further simula-
tions (not shown for brevity) confirm this.
Figure 15 shows the dynamical behavior of the DS2

system for 10� the noise level, but at bcommon = 1.6,
hence on the other –higher- parameter-asymmetry side of
the dynamics. This is also a regime for which there is
coexistence of the three stable fixed points with a 6D limit
cycle, but here in contrast, there is no corresponding 3D
cycle. As in the previously studied case, the limit cycle
not only causes the dynamics to break the commitment
phenotype, but it also induces significant dwelling near
the central region. In effect, the limit cycle induces the
dynamical maintenance of an additional “quasi-stable”
central fixed point. The stochastic trajectory first accesses
the central “quasi-stable” fixed point region, dwells there
for some time, then it hops over to the neighborhood of
stable fixed point #3. After some while, the limit cycle
influences the dynamics to hop, in clockwise order
(matching the rotational direction of the limit cycle), first
to stable fixed point #2, then on to stable fixed point #1,
and then back on to stable fixed point #3 again. The hop
order is: 3! 2! 1! 3.
In summary, the presence of a parameter-asymmetry

induced limit cycle and sufficient biochemical noise
together break, in a time-ordered systematic manner, the
simple commitment phenotype otherwise imparted by the
topology of the circuit. Further, because time-scale
separation controls the onset of oscillations, it also breaks
the commitment phonotype by initiating the time-ordered
visitation sequence. Biological conditions are neither
expected to be parameter-symmetric, be noiseless or to
present infinite time-scale separation.

The dynamics of the DS3 and DS4 commitment
circuits

DS3 and DS4 are the four- and five-gene generalizations
of the commitment circuits studied above. It is appropriate
to discuss them together in the light of how oscillations
might affect the commitment phenotype. Except for

“bcommon” adjusted as discussed below, all other
parameters remain the same as in DS2, configuration

Figure 15. DS2 phase space at parameter asym-

metry bcommon = 1.6, in reference time-scale
separation. The time evolution of one single stochastic
track is shown in different colors to indicate the
progression and is split into two panels for clarity. The

initial condition is shown by the red dot. (A) In blue, 59%
of the total simulation time is first spent accessing and
then hopping in and out of the “quasi stable” central state

(maintained by the limit cycle), and stable fixed point #3.
(B) In green, a further 35% of the simulation time is then
spent first in the basin of attraction of stable fixed point

#3, then hopping over to that of stable fixed point #2. In
magenta, the remaining 6% of the simulation is finally
spend in the basins of attraction of stable fixed point #2,
then hopping over to that of #1, and finally back to #3.

The clockwise hopping order and direction 3! 2! 1!
3 is imposed by the influence of the limit cycle direction
of rotation (shown in orange). At this value of parameter

asymmetry and reference time-scale separation, there
is no 3D limit cycle.
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#12.1 (finite, reference time-scale separation).
Figure 16 shows a bifurcation diagram of DS3 8D, in

reference finite time-scale separation. The dynamics
presents two separate (non-overlapping) dynamical
regimes. At lower asymmetry (below bcommon~1.44),
saddle/node bifurcations arise. At much higher asymme-
try (bcommon~6.24), a Hopf bifurcation gives rise to a
stable limit cycle that quickly grows to large amplitude, as
asymmetry increases. However, there is no overlap of
limit cycle rotation with the dynamical regime of fixed
points isolated by saddles. Hence, the commitment
phenotype is un-impaired by oscillations. As time-scale
separation increases to infinity, the limit cycle disappears
from range (data not included for brevity). Figure S10
shows the situation at asymmetry bcommon = 10. The
reference finite time-scale separation 8D stable limit cycle
is clearly visible. But the corresponding infinite time-
scale separation 4D system is devoid of limit cycle; so in
this situation, the dynamic attractor is replaced by a stable
attractor and the 4D track spirals down to it.
Figure 17 shows a bifurcation diagram of the DS4 10D

system, in reference time-scale separation. As is the case
for the DS3 commitment circuit, the DS4 system presents
a limit cycle that occurs at relatively high asymmetry (the
Hopf bifurcation is located at bcommon~8.39, higher than
for DS3). Again, this rotation does not overlap with a
lower-asymmetry dynamical regime (located in the area
from bcommon~1.3 to bcommon~ 2.1) that is dominated
by saddle/node bifurcations. Thus again, in DS4 as is the
case in DS3, rotation is incapable of spoiling the
commitment phenotype of the circuit.
Interestingly however, DS4 presents a particularly un-

attractive dynamical feature from the point of view of
commitment. As shown in Figure 17B, a dynamical fold
affords the commitment phenotype an opportunity to
jump from a single stable fixed point (bcommon~1.79) to
two stable fixed points, separated by a saddle (bcom-
mon~1.76). This occurs because of the presence of a
saddle/node bifurcation. Deterministic tracks were inte-
grated for a system located just before the bifurcation
(bcommon ~1.76) and another, just after the bifurcation
(bcommon ~1.79). The data is omitted for brevity. In the
former, tracks are attracted to the two distinct fixed points
located on either sides of the saddle; in the latter, passed
the saddle/node bifurcation, all tracks are attracted to the
one residual single fixed point. Commitment is thus found
fragile to parameter asymmetry because passing the
bifurcation leads to very large jumps (here, 30% and 50%)
in the expressed value of two out of three genes studied. A
similar situation occurs when asymmetry drops from ~1.8
to ~1.76 (data also omitted for brevity), crossing another
saddle/node bifurcation. The dynamical region where the
fragility occurs is relatively small.

CONCLUSION

Parameter asymmetry breaks the commitment phenotype
in DS1 by causing bimodality to become topologically
disconnected from unimodality. Parameter asymmetry
causes the appearance of a dynamical gap in the otherwise
bimodal behavior of DS1. Figure 2 (C and D) shows that
from a repression of b ~.3 to b ~.38, the circuit that
exhibited bimodal behavior in the parameter symmetric
case, is induced to remain high/low unimodal even in the
mild 10% asymmetric case studied. Hence, from the
biological standpoint, delivery of the commitment
phenotype by the DS1 circuit is fragile with respect to
parameter asymmetry. The same is found to be true due to
time-scale separation (Figure 3 and Figure 5). Noise also
breaks commitment (Figure 4).
Parameter asymmetry breaks the commitment pheno-

type in DS2 as well, but it only does so through the
appearance of oscillations. Oscillations only matter to
phenotype delivery in dynamical regions where it coexists
with stable steady states. This happens from bcommon ~.7
to bcommon~.76 for all time-scale separations, and from
bcommon~1.18 to bcommon~1.3 in the infinite time-scale
separation case, or to bcommon~1.82 in the finite time-
scale separation case. In the coexistence range for
asymmetry less than unity, time-scale separation does
not affect oscillations markedly. Only for asymmetry
greater than unity does it do so markedly. But,
remarkably, the central dynamical region (from bcommon
~.76 to bcommon ~1.18) is unaffected by oscillations.
Therefore, in the central region, the commitment
phenotype is immune to parameter asymmetry altogether.
Since time-scale separation only affects oscillations, the
commitment phenotype in the central region is also
immune to time-scale separation. Hence the DS2 circuit is
more robust to both parameter asymmetry and time-scale
separation than DS1.
The DS3 and DS4 circuits both present oscillations at

high asymmetry, but this rotation never co-exists with the
dynamical regime of the commitment phenotype located
at much lower asymmetry. Hence, contrary to DS2,
oscillations cannot spoil the commitment phenotype.
Furthermore, the infinite time-scale separation version of
these circuits does not present any oscillations (on the
scale of asymmetry studied). Thus, the DS3 and DS4
commitment phenotype delivery ability is immune to
time-scale separation. So, both DS3 and DS4 can be
thought of as more robust to parameter asymmetry than
DS1 and DS2. In the case of DS4 however, this finding is
somewhat tempered by the appearance of the fold effect
depicted on panel B of Figure 17. The dynamical region
where fragility appears is however small.
In this work, prompted by the observation that Nature
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seems to have preferentially evolved complex fully-
connected gene regulatory networks [33,34], we focused
on the following question: From the point of view of the
commitment phenotype delivery, could robustness to
parameter asymmetry and time-scale separation be
improving systematically with increasing network topol-

ogy complexity? Stated differently, is fragility a feature of
simpler networks? The current work presents evidence
this is so. However, further studies on more complex
topologies are needed to settle the question.
It is also interesting to reflect on the suggestive finding

that oscillations sourced in parameter asymmetry com-

Figure 16. (A) Bifurcation analysis of the DS3 8D system in reference time-scale separation. The X1, X2, X3 and X4 (black, red,
green and blue) fixed point locations, and stability (thick: stable, thin: unstable), are shown versus asymmetry parameter
“bcommon”. The four mRNAs are omitted for clarity. Large amplitude stable oscillatory behavior develops at the Hopf bifurcation
(HB12 at bcommon~6.24); the upper and lower extend of the limit cycle are shown. However, there is no overlap of rotation with the

stable/unstable (node and saddle) dynamical regime of fixed points located at lower asymmetry. Furthermore, in infinite time-scale
separation, there is no limit cycle (data omitted for brevity). (B) The dynamical regime at lower asymmetry; the various saddle/node
bifurcations are shown in details; the vertical lines indicate their locations. Stability is shown by stick lines, un-stability by thin lines.

The system of coupled ordinary differential equations describing the DS3 8D dynamics and the parameters are in Supplementary
Table 7.
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bined with biochemical noise, together lead to systematic
breaking of the commitment phenotype. In other words,
natural conditions i.e. non-equality of gene suppression
strengths combined with unavoidable biochemical noise
together lead to systematics to be observed in the
commitment time history of the system, thus effectively

amounting to a possible mechanism for progressive
differentiation.
The work presented here focused on the strength

asymmetry between opposing repression forces in all the
possible pairs of genes within relatively simple canonical
fully-connected core regulatory gene networks delivering

Figure 17. Bifurcation diagram of 10D DS4 in reference time-scale separation. (A) The fixed points of X1, X2, X3, X4 and X5

(values are in black, red, green, blue, magenta respectively and stability, thick: stable, thin: unstable) are shown as a function of the
asymmetry parameter “bcommon”. The mRNAs are not shown for clarity. The dynamics develops a large amplitude limit cycle at

bcommon~8.39, where a Hopf bifurcation occurs. The limit cycle does not overlap with the dynamical regime at low asymmetry,
where saddle/node bifurcations dominate the dynamics. (B) Details of the dynamics at lower asymmetry. The red dotted line is at
bcommon = 1.81, in the center of the fold. There only one fixed point exists. The green line is at bcommon = 1.76, just below the

saddle/node bifurcations. There, the dynamics presents two stable fixed points separated by a saddle. This feature results in
extreme sensitivity of the commitment phenotype to asymmetry, in a limited range of asymmetry.
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the commitment phenotype. As shown above, this already
provides a richness of dynamical and stochastic behaviors
deserving investigation because of their relevance to
biology. Absent from the current concern however, is the
role of auto-activation; all circuits are endowed with the
same self-regulation strength on all their respective
constituent genes. Not considered here also, is any
asymmetry in the degradation strengths. These topics,
and others, require much further study and will be the
subject of future work.

MATERIAL AND METHODS

Null-surfaces, and bi-null-surface intersections

For any system studied herein, each of the coupled
nonlinear differential equation expresses the time rate of
change of one the state variables in terms of all the state-
variables in the system. When set to zero, each differential
equation therefore defines one of the steady-state
manifolds of the system. In this work, each steady-state
manifold is referred to as a “generalized null-surface” in
analogy to the common two-dimensional system’s
“nullcline”. Each generalized null-surface equation is
however much too complex to solve analytically. There-
fore, in order to find the generalized null-surface locations
within a phase volume, or to find the locations of their
mutual intersections, a special numerical algorithm was
devised. For example, in the X1, X2, X3 system, there are
three generalized null-surfaces: f1(X1, X2, X3)= 0, f2(X1,
X2, X3)= 0 and f3(X1, X2, X3)= 0. The three surfaces are
discovered numerically by finding the sets of X1, X2 and
X3 locations for which, in turn, f1< ε, f2< ε, and f3< ε.
In this work, it was realized that much subtle and

intricate information about dynamics was better rendered
graphically by plotting the bi-null-surface intersections, in
addition to the generalized null-surfaces. For example,
here in the X1, X2 and X3 system, the “12”, “13” and “23”
intersections denote the 1 and 2, 1 and 3 and 2 and 3 null-
surface intersections, respectively. The intersections are
found numerically in a similar manner as the actual
surfaces. They are plotted in the phase volume using
different colored clouds of dots creating distinctive
swirling patterns. At the bi-null-surface intersections
(thus, within a cloud of a single color), two of the three
state variables are at rest. Thus, any co-located pair of
two-variable intersections (two different colored clouds
intersecting) defines a global fixed point of the dynamics
for which all three variables are at rest (e.g., “12” and
“23” clouds intersecting define a “123” global fixed
point). The redundancy offered by using three mutually
intersecting clouds is found to be very useful in order to
handle the high complexity of the null-surfaces’ changing
shapes. Higher dimensionality systems (e.g., four, five)

are handled in a straightforward generalization of the
numerical approach described above.

Generalized separatrix

In the two-dimensional system, the two stable steady-state
basins of attraction are separated by a curve called the
separatrix. Starting a trajectory on either side of the
separatrix will result in the trajectories reaching alternate
fixed points; at the separatrix there is switchover of
reached stable fixed point. Since the location on the phase
plane where the switchover occurs is not known a priori,
it is discovered by systematically starting multiple tracks
on a grid of initial conditions covering the phase plane.
This concept straightforwardly generalizes to systems of
higher dimensionality. There, the separatrix becomes a
surface embedded in the phase volume. To discover the
location of such a generalized separatrix surface, multiple
tracks are systematically started on a grid of initial
conditions filling the phase volume. The reached attractor
is recorded for each trajectory. The generalized separatrix
surface location is therefore approximated by the switch-
over location on the grid.

Local linear analysis

At the numerically located fixed points of the dynamics,
the analytically-determined (using Mathematica: Wol-
fram, Champaign, Illinois) Jacobian matrix of the system
of coupled nonlinear ordinary differential equations is
numerically evaluated. Eigenvalues and eigenvectors of
the Jacobian matrix are computed using Matlab (The
Mathworks, Natick, Massachusetts) and the local stability
of each fixed point is determined based on the
eigenvalues.

Stochastic simulations

The stochastic simulations were achieved by decompos-
ing the dynamical systems into the set of their elemental
discrete production and degradation events, and by
randomly actuating them using the Gillespie algorithm
[35–38]. The behavior of multiple statistically indepen-
dent realizations of the system is therefore governed by
the underlying governing Master Equation of the
dynamics [37,38]. All simulations were developed,
performed and analyzed within the Matlab (The Math-
works, Natick, Massachusetts) framework.

DS1 residency diagrams

Two-dimensional histograms of state variables are
computed using extended duration stochastic trajectories
throughout phase space. Color is used to indicate the
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base-10 logarithm of the contents that measures the
probability of the dynamical system to visit the defined
region of phase space. More details can be found in
[11,12].

DS1 4D-nullclines

The 4D-nullclines are computed by removing one ODE
from the four-dimensional system, and solving the
associated homogenous sub-problem. More details can
be found in [11,12].

Bifurcation analysis

Bifurcation analyses were performed using the Oscill8
continuation analysis software (http://oscill8.sourceforge.
net/ ) and the MATCONT continuation toolbox in Matlab
(The Mathworks, Natick, Massachussetts). Continuation
of limit cycles was also performed using standalone
software written in Matlab.

Model equations; finite time-scale separation
version

DS1

dX1

dt
=– kdegX1 � X1 þ t1 � mRNAX1,

dX2

dt
=– kdegX2 � X2 þ t2 � mRNAX2,

dmRNAX1

dt
=– kdegmRNA� mRNAX1 þ a� X1

n

Sn þ X1
n

þ b� b21 �
Sn

Sn þ X2
n ,

dmRNAX2

dt
=– kdegmRNA� mRNAX2 þ a� X2

n

Sn þ X2
n

þ b� Sn

Sn þ X1
n :

DS2

dX1

dt
=– kdegX1 � X1 þ t1 � mRNAX1,

dX2

dt
=– kdegX2 � X2 þ t2 � mRNAX2,

dX3

dt
=– kdegX3 � X3 þ t3 � mRNAX3,

dmRNAX1

dt
=– kdegmRNA� mRNAX1 þ a� X1

n

Sn þ X1
n

þ b� b21 �
Sn

Sn þ X2
n þ b� b31

� Sn

Sn þ X3
n ,

dmRNAX2

dt
=– kdegmRNA� mRNAX2 þ a� X2

n

Sn þ X2
n

þ b� Sn

Sn þ X1
n þ b� b32 �

Sn

Sn þ X3
n ,

dmRNAX3

dt
=– kdegmRNA� mRNAX3 þ a� X3

n

Sn þ X3
n

þ b� b13 �
Sn

Sn þ X1
n þ b� b23

� Sn

Sn þ X2
n :

DS3

dX1

dt
=– kdegX1 � X1 þ t1 � mRNAX1,

dX2

dt
=– kdegX2 � X2 þ t2 � mRNAX2,

dX3

dt
=– kdegX3 � X3 þ t3 � mRNAX3,

dX4

dt
=– kdegX4 � X4 þ t4 � mRNAX4,

dmRNAX1

dt
=– kdegmRNA� mRNAX1 þ a� X1

n

Sn þ X1
n

þ b� b21 �
Sn

Sn þ X2
n þ b� b31

� Sn

Sn þ X3
n þ b� b41 �

Sn

Sn þ X4
n ,

dmRNAX2

dt
=– kdegmRNA� mRNAX2 þ a

� X2
n

Sn þ X2
n þ b� Sn

Sn þ X1
n

þ b� b32 �
Sn

Sn þ X3
n þ b� b42

� Sn

Sn þ X4
n ,
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dmRNAX3

dt
=– kdegmRNA� mRNAX3 þ a

� X3
n

Sn þ X3
n þ b� b13 �

Sn

Sn þ X1
n

þ b� b23 �
Sn

Sn þ X2
n þ b

� b43 �
Sn

Sn þ X4
n ,

dmRNAX4

dt
=– kdegmRNA� mRNAX4 þ a

� X4
n

Sn þ X4
n þ b� b14 �

Sn

Sn þ X1
n

þ b� b24 �
Sn

Sn þ X2
n

þ b� b34 �
Sn

Sn þ X3
n :

DS4

dX1

dt
=– kdegX1 � X1 þ t1 � mRNAX1,

dX2

dt
=– kdegX2 � X2 þ t2 � mRNAX2,

dX3

dt
=– kdegX3 � X3 þ t3 � mRNAX3,

dX4

dt
=– kdegX4 � X4 þ t4 � mRNAX4,

dX5

dt
=– kdegX5 � X5 þ t5 � mRNAX5,

dmRNAX1

dt
=– kdegmRNA� mRNAX1 þ a� X1

n

Sn þ X1
n

þ b� b21 �
Sn

Sn þ X2
n þ b� b31

� Sn

Sn þ X3
n þ b� b41 �

Sn

Sn þ X4
n

þb� b51 �
Sn

Sn þ X5
n ,

dmRNAX2

dt
=– kdegmRNA� mRNAX2 þ a

� X2
n

Sn þ X2
n þ b� Sn

Sn þ X1
n

þ b� b32 �
Sn

Sn þ X3
n þ b� b42

� Sn

Sn þ X4
n þ b� b52 �

Sn

Sn þ X5
n ,

dmRNAX3

dt
=– kdegmRNA� mRNAX3 þ a

� X3
n

Sn þ X3
n þ b� b13 �

Sn

Sn þ X1
n

þ b� b23 �
Sn

Sn þ X2
n þ b

� b43 �
Sn

Sn þ X4
n þ b� b43

� Sn

Sn þ X5
n ,

dmRNAX4

dt
=– kdegmRNA� mRNAX4 þ a

� X4
n

Sn þ X4
n þ b� b14 �

Sn

Sn þ X1
n

þ b� b24 �
Sn

Sn þ X2
n þ b

� b34 �
Sn

Sn þ X3
n þ b� b54

� Sn

Sn þ X5
n ,

dmRNAX5

dt
=– kdegmRNA� mRNAX5 þ a

� X5
n

Sn þ X5
n þ b� b15 �

Sn

Sn þ X1
n

þ b� b25 �
Sn

Sn þ X2
n þ b

� b35 �
Sn

Sn þ X3
n þ b� b45

� Sn

Sn þ X4
n :

Model equations; infinite time-scale separation version

In all cases, to obtain the infinite time-scale separation
equations, set the time rate of change of mRNA to zero to
algebraically solve for the steady-state mRNA. Then,
substitute this steady-state mRNA back into the differ-
ential equation for each state variable.

Parameter Configurations

The parameter configurations of the various models are
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detailed in Table 1, Table 2 and in Supplementary Tables.

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at
DOI 10.1007/s40484-015-0042-1
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