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Transcription factors (TFs) are major modulators of transcription and subsequent cellular processes. The binding of
TFs to specific regulatory elements is governed by their specificity. Considering the gap between known TFs sequence
and specificity, specificity prediction frameworks are highly desired. Key inputs to such frameworks are protein
residues that modulate the specificity of TF under consideration. Simple measures like mutual information (MI) to
delineate specificity influencing residues (SIRs) from alignment fail due to structural constraints imposed by the
three-dimensional structure of protein. Structural restraints on the evolution of the amino-acid sequence lead to
identification of false SIRs. In this manuscript we extended three methods (direct information, PSICOV and adjusted
mutual information) that have been used to disentangle spurious indirect protein residue-residue contacts from direct
contacts, to identify SIRs from joint alignments of amino-acids and specificity. We predicted SIRs for homeodomain
(HD), helix-loop-helix, Lacl and GntR families of TFs using these methods and compared to MI. Using various
measures, we show that the performance of these three methods is comparable but better than MI. Implication of
these methods in specificity prediction framework is discussed. The methods are implemented as an R package and
available along with the alignments at http://stormo.wustl.edu/SpecPred.
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INTRODUCTION

Transcription factors (TFs) are important components of
cellular regulatory networks. Knowledge of TF specificity
is essential for understanding regulatory networks of
physiological pathways [1], annotating non-coding or
disease causing variants [2], design of TF-nucleases/TF-
lysine demethylase for site specific modifications of
genetic [3] and epigenetic features [4], respectively, and
modulation of metabolic pathways for commercial
purposes [5]. TF specificities also serve as input for
several prediction frameworks and global models of
cellular regulation [6,7]. A recent estimate of the number
of TFs encoded by the human genome is in the range of
1700-1900 [8]. Although large scale efforts have been
undertaken by various groups, there are less than 500
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human TFs for which the specificity is known. TF
specificities of model and pathological organisms are also
far from complete; even the well studied Escherichia coli
is far from complete. To close this gap, TF specificity
prediction models are urgently needed.

Although a simple, deterministic recognition code has
been disproven [9], there are several reports of successful
TF family-specific probabilistic recognition codes [10].
Specificity prediction models have been developed for
zinc-fingers [10-16] and homeodomain (HD) [17], and
have been reported to perform well on test data sets using
various measures.

Current TF specificity prediction methods usually refer
to prediction of specificity based on position weight
matrices (PWMs). Most eukaryotic sequence specific TFs
bind to 811 base pairs and hence their specificity is
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described by PWMs of equivalent width. On the other
hand, the number of amino acids in the primary structure
of'the DNA-binding domains of TFs are much larger (e.g.,
23 for zinc fingers, 58 for HDs). Most amino acids are
required to maintain the three dimensional (3D) structure
of TFs while a few are involved in determining specificity.
Providing the entire amino acid sequence for predicting
specificity at a given position, which is influenced by only
a couple of residues, can result in overfitted models.
Hence, identifying residues that influence specificity for a
TF family under consideration is important. In previous
studies such specificity influencing residues (SIRs) were
determined either from structural information of the
interacting positions in the protein and DNA or using
variable selection from multiple alignments of proteins
and their binding sites (or motifs). Although inferring
SIRs from structural information is straightforward,
rearrangement of side-chains at the protein-DNA inter-
face do occur [16,18] making any one-to-one correspon-
dence incomplete. Instead of relying on structural
information, covariance based measures can be used to
infer interacting positions. This approach works well for
predicting base pairs in RNA structures because the
interactions are mainly one-to-one. However, residue
variations in a given structural family of functional
proteins is constrained by its 3D structure with many-to-
many contacts that can result in a chain of correlations and
even superadditive correlations [19]. Lapedes and
colleagues pointed out the problem and outlined a
solution utilizing maximum entropy estimates of interac-
tion parameters [20], and in 2002 showed that this could
be an effective means of identifying the directly
interacting positions in protein sequences [21]. Since
then, several methods have been developed to disentangle
directly and indirectly co-varying positions and shown to
reliably predict protein structures from deep alignments
[22-27] and even to demonstrate the ability to identify
interacting residues between proteins in multi-protein
complexes [27-29].

Here we apply a similar method to identify the SIRs in
protein-DNA complexes. We extended three methods to
infer direct from mixed correlations to infer SIRs from
alignment of proteins and corresponding binding site
motifs. The methods are compared with each other and a
simple measure, mutual information (MI). We assessed
the accuracy of the methods by mapping the identified
SIRs to crystal structures.

RESULTS

The protein domains of the four families used in this study
are in the range of 46-64 amino-acids, and their
specificity spans 5-9 degenerate bases. Only a few
amino-acids in the protein domains (SIRs) determine the

specificity. To identify SIRs from composite-alignments,
four quantities, MI, adjusted mutual information (Mlp),
direct information (DI) and PSICOV (PC), were com-
puted. Heat-maps representing MI, MIp, DI and PC for
inter-molecular pairs are shown in Figure 1 for HD family.
Heat-maps for other families are given in the Supple-
mentary Materials (Figures S1, S2 and S3). Top ranked
amino-acid residues that influence specificity, identified
using DI, are exact or immediate neighbors of contact
bases (as determined by crystal structures). Similar trends
were observed when PC and MIp were used to rank the
SIRs. However, when MI was used, the top ranked
residues are not necessarily close in crystal structure.

Receiver operating characteristic (ROC) curves were
generated to assess the compromise between true and
false positive contact pairs identified using the four
measures (Figure 2). The true positives and false positive
pairs were identified using crystal structures as reference
with different distance cut-offs. Generally, the ROCs are
very steep until sensitivities of 0.4 to 0.5. When ROCs of
different methods are compared for pairs identified using
4 A cutoffs, it is evident that DI performs better than other
methods especially in the left bottom quadrant. This is a
critical area for ROCs and recommended as a good
measure of classification performance. When the different
methods are compared, for all families, DI is somewhat
better consistently in identifying ~50%—60% of true
contacts at a lower false positive rate. Performances of
Mlp and PC are not very different from DI, while
performance of MI is worse than random.

The ROC computed using 4 and 5 A cut-offs has a
larger area under the curve as compared to 6 and 7 A
(Figure 2 and Figures S4-S6). This indicates that DI and
PC avoid false positives to some extent and are better at
identifying the closely interacting contacts. Except for
GntR, 40% and 60% of the true contacts are identified at a
false positive rate of around 10% and 25%, respectively. It
should be noted that the ROCs are computed using crystal
structure of one of the members as a reference. The
protein-DNA interface is known to rearrange depending
upon the crystal structure of the family member and
mutation in protein that alters the specificity [16,18].

Next, we mapped top interacting amino-acid-specificity
pairs identified by DI on the solved crystal structures.
Contacts made by DNA bases to amino-acid were first
identified from crystal structure (less than 5 A) and used
as reference (Figure 3). The top ranked pairs identified by
DI, when mapped on crystal structures, show that most of
the top ranked SIRs-specificity pairs are in physical
proximity of each-other. A few pairs that are not
physically close to each other were also identified in the
top list, some probable reasons are given in discussions.
The same maps using the other methods are included in
Supplemental Figure S7.
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Figure 1. Heat maps showing MI, Mip, PC and DI for intermolecular contact pairs for the HD family of TFs. Color keys are
given at the top of each plot. The X-axes correspond to specificity positions and Y-axes show the position of amino-acid for a given

family.

DISCUSSION

Simple approaches to predict SIRs, like MI and correla-
tions, are prevalent in the literature. However, due to
constraints imposed by the 3D structure of the protein,
such measures fail to deduce correct SIRs given amino-
acid sequence and motif alignments. Constraints imposed
by 3D structures on evolution of protein results in false,
super-additive or chained correlations. Such chained
correlations are also observed in gene regulatory networks
[30] and successful attempts to deduce direct correlation
from indirect correlations have been proposed [22,24—
26]. Here we used such approaches to deduce SIRs from
alignments of transcription factor proteins and DNA
binding site motifs.

Two methods based on inverse covariance matrix
(direct information and graphical lasso (glasso)) and a
method based on adjusting mutual information (Mlp)
depending upon background were used to identify SIRs.
The results are compared with simple MI. Heatmaps
(Figure 1), ROCs (Figure 2) and rendering of contacts on
3D structures (Figure 3) showed that the performance of
DI, MIp and PC in identifying SIRs are mostly
comparable and much superior to MI, with DI being
somewhat better. DI is capable of extracting contacts even

if the residues are fully conserved and specificity is
invariant across the family, although fully conserved
positions do not carry any information [24]. The
performance gained from using the global methods (DI,
PC and MlIp) over a local method (MI) is achieved
through the attempt to eliminate indirect couplings which
is inherent to the MI. Differences in performance between
the global methods are determined by how well they
achieve to do this with the available data (e.g., depth of
the alignments). Defining analytically (in the mathema-
tical sense) what makes one global method superior to
another is not straight forward as there are numerical
approximations to different theories for solving the
chaining problem.

Although the ROCs shown in Figure 2 are significantly
better than random for three methods, there is room for
improvements. Likely reasons for not capturing all the
correct contacts might be a limited number of proteins in a
family with known specificity. For the successful protein
contact prediction using similar approaches, the number
of sequences in the alignment should be 5 times the length
of protein sequence [24]. However, unlike the number of
known protein orthologs, the number of TFs for which the
specificity is known is very limited. To meet this
challenge, we limited the protein sequences to their
domains, thereby reducing the width of the alignment
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Figure 2. ROC showing the trade-off between true and false positives. True or false positive contacts were assigned based
on crystal structures. The contacts were calculated using 5A distance cut-offs. As PC only outputs a subset of the contacts, the
ROCs are truncated. ROCs computed using 4, 6 and 7A are given in Supplementary Materials.

considerably, which in turn reduces the demand on the
alignment depth. As is stated in Table 1, there is a
different number of samples for each TF and as low as 87
sequences for bHLH still show an improvement over MI.
It should be noted that in the current approach the contacts
present in crystal structure were considered as a ruler to
compare performance, however, reports of sidechain
rearrangement of SIRs depending upon different DNA
partners is well known.

The major usefulness of identifying correct SIRs is in
specificity prediction methods [17]. We attempted to
develop a random forest based specificity predictor using
SIRs identified by DI and PC for the HD family using a
similar approach as Christensen et al. [17], however, our
performance is comparable to that of this previous study.
This is expected as the Christensen et al [17] uses Mlp to
identify SIRs, which here shows comparable performance
to DI and PC, at least with the given depth of the
alignments.

CONCLUSIONS

In the present article we used four methods to identify
SIRs from transcription factor amino-acid sequence and
corresponding specificity (given by PWMs). While MI
fails to correctly identify SIRs from alignments, other
methods (Mlp, PC and DI) are comparable and are much
better than MI. The alignments of amino-acid and motifs
along with software to calculate DI and PC are available
at http://stormo.wustl.edu/SpecPred.

METHODS
Database
Protein and specificity collection

We used variable selection and specificity prediction
methods for two eukaryotic families (HD and bHLH) and
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Figure 3. Contacts from the crystal structure and
predicted by DI. Actual (within 5A) and DI predicted
SIRs-specificity contacts (Only top N contacts with
highest DI are shown, where N is the number of contacts
identified within 5A in the crystal structure) traced on the
solved TF-DNA complex. TF and DNA are rendered in
green and orange backbone, respectively. The interact-
ing or top ranked pairs are shown by a connection using
magenta lines. Such lines in the left panel shows amino-
acid-base contacts inferred from crystal structure and
right panels show pairs from the top of the sorted list of
Dls. The crystal structure used are 9ANT, 1NK4, 1EFA
and 4EGY for HD, bHLH, Lacl and GntR family,
respectively. SDRs identified by other methods are
rendered in Supplementary Materials.

two prokaryotic families (Lacl and GntR). Sources from
which specificity or preferred DNA sequences are derived
are given in Table 1. Most specificities of eukaryotic TFs
were derived from FlyFactorSurvey [31], UniProbe [32]
and [33]. Specificities of prokaryotic TFs were derived
from RegPrecise [34]. RegPrecise does not include
experimentally determined specificity but manually
curated, inferred binding sites. The corresponding
amino-acid sequences of TFs were collected using the
accession numbers given in the respective source of
specificities or preferred sequences mostly from UniProt
[35] and Microbes Online [36].

Table 1. Sources and number of TFs for different
families.
Family Source Number of instances
HD FlyFactorSurvey 85
UniProbe (BEEML-PBM) 127
Jolma et al., 2013 84
bHLH FlyFactorSurvey 31
UniProbe 21
Jolma et al., 2013 35
Lacl RegPrecise 404
GntR RegPrecise 977

Data set curation

A number of proteins for Lacl and GntR families
available on RegPrecise were excluded from our model.
Proteins were filtered based on the following criteria:
1) The referred protein sequences does not contain TF
family motif, ii) Position frequency matrices (PFMs)
inferred from preferred binding sites were not aligned
with most other PFMs of the given family. Some obvious
outliers in the aligned motifs were also removed
following visual inspection.

Alignment of proteins

Amino acid sequences were aligned using hmmalign
module of HMMER [37] using HMM-profiles from
PFAM [38]. For HD, bHLH, Lacl and GntR, profiles with
accession IDs PF00046, PF00010, PF00356 and
PF00392, respectively, were used. Sequence logos for
the generated alignments are given in Figure 4.

Encoding of motif specificity and alignment

Specificities available from UniProbe, FlyFactorSurvey
and [33]are represented in the form of PWMs. The PWMs
derived using BEEML-PBM for UniProbe experiments
were used after applying a scaling factor as suggested by
[17]. PWMs represented in the form of energy were
converted to PFMs assuming they are Boltzmann
distributed. The binding sites for IFs retrieved from
RegPrecise were converted to PFMs. The PFMs were
encoded to 15 letter [IUPAC encoding [39]. PFMs were
converted to 15 bits encoding using Euclidean distance as
a measure to discretize PFMs represented in [IUPAC space
as described in Wang and Stormo [39,40]. We refer to
such encoded PFMs as specificity-strings. The encoding
of specificity is essential as the amino-acid sequences are
sets of discrete alphabets and it is convenient to measure
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0

Figure 4. Sequence conservation for proteins and binding sites. Logos computed using amino-acid sequences for different
families are given in the left panel. PFMs were discretized using the 15 digit standard [IUPAC coding. Frequencies of alphabets at a
given position is graphically shown in the right panel. The size of the letter is proportional to its frequency.

correlation between discrete variables by converting
PFMs to discrete specificity-strings. The PFMs were
aligned before encoding them into specificity-strings.
Aligning motifs of high sequence identity can be
accomplished by multiple motif alignment software like
STAMP [41]. However, in the present study, the number
of motifs to align is a few hundreds (for HD, Lacl and
GntR). In order to align motifs efficiently for large
families, we first selected a few representative motifs (half
sites for Lacl and GntR due to symmetric binding site)
and manually aligned them. After that, each of the motifs
in the family was aligned to each selected representative
motif using MatAlign [40]. The best alignment to each
representative motif was identified using the p-value.
Subsequently, all aligned motifs in a group were aligned
to each other using the alignment of reference motifs. The
aligned proteins and encoded specificities for a given
family were then used for identification of SIRs with the
methods described below. The alignments are available at
http://stormolab.wustl.edu/SpecPred.

Identification of SIRs using inverse covariance
matrix

Correlations between aligned TFs amino-acid sequences
and corresponding specificity-strings are a result of direct

and indirect correlations. The direct correlations result
from residues that influence the specificity. As these
residues at the protein-DNA interface change, the
corresponding preferred binding site and hence specificity
changes. However, these amino-acids that determine the
specificity are part of a protein and therefore co-evolved
with one or few other amino-acids to maintain a three-
dimensional structure characteristic to that family. This
gives rise to confounding indirect correlations [20].
Several successful approaches have been suggested to
disentangle direct from indirect interactions to interpret
co-evolving protein residues (contact residue prediction)
from multiple sequence alignments [20,22,23,25-27,30].
We extended two of these methods: i) PSICOV which
uses graphical lasso (glasso) and average product
correction (APC) [23], and ii) direct information [26,27]
for SIRs prediction from amino-acid-specificity align-
ments.

Both methods are based on inversion of the co-variance
matrix which has a unique property to disentangle direct
and indirect information. The inverse covariance matrix
has a direct relation to multiple linear regressions and
computes a linear influence of a given residue on
specificity in the presence of amino-acids at other
positions. For n continuous variables (x;, xp,..., X,), the
interpretation of the elements of the inverse covariance
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matrix (¥') in terms of how the variable under
consideration (e.g. x;) is related to other variables

1/[S1|(1*R%)]

_ﬂnl/[snn(l _R%)]

where f; is the regression coefficient for variable j and R?is
the coefficient of determination when variable x; is used as
the response vector and the other variables as predictors. s;; is
the variance of variable x;.

Direct information

The maximum entropy based frame-work to identify
direct correlation for protein contact prediction [3,26] was
adapted to identify the SIRs (see details after description
of model). Briefly, the approach measures mutual
information that results from direct interactions only. A
two-site model is described as

exp (¢;(4,B) + hy(4) + hy(B))
TSI exp(ey(ab) + hi(a) + hy(b)
)

The coupling term e; is computed using inverse
covariance matrix and /; and /; are computed iteratively
by imposing marginal frequency restraints given the pair
interaction term e;. The denominator is the partition
function, which enters as a normalization factor.

For position i and j the above procedure results in a
matrix of dimensions (g—1) x (¢g—1) which is converted
into a metric, namely, the direct information (DI;),
derived from mutual information formula using

IR P (a,b)
q-1 q=1 Sdir ij
a=1 h=1 PU (a,b)lnm

Derivation and details of the model are given in the
original papers [25-27] and are summarized in the
Supplementary Materials.

To accommodate the DNA-protein contact inference
we had to adapt the structure of the co-variance matrix
from that presented in [26,27]. For the purpose of intra-
molecular contact inference of the protein, as there is no
encoded specificity involved, the covariance matrix is
square and of order n x ¢, where n is the width of
alignment (number of amino-acids per sequence) and g is
21 (for 20 amino-acids and a gap state). For the inter-
molecular contact inference, the covariance matrix is
square and of order (n X ¢,) + (m x ¢s), where n and m

Py (4,B)=

DI;= 3)

7[))12/[S11(17R%)]
yl= *ﬂzl/[Sz.z(lfR%)] 1/[322(_1*13%)]

_ﬁnZ/[snn(l _Ri)]

(e.g. xo, X3, ... , X,) is described in Equation 1 [42].

*ﬁln/[sll(I*R%)]
*ﬁZn/[Sz?(I*R%)] (1)

1/[Snn(1 _R%)]

are the width of the amino-acid and specificity align-
ments, respectively. g, and ¢, are 21 (number of possible
states of amino-acids) and 15 (number of possible states
of encoded specificity), respectively.

Graphical lasso (glasso) and APC

The approach and scoring is similar to a method published
recently [23]. However, a few modifications are intro-
duced in addition to the size of co-variance matrix. The
observed frequencies of amino-acids were reweighted as
in the computation of DI (Supplementary Materials). No
pseudo-counts were added for adjusting the marginal and
joint frequencies, as the glasso method is capable of
inverting the matrix without pseudo-counts. In addition,
the APC score is capable of adjusting for entropic bias
that might be caused by not adding pseudo-counts. The
inverse matrix was estimated using glasso with the
regularization parameter (770) set to 0.03. Once the
inverse covariance matrix is available, the L1-norm is
computed for converting the g X g matrix to a scalar value
followed by computation of product correction (PC) score
as described in original report and supplementary
methods [23].

Identification of SIRs using MI and Mlp

Mutual information is a simple measure to compute
correlation between two discrete variables. We used
mutual information and an adjusted mutual information
[43] in addition to the above methods and denote them as
MI and Mlp, respectively. The latter adjusts mutual
information using APC.

Validation

Heat maps were used to visualize MI, Mlp, DI and PC for
amino-acids and specificity contacts. Top ranked SIRs
were mapped on the crystal structure of corresponding
families in order to determine the physical proximity in
solved structures. ROC curves were generated to gauge
the performance against a validation set comprising
contacts from DNA-protein co-crystal structures deter-
mined with different distance cutoffs.
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SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at
DOI 10.1007/540484-015-0045-y.
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