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Emerging integrative analysis of genomic and anatomical imaging data which has not been well developed, provides
invaluable information for the holistic discovery of the genomic structure of disease and has the potential to open a
new avenue for discovering novel disease susceptibility genes which cannot be identified if they are analyzed
separately. A key issue to the success of imaging and genomic data analysis is how to reduce their dimensions. Most
previous methods for imaging information extraction and RNA-seq data reduction do not explore imaging spatial
information and often ignore gene expression variation at the genomic positional level. To overcome these limitations,
we extend functional principle component analysis from one dimension to two dimensions (2DFPCA) for representing
imaging data and develop a multiple functional linear model (MFLM) in which functional principal scores of images
are taken as multiple quantitative traits and RNA-seq profile across a gene is taken as a function predictor for
assessing the association of gene expression with images. The developed method has been applied to image and RNA-
seq data of ovarian cancer and kidney renal clear cell carcinoma (KIRC) studies. We identified 24 and 84 genes whose
expressions were associated with imaging variations in ovarian cancer and KIRC studies, respectively. Our results
showed that many significantly associated genes with images were not differentially expressed, but revealed their
morphological and metabolic functions. The results also demonstrated that the peaks of the estimated regression
coefficient function in the MFLM often allowed the discovery of splicing sites and multiple isoforms of gene
expressions.
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INTRODUCTION

There is increasing consensus that imaging measures
show closer associations with genomic variants and the
penetrance of an individual genomic variant is expected to
be higher at the imaging level than at the clinical
diagnostic and outcome level. Imaging measures as an
endophenotype have a higher power to identify genomic
variants that significantly contribute to the development
of diseases [1,2]. Integrated genomic and imaging data
analysis is a new powerful approach used to uncover the
individual variability and mechanism of disease develop-
ment [3]. Both imaging and genomics generate a huge

amount of data that present critical bottlenecks in their
analysis. Despite its great success, integrative analysis of
unprecedented high dimensional imaging and genomic
data faces great conceptual and computational challenges
[4].
A key issue to the success of imaging and genomic data

analysis is how to reduce dimensions of both imaging and
genomic data. Previously investigated methods for
imaging information extraction include single region-of-
interest (ROI) methods, voxelwise approaches, principal
component analysis (PCA), singular value decomposi-
tion, self-organizing Map (SOM) and multidimensional
scaling (MDS) [5]. However, these multivariate dimen-
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sion reduction methods do not explore imaging spatial
information. They take the set of spectral images as an
unordered set of high dimensional pixels [6]. Spatial
information is very important for image cluster and
classification analysis. To overcome limitations of multi-
variate dimension reduction and to utilize spatial
information of the image signal, we extend the widely
used one dimensional functional principal component
analysis (FPCA) [7] to high dimensional FPCA to extract
imaging signals.
The traditional methods for assessing the relationship

between gene expressions measured by microarray and
phenotypes are linear regressions [8,9]. However, the
rapidly developed next-generation sequencing (NGS)
technologies have become the platform of choice for
gene expression profiling. RNA-seq for expression
profiling offers a comprehensive picture of the transcrip-
tome, with less background noise and a wider dynamic
range of expression [10]. Unlike microarrays for measur-
ing gene expression, RNA-seq provides multiple layers of
resolutions and transcriptome complexity: the expression
at exon, SNP, and positional level, splicing, transcription
start sites, polyadenylation sites, post-transcriptional
RNA editing across the entire gene, and isoform and
allele-specific expression [11]. The current linear regres-
sion for modeling association of gene expressions with
phenotypes quantifies the expression level of a gene/
transcript by a single number that summarizes all the
reads mapped to that gene/transcript. A single number
measuring gene expression level ignores gene expression
variation at the genomic positions. Therefore, linear
regression is appropriate for microarray expression data,
but may not be good for RNA-seq data.
To overcome these limitations, we propose a multiple

functional linear model (MFLM) in which functional
principal component scores of images are taken as
multiple quantitative traits and RNA-seq profile across a
gene is taken as a function predictor for assessing the
association of gene expression with imaging signals
which can take gene splicing and expression variation at
genomic positional levels into account.

RESULTS

To evaluate its performance, the proposed MFLM for
integrative imaging and RNA-seq data analysis was
applied to images and RNA-seq datasets of ovarian cancer
(OV) and kidney renal clear cell carcinoma (KIRC) which
were downloaded from the The Cancer Genome Atlas
(TCGA) datasets. The ovarian cancer dataset consists of
231 tumor tissue samples with histology images and
RNA-seq profiles of 16,598 genes (after quality control).
The KIRC dataset consists of 188 (121 tumor and 67
normal tissue samples) with histology images and RNA-

seq profiles of 16,775 genes (after quality control). RNA-
seq data were created by Illumina HiSeq 2000 PE paired-
end RNA sequencing. More detailed information can be
downloaded from the TCGA website (http://cancergen-
ome.nih.gov/).
The pathology images are used to study the manifesta-

tions of disease. Some tissue samples from the patients are
obtained by either surgery, biopsy or autopsy. These
tissues are either frozen or placed in formaldehyde for
fixation which stabilizes the tissues to prevent decay.
Then the fixed samples are sectioned into thin slices and
stained with one or more dyes. Finally, the prepared
pathology slides are placed under the optical microscope
and captured by the charged-couple device (CCD)
camera. The pathology images have the ability to identify
the pathological change of the patient’s tissue at the
cellular level such as the shape of the nucleus and the
texture of the cell.

FPCA for imaging signal extraction

In our study, we compared our two dimensional FPCA
with the traditional PCA by capturing space variation of
image signals. To evaluate the performance of the two
methods on image compression, we compared the
original histology images and reconstructed images by
two dimensional FPCA and PCA. The result clearly
demonstrated that the reconstructed images by FPCA
were much closer to the original images than that by PCA
(Figure S1). In addition, 90.3% of the total imaging
variation could be explained by the top 30 functional
principal components, while only 63.6% of the total
imaging variation was explained by the top 30 traditional
principal components. Therefore, two dimensional FPCA
is a better and more authentic image compression
algorithm for image signal capturing, with minimal loss
of information and fewer principal components usage
than traditional PCA.

Behavior of the MFLM for integrative analysis of
RNA-seq and imaging data

In the process of integrative analysis of RNA-seq and
image data, histology image data were compressed with
our proposed two dimensional FPCA, and the FPC scores
were taken as phenotypes. We considered gene expression
values at single-base resolution and represented the
expression profile of a gene by a functional curve, called
a “gene expression function”. The pipeline for RNA-seq
data processing is given as follows. Bam files were
obtained from the TCGA project and raw reads for each
gene were extracted from Samtools [12] (revised version
to recode the reads into binary data to decrease the storage
memory). We used “easyRNASeq” to perform quantile
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normalization for normalizing the read counts and
imputation [13]. We used the Karhunen-Loeve decom-
position [7] to decompose the random gene expression
function into orthogonal FPCs. The multiple FPC scores
for imaging signal extraction were regressed on the FPC
scores that were obtained from decomposition of the gene
expression functions. In other words, we proposed to use
MFLM for integrative analysis of RNA-seq and imaging
data (Materials and Methods). Two FPCs that accounted
for 81.7% and 88.6% variation of imaging signals for
ovarian and KIRC, respectively, were selected as
phenotypes. The number of selected FPCs for the RNA-
seq which accounted for 95% of the variation of gene
expression ranges from 2 to 60. P-values for declaring
significant association after applying the Bonferroni
correction for multiple tests in ovarian cancer and KIRC
analysis were 3:012� 10 – 6 and 2:98� 10 – 6, respec-
tively. To indirectly examine the validity of MFLM for
assessing the association of gene expression with the
histology images, we plotted a QQ plot of the test in the
MFLM (Figure 1). The QQ plots clearly showed that the
false positive rates of the MFLM for detection of the
association of gene expression with histology images in
both ovarian cancer and KIRC studies were controlled.

MFLM for integrative analysis of RNA-seq and
histology images

Three statistical methods: MFLM with FPC scores as
phenotypes, MFLM with image descriptors [14] as
phenotypes and multivariate regression model with FPC
score as phenotypes and a single gene expression value
(level 3 in TCGA datasets) as a regressor were applied to
the ovarian cancer and KIRC datasets. For the ovarian

cancer dataset, MFLM with FPC scores as phenotypes,
MFLM with image descriptors and multivariate regres-
sion identified 24, 2 and 0 genes whose expressions were
associated with image signals, respectively. Similarly, for
the KIRC dataset, MFLMwith FPC scores as phenotypes,
MFLM with image descriptors and multivariate linear
model (MLM) identified 84, 6 and 1 genes whose
expressions were associated with image signals, respec-
tively. The results were summarized in Tables 1 and 2.
Several remarkable features from these results were

observed. First, the P-values calculated from the MFLM
with FPC scores as phenotypes were much smaller than
that calculated from the MFLM with image descriptors as
phenotypes. Two methods assumed the same functional
linear model (FLM) for RNA-seq data, but with a
different approach to imaging signal reduction. The
FPCA can reduce the dimensions of the imaging data
more substantially than the traditional image descriptors.
Therefore, the degrees of the test statistic in the MFLM
with FPC score as phenotypes were much smaller than
that in the MFLM with descriptors as phenotypes, which
lead to the smaller P-values of the tests in the MFLMwith
the FPC scores as phenotypes. Second, we observed very
few significant associations of the gene expression in the
MLM. The MLM used the same FPCA for imaging data
reduction, but model the gene expression level in a gene
as a single value. The results demonstrated that the widely
used single value representation of the expression level in
the gene overlooked the expression variation across the
gene, which led to large P-values of the tests. Third,
expressions of genes which were associated with the
imaging signal may or may not be differentially expressed
(Table S1, Figure S2). In other words, significant
association of gene expression with imaging signals can
provide additional information which differential expres-

Figure 1. QQ plots for the KIRC dataset and Ovarian Cancer dataset. (A) QQ plot for the KIRC dataset. (B) QQ plot for the
Ovarian Cancer dataset.
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sions cannot offer. For example, genes NOTCH1,
ARHGEF11 and BRD4 that were associated with imaging
signals, but not differentially expressed between tumor
and normal tissues were reported to regulate interactions
between physically adjacent cells and induce G2/M arrest
and trigger apoptosis in renal cell carcinoma [15],
associated with kidney injury in the Dahl salt-sensitive
rat [16] and kidney disease [17]. Fourth, the MFLM with
FPC scores as phenotypes could identify associated genes
that showed alternative splicing expression patterns.
To illustrate this, we presented average expression of

microtubule associated tumor suppressor 1 (MTUS1) in
the KIRC study (Figure 2). So far, seven isoforms of
MTUS1 have been discovered. We observed from Figure
2 that a higher expression level in exon 1, exon 2 and exon
15 in the normal samples than that in tumor samples, and
alternatively spliced transcript variations encoding differ-
ent isoforms between tumor and normal samples were
substantial. This might indicate that splicing sites affect
the tissue structure variation which was measured by
imaging signals. MTUS1 is interacted with microtubules
to control cellular architecture and organize microtubule

arrays. Express variation of MTUS1 influences variation
in microtubule structure, which in turn causes variation of
histology images. Disruption of microtubule-dependent
processes is involved in cancer development and
metastasis [18]. We should point out that many methods
and tools have already been proposed to analyze
alternative splicing in RNA-seq between samples, such
as DEXseq and DSGseq [19,20]. Fifth, imaging data
convey relatively closer association with the disease than
traditional phenotypes [21]. The genes significantly
associated with imaging will have profound implication
in cellular function and disease development.
In the ovarian cancer study, among the 24 significantly

associated genes with histology images, protein tyrosine
phosphatase receptor type G (PTPRG) that regulate a
variety of cellular processes including cell growth,
differentiation, mitotic cycle, and oncogenic transforma-
tion, is a functional tumor suppressor gene and involved
in ovarian tumorigenesis [22,23]. Cytoplasmic polyade-
nylation element binding protein 3 (CPEB3) that controls
cell cycle progression, regulates senescence, establishes
cell polarity, promotes tumorigenesis and metastasis [24],

Table 1. P-values of three statistics for testing association of expression with images in ovarian cancer study.

Gene
P-value

MFLM_FPC MFLM_descriptor MLM

ZNF805 2.31E-10 0.434406 0.932869

LOC653501 3.86E-09 0.024875 0.904242

TMEM170B 1.23E-08 0.006176 0.91104

DRP2 2.38E-08 0.097565 0.589285

OR6V1 5.27E-08 0.002066 0.176132

GPR113 7.09E-08 3.67E-07 0.569642

LOC389765 1.51E-07 0.076075 NA*

ZNF484 4.47E-07 0.006771 0.934051

DNAL1 7.00E-07 0.006636 0.859388

ITGA10 8.72E-07 0.200773 0.6412

NBEAL1 9.43E-07 0.007667 0.711715

IBA57 1.03E-06 0.006602 NA

C16orf52 1.13E-06 0.021002 0.905685

PHKA1 1.31E-06 0.027968 0.715083

PTPRG 1.39E-06 0.949854 0.657859

IFT88 1.64E-06 1.09E-05 0.810783

PARD3B 1.78E-06 0.889289 0.448784

TRAPPC11 1.85E-06 0.367912 NA

LIMD1 2.11E-06 0.468624 0.871478

FAM73A 2.13E-06 0.003969 0.927942

CAPN14 2.45E-06 0.01782 0.479734

CPEB3 2.55E-06 0.026235 0.987898

CDCA2 2.80E-06 0.972605 0.374079

PUS3 3.08E-06 0.78059 0.921797

NA*: Expression (level 3) data were not available.
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Table 2. P-values of three statistics for testing association of expression with images in KIRC study.

Gene
P-value

Gene
P-value

MFLM (FPC) MFLM (descriptor) MLM MFLM(FPC) MFLM(descriptor) MLM

HELZ 6.62E-16 6.08E-01 8.79E-01 ZNF81 9.95E-08 2.06E-07 7.25E-01

9-Mar 2.12E-15 1.02E-06 7.58E-01 GAB2 1.04E-07 1.34E-02 6.38E-01

MSH5-SAPCD1 8.98E-13 9.79E-03 NA* MMP24-AS1 1.29E-07 3.26E-06 NA

SLC2A12 2.52E-12 9.94E-03 2.76E-08 LOC647859 1.43E-07 8.56E-02 1.23E-03

BRWD1 1.26E-11 5.61E-03 9.54E-01 C2orf68 1.49E-07 4.83E-03 7.84E-01

RFX7 5.29E-11 1.00E+ 00 9.58E-01 SDR39U1 1.57E-07 8.83E-04 5.88E-01

C22orf39 6.55E-11 1.29E-03 5.77E-01 ZRANB3 1.66E-07 1.03E-03 9.59E-01

NSD1 7.06E-11 1.67E-02 9.74E-01 PSMC4 1.71E-07 1.39E-02 8.87E-01

RTF1 1.82E-10 9.49E-01 8.58E-01 FLJ12825 1.74E-07 1.39E-04 7.08E-01

MBD5 3.00E-10 1.08E-04 9.33E-01 ARHGEF11 2.26E-07 8.24E-03 8.55E-01

ZSCAN16-AS1 4.16E-10 6.08E-02 NA LOC100289019 2.61E-07 8.50E-04 NA

SESN1 4.84E-10 3.42E-01 6.71E-01 SUFU 2.79E-07 1.99E-01 5.84E-01

ITGA9 5.12E-10 2.11E-02 9.52E-01 ZNF555 3.75E-07 2.16E-02 3.75E-01

PPM1K 5.60E-10 1.48E-01 1.11E-04 KHNYN 3.85E-07 1.54E-01 4.62E-01

USP42 1.39E-09 9.79E-01 9.06E-01 ANKRD11 4.80E-07 1.00E+ 00 8.92E-01

FAM47E-STBD1 1.77E-09 1.11E-02 NA BOLA2 4.82E-07 9.88E-02 8.33E-01

ZNF710 2.05E-09 1.22E-01 9.82E-01 BOLA2B 4.82E-07 9.88E-02 NA

TECPR2 3.59E-09 9.53E-04 5.63E-01 SAPCD1 4.97E-07 4.24E-01 NA

RASSF8-AS1 3.88E-09 3.08E-03 NA SLC9A4 6.26E-07 2.27E-02 1.87E-01

CCDC93 4.04E-09 1.00E+ 00 9.45E-01 CRYBG3 6.30E-07 5.18E-03 5.59E-02

NAV2 4.90E-09 4.11E-02 1.17E-01 SLC15A2 6.78E-07 1.18E-04 3.63E-05

CYB5B 6.75E-09 5.52E-04 7.11E-01 BRD4 7.77E-07 5.46E-01 9.85E-01

ANKRD17 7.55E-09 1.00E+ 00 4.47E-01 ATP6V1C2 7.80E-07 2.86E-03 1.88E-01

CCDC181 7.98E-09 5.24E-03 NA SMAD2 9.23E-07 9.38E-01 7.52E-01

SPHK2 1.08E-08 3.26E-03 1.83E-02 ST3GAL6 1.19E-06 5.01E-01 2.16E-01

KCNN3 1.15E-08 9.47E-01 9.17E-01 ZMIZ1 1.26E-06 3.75E-01 9.46E-01

ZFYVE16 1.16E-08 1.98E-02 7.65E-01 USP34 1.36E-06 1.74E-03 8.24E-01

CMTM1 1.23E-08 9.99E-01 3.66E-01 RALGAPA2 1.38E-06 3.48E-03 1.57E-01

LINC00875 1.69E-08 1.00E+ 00 NA FRMD4A 2.03E-06 5.14E-03 7.95E-01

NOTCH1 1.81E-08 1.96E-02 1.80E-01 PSMA5 2.12E-06 7.81E-02 9.35E-01

BLZF1 1.87E-08 2.05E-03 8.94E-01 RIPPLY1 2.18E-06 1.00E+ 00 3.89E-06

CHD2 3.55E-08 1.28E-01 9.47E-01 ERCC6 2.20E-06 1.21E-01 7.01E-01

MTUS1 4.71E-08 8.63E-02 2.18E-01 MINK1 2.29E-06 1.19E-02 9.14E-01

REV3L 4.96E-08 2.28E-02 9.59E-01 DIP2C 2.38E-06 2.51E-03 9.13E-01

LRIG2 5.00E-08 6.78E-03 8.40E-01 PHLDB2 2.51E-06 3.45E-03 6.34E-01

DENND1C 5.83E-08 9.41E-01 2.40E-01 TBC1D24 2.54E-06 7.79E-01 2.13E-01

TMEM50B 6.77E-08 4.16E-03 8.31E-02 APBA3 2.55E-06 7.20E-02 1.29E-01

CELF1 7.92E-08 1.00E+ 00 9.13E-01 TRAK1 2.60E-06 7.67E-01 1.53E-01

ZSCAN20 8.41E-08 1.23E-06 9.37E-01 DLC1 2.60E-06 7.23E-02 8.35E-01

MINA 8.76E-08 1.61E-03 4.43E-03 NISCH 2.62E-06 1.00E+ 00 2.28E-01

C5AR2 9.01E-08 4.97E-02 NA CPEB3 2.64E-06 9.82E-01 4.91E-03

SSH2 9.68E-08 1.00E-02 3.00E-01 UFD1L 2.94E-06 3.03E-03 7.78E-01

NA*: Expression (level 3) data were not available.
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and plays a role in ovarian cancer development [25]. In
the KIRC study, integrin, alpha 9 (ITGA9) that partici-
pates in regulation of myotube formation [26], is reported
to be involved in renal carcinomas [27], NOTCH1 that
regulates interactions between physically adjacent cells, is
reported to trigger apoptosis in renal cell carcinoma [15],
and Rho guanine nucleotide exchange factor (ARH-
GEF11) whose expression induces the reorganization of
the actin cytoskeleton and the formation of membrane
ruffling and filopodia, is associated with kidney injury
[16] and key regulators of tumorigenesis [28].

Image associated gene form protein-protein
interaction networks

A large proportion of genes whose expression variation
was associated with imaging signal variation formed
protein-protein interaction networks (Figure 3). In the
ovarian cancer study, 30 out of 130 proteins significantly
associated genes identified by false discovery rate 0.05

are interacted with each other to form a network. Hub
gene SETDB1, encoding a histone methyltransferase in
the network, is an oncogene and is involved in the
development of several cancers [29]. Another hub gene
Glul that catalyzes the synthesis of glutamine from
glutamate and ammonia is involved in cell proliferation,
inhibition of apoptosis, and cell signalling, and plays key
roles in several cancers [30]. We also observed from the
KIRC study that 28 out of the 84 proteins significantly
associated genes with imaging signals are interacted to
form a network, in which 10 genes are differentially
expressed between tumor and normal tissues. A hub gene
REV3L with 11 degrees in the network is the catalytic
subunit of DNA translesion synthesis polymerase ζ. It
involves a variety of DNA-damaging, genome stability,
cytotoxicity, and resistance to chemotherapeutic agents.
Surprisingly, although REV3L is not differentially
expressed, it is reported to be associated with lung,
breast, colon cancers and gliomas [31–33]. The interacted
genes KCNN3, ANKRD17, BRD4, NOTCH1, SMAD2,

Figure 2. Expression of gene MTUS1. (A) RNA-seq curve of Gene MTUS1. Number of reads of gene MTUS1 as a function of
the genomic position in the KIRC study, where the green line represents the gene expression profile of normal and the red line

represents the gene expression profile of the cancer patient , dashed vertical lines represent exon recombination site where the
splicing occurs. Introns were excluded in the plot. (B) Regression coefficient function of gene MTUS1 in the MFLM.
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ZMIZ1, UFD1L, and MINK1 are associated with various
cancers [34–40]. Most of these genes are not differentially
expressed, but are involved in the formation of cell and
tissue structures. Their gene expression variations cause
imaging signal variations and are thereby captured by
integrative RNA-seq and imaging analysis.

Image associated genes and alternative splicing

We performed FPCA on RNA-seq profiles of each image
associated gene and obtained their FPC scores in the
ovarian cancer and KIRC studies. Then, we used a
hierarchical algorithm to cluster genes based on their FPC
scores. The results were shown in Figure 4 and Figure S3.
We used DAVID (the Database for Annotation, Visualiza-
tion and Integrated Discovery) Bioinformatics Resources
[41], to extract biological features/meaning of the genes
including the role of the gene in metabolization and cell
growth regulation as well the gene function location such
as membrane, cytoplasm or nuclear. DAVID bioinfor-
matics gene function annotation analysis showed that
most image associated genes play important roles in
alternative splicing (Figure 2 and Figure S2). We
observed that the genes with the similar patterns of
alternative splicing sites are grouped together (Figure S4).
As Figure S4 showed, the four genes of TTC23, CPEB3,
CAPN14 and PHKA1 were clustered together since all
these genes have large numbers of splicing sites in the end
of the genes (3′), and another four genes of CDCA2,
TRAPPC11, PTPRG and ITGA10 were clustered together

because all these genes have large number of splicing sites
in the start of the genes (5′). There is increasing consensus
that alternative splicing may affect large and conservative
regions of the protein structures and often leads to
changes in cell morphologies and phenotypes such as
actin cytoskeleton remodeling, regulation of cell-cell
junction formation and regulation of cell migrations
[42,43]. Variations in alternative splicing of gene
expression leads to variations in cell morphologies and
phenotypes, thus influencing variations of imaging
measures of the cells. This opens a new pathway to
cancer development and progression.

Image associated genes and ingenuity pathway
analysis

We used the Ingenuity Pathway Analysis (IPA) (Inge-
nuity® Systems, (http://www.ingenuity.com)) that is a
web-based functional analysis tool for comprehensive
omic data to study the function of genes significantly
associated with image. In other words, the list of the
identified genes which were significantly associated with
imaging signals were input into the IPA. The IPA
transforms a list of genes (with or without accompanying
expression information) into a set of relevant networks
based on extensive records maintained in the Ingenuity
Pathways Knowledge Base (IPKB) [1,2]. This knowledge
base has been abstracted into a large network, called the
Global Molecular Network, composed of thousands of

Figure 3. Protein-protein interaction networks in the ovarian cancer study and KIRC study. (A) Protein-protein interaction
networks in the ovarian cancer study. Proteins of 30 out of 130 significantly associated genes identified by false discovery rate 0.05
are interacted with each other to form a network in the ovarian cancer study. (B) Protein-protein interaction networks in the KIRC study.

Proteins of 28 out of 84 significantly associated genes with images are interacted each other in protein-protein database to form a
network in the KIRC study where genes in yellow color were differentially expressed between tumor and normal tissues and dotted
vertical lines denote location of splicing sites.
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genes and gene products that interact with each other. In
the ovarian cancer study, unloading 24 significantly
associated genes with imaging into the IPA software,
the identified network with the highest score 27
(P-value< 10 – 27) is the cancer network. We observed
that 11 out of the 24 genes were included in the cancer
network (Figure 5). Figure 5 showed that these genes are
mostly regulated by miR-128, miR-92, miR-34 and miR-
27a. These microRNAs play an important role in
tumorigenesis and cancer development, especially in
ovarian cancer [44–48]. Figure 5 also showed that the
gene CPEB3 was a translation regulator and played an
important role in the development of ovarian cancer [25].
In the KIRC study, IPA analysis of 84 genes that were
significantly associated with imaging identified the net-
work of cellular function and maintenance, hematological
system development and function, and inflammatory

response with the highest score 54 (Figure S5). We
observed that 23 out of the 84 genes were included in the
network. Genes SMAD2, NOTCH1, ERCC6 and NSD1
are transcription regulators that mediate multiple signal-
ing pathways. It was reported that SMAD2 might serve as
novel prognostic markers in clear cell renal cell carcinoma
patients [49], NOTCH1 played an important role in
oncogenesis of the KIRC [15]. Translation regulator
CELF1 regulate pre-mRNA alternative splicing resulting
in multiple transcript variants encoding different iso-
forms. CELF1 suppressed the proliferation of cancer [50].
Figure S5 also showed that most genes in this network
interact with the Akt, p38MARK, PI3K, and NFκB
complex. The PI3K/Akt, NF-κB, and MAPK pathways
have been reported to be involved in nephrogenesis, and
these pathways are activated in human renal cell
carcinoma [51–54].

Figure 4. Clusters of image associated genes in the ovarian cancer study by k-means clustering algorithms. Dendrogram

of the differential expressed or image-significant associated genes based on FPCA scores. The result showed that the majority of
these genes were related with alternative splicing.
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DISCUSSION

The current major focus of RNA-seq data analysis is to
identify differentially expressed genes [55] and the major
paradigm of RNA-seq data analysis is to test differences
in gene expression level that is measured by a single value
summarizing statistic. However, there is increasingly
recognition that the differential expression feature of
genes may not be a unique source to cause disease.
Changes in cell morphologies and motility can also
influence development and progression of diseases. In

this paper we have presented a MFLMwith FPC scores of
imaging measures as phenotypes for the integrative
analysis of imaging and RNA-seq data and offered a
new alternative paradigm for RNA-seq data analysis. We
have also shifted the paradigm of RNA-seq data analysis
from the single value representation of gene expression to
the random function representation of RNA-seq profiles
which takes gene expression variation at the genomic
positional level into account. Our study has made several
remarkable findings.
The first finding is that imaging and RNA-seq analysis

Figure 5. The top protein-protein physical/functional interaction network generated by Ingenuity Pathway Analysis for
ovarian cancer. Genes in red node were identified as significantly associated genes with imaging signals in our study.
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can detect cancer susceptibility genes that are not
differentially expressed. Changes in cell morphologies,
motility and phenotypes play important roles in the
development and progression of the cancer. Genes
causing these changes may not be differentially expressed
between tumor and normal tissue samples and hence
cannot be detected by gene differential expression
analysis. The integrative analysis of imaging and RNA-
seq data opens a new avenue for identifying cancer
causing genes.
The second finding is that the function feature of image

associated genes is alternative splicing. Surprisingly, we
found that the peaks of regression coefficient functions in
the MFLM of imaging and RNA-seq data analysis were
located in the splicing sites. Alternative splicing often
changes the protein structures, cell morphologies and
phenotypes [42,43]. These changes generate variation of
histology images of tumor tissues, which in turn provide
information for discovery of image associated genes.
The third finding is that the widely used single value

representation of the expression level in the gene
overlooks the expression variation at the genomic
positional level across the gene and hence has great
limitations to identify image associated genes.
As demonstrated in the real data analysis, the MFLM

showed great promise as a tool for integrative analysis of
imaging and RNA-seq data. However, to date, very few
integrative analyses of imaging and RNA-seq data have
been performed. The results presented in this paper are
among the first such studies and hence are considered
preliminary. The number of selected orthogonal basis
functions in the expansion of RNA-seq function will
influence the performance of the integrative analysis of
imaging and RNA-seq data. Genome-wide imaging and
RNA-seq data analysis still pose great challenges. The
main purpose of this paper is to stimulate discussion on
the optimal strategies for genome-wide imaging and
RNA-seq data analysis.

MATERIALS AND METHODS

Two dimensional functional principal component
analysis

One dimensional FPCA has been well developed (7).
Now we extend one dimensional FPCA to two dimen-
sional FPCA. Consider a two dimensional region. Let s
and t denote coordinates in the s axis and t axis,
respectively. Let xðs, tÞ be a centered image signal located
at s and t of the region. The signal xðs, tÞ is a function of
locations s and t.
Consider a linear combination of functional values:

f=!
S

!
T

βðs, tÞxðs, tÞdsdt,

where βðs, tÞ is a weight function. To capture the
variations in the random functions, we chose weight
function βðs, tÞ to maximize the variance of f , which, after
imposing a constraint to make the solution unique, leads
to the following optimization problem:

max !
S

!
T

!
S

!
T

βðs1, t1ÞRðs1, t1, s2, t2Þβðs2, t2Þds1dt1ds2t2,

s:t: !
S

!
T

β2ðs, tÞdsdt=1: (1)

where Rðs1, t1, s2, t2Þ=covðxðs1, t1Þ, xðs2, t2ÞÞ is the cov-
ariance function of the image signal function xðs, tÞ. By
variation calculus [56], we obtain the eigenequation as a
solution to the optimization problem (1):

!
S

!
T

Rðs1, t1, s2, t2Þβjðs2, t2Þds2dt2=lβjðs1, t1Þ,

j=1, 2, � � � , J , (2)

for an appropriate eigenvalue l, where βjðs,tÞ is an
eigenfunction. The random functions xiðs,tÞ can be
expanded in terms of eigenfunctions as

xiðt, sÞ=
XK

j=1

ξ ijβjðs, tÞ, i=1, 2, � � � ,N , (3)

where ξ ij=!
S

!
T

xiðt, sÞβjðs, tÞdsdt, i=1, 2, � � � ,N , j=1, 2

, � � � , J are FPC scores (See Supplementary Materials 1).

Multivariate functional linear model for integrative
analysis of imaging and RNA-seq data

We take K FPC scores as K quantitative traits. Assume
that n individuals are sampled. Let yik , k=1, 2, � � � ,K, be
K trait values of the i -th individual. Consider a genomic
region [a, b]. Let xiðtÞ be a RNA-seq profile, the number
of reads as a function of the genomic position t, of the i-th
individual defined in the regions [a, b]. The multivariate
functional linear model (MFLM) for integrative analysis
of imaging and RNA-seq data can be defined as

yik=α0k þ!
T

αkðtÞxiðtÞdt þ εik , (4)

where α0k is an overall mean, αkðtÞ is a regression
coefficient function for the k -th trait, k=1, 2, � � � ,K, εik
are independent and identically distributed normal
variables with mean of zero and covariance matrix Σ.
We assume that both trait values and RNA-seq profiles

are centered. The RNA-seq profiles xiðtÞ are expanded in
terms of the orthonormal basis function as:
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xiðtÞ=
XJ

j=1

ξ ijfjðtÞ, (5)

where fjðtÞ are sequences of the orthonormal basis
functions. Substituting equation (5) into equation (4), we
obtain

yik=
XJ

j=1

ξ ijαkj þ εik , i=1, 2, � � � , n, k=1, 2, � � � ,K, (6)

where αkj=!
T

αkðtÞfjðtÞdt. The parameters αkj are referred

to as genetic additive effect scores for the k -th trait.
Equation (6) can be rewritten in a matrix form:

Y=ξαþ ε:

The standard least square estimators of α and the
variance covariance matrix Σ are given by

α̂=ðξTξÞ – 1ξT Y – Y
� �

,

Σ̂=
1

n
Y – ξα̂ð ÞT Y – ξα̂ð Þ:

Denote the matrix ðξTξÞ – 1ξT by A. Then, the estimator
of the parameter α is given by

α̂=A Y – Y
� �

:

The variance-covariance matrix of the estimator of the
parameter α is given by

Λ=var vecðα̂Þð Þ=ðIk � AÞðΣ� InÞðIk � AT Þ
=Σ� ðAAT Þ: (7)

An essential problem in the QTL analysis or in the
integrative analysis of imaging and RNA-seq data is to
test the association of a gene with imaging phenotype.
Formally, we investigate the problem of testing the
following hypothesis:

αkðtÞ=0, 8t∈[a, b], k=1, 2, � � � ,K,
which is equivalent to testing the hypothesis:

H0 : α=0:

Define the test statistic for testing the association of a
gene with K quantitative traits as

T=vecðα̂ÞTΛ – 1vecðα̂Þ: (8)

Let

r=rankðΛÞ:
Then, under the null hypothesis H0 : α=0, T is

asymptotically distributed as a central χ2ðKJ Þ or χ2ðrÞ

distribution if J components are taken in the expansion
equation (5) (Supplementary Materials 2).

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at DOI

10.1007/s40484-015-0048-8.
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