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Studying the molecular mechanisms that underlie the relationship between drugs and the side effects they produce is
critical for drug discovery and drug development. Currently, however, computational methods are still unavailable to
assess drug-protein interactions with the aim of globally inferring the contributions of various classes of proteins
toward the etiology of side effects. In this work, we integrated data reflecting drug-side effect relationships, drug-
target relationships, and protein-protein interactions to develop a novel network-based probabilistic model, SidePro,
to evaluate the contributions of proteins toward the etiology of side effects. For a given side effect, the method applies
an expectation---maximization algorithm and a diffusion kernel-based approach to estimate each protein’s
contribution. We applied this method to a wide range of side effects and validated the results using cross-validation
and records from the Side Effect Resource database. We also studied a specific side effect, nephrotoxicity, which is
known to be associated with the irrational use of the Chinese herbal compound triptolide, a diterpenoid epoxide in the
Thunder of God Vine, Tripterygium wilfordii (Lei-Gong-Teng). Using triptolide as an example, we scored the target
proteins of triptolide using our model and investigated the high-scoring proteins and their related biological
processes. The results demonstrated that our model could differentiate between the potential side effect targets and
therapeutic targets of triptolide. Overall, the proposed model could accurately pinpoint the molecular mechanisms of
drug side effects, thus making contribution to safe and effective drug development.
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INTRODUCTION

Drug side effects are unintended and usually undesirable
consequences resulting from use of medications. Drugs
exert side effects by interacting with molecular targets
through protein-protein interactions (PPIs), disturbing
related biological processes and ultimately causing the
observed changes [1,2]. Despite extensive research
investment in drug discovery, many experimental drugs
fail in the clinical trial stages owing to drug safety
concerns [3,4]. Even for drugs that gain FDA approval,
side effects may occur during the post-market stages,
causing severe health hazards [5,6]. Thus, studying the
molecular mechanisms underlying drug side effects has

become a very important issue in drug development [2,7].
However, to curb the incidence of side effects and
facilitate the development of safe drugs, more efficient
methods are needed to determine the relationships
between side effects and proteins.
By the development of systems biology and network

pharmacology, the integration of different types of
datasets has become possible. Network perspectives and
network-based approaches are powerful and are widely
used in biomarker identification [8], drug discovery
[9,10], and traditional Chinese medicine (TCM) research
[11–13]. Using network-based drug side effect analysis,
the relationship between side effects and chemical
features [14], pathways [15] or Gene Ontology (GO)
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biological processes [16] can be discovered, helping
researchers understand the mechanisms underlying the
manifestation of certain side effects exhibited by any
given drug. Some methods have been developed to
predict side effects by using drug properties [17–19],
drug-target relationships [18,20], and network informa-
tion [18,20] to construct machine learning-based models
for trial drugs. Recently, studies have systematically
evaluated the relationships between drug targets and side
effects [21–23]. From such reports, it can be seen that
drug-target relationships provide important information
[18,20–22,24], PPI networks make it easier to predict
drug side effects [20], and gene expression datasets help
to gain insight into the mechanism of drug side effects
[15,16]. Although side effects are generated at the
molecular level [1,2], methods that use drug-target and
network information to infer the contributions of proteins
to the etiology of side effects have, to the best of our
knowledge, never been developed.
Based on the molecular mechanism of side effects

[1,2], we have developed a network-based method,
termed SIDE effects of PROteins, or SidePro, to measure
the contributions of proteins in a PPI network to a side
effect. We propose that each protein makes some
contribution to each corresponding side effect, and we
express the contribution of each protein as a score. We use
an expectation-maximization (EM)-based method to give
scores for targets directly connected to drugs based on
drug-side effect observations and drug-target relation-
ships, and a kernel-based method is used to evaluate the
scores of non-targets based on PPIs.
We applied our method to a wide range of side effects,

and each protein was assigned a score for its contribution
to the corresponding side effect. The side effect proteins
for 86% of side effects in the Side Effect Resource
(SIDER) database [25] had significantly high scores with
our method, which, in turn, validated the scores obtained
for the proteins. The scores were further validated by
using cross-validation on drug-side effect observations
and by comparing the results with a support vector
machine (SVM) prediction model [20]. The results show
that our method achieves better performance.
In recent years, the so-called “Chinese herb nephro-

pathy” has received considerable attention, but the
molecular mechanisms remain unclear [26]. For instance,
triptolide, an active compound in Tripterygium wilfordii
(Lei-Gong-Teng in Chinese), is reported to cause
nephrotoxicity if irrational use [27,28]. When we applied
SidePro to investigate the proteins associated with renal
side effect, as well as triptolide, we were able to identify
the potential responsible proteins interacting with tripto-
lide and, in turn, the resulting nephrotoxicity. SidePro
could also differentiate between side effect targets and
therapeutic targets of triptolide, showing its promise as a

method to eliminate dangerous targets during drug
development.
Developing a computational method to find specific

proteins responsible for side effects will help us to
understand the etiology of side effects resulting from
unintended drug-protein interactions, affording a tool able
to guide the choice of safe drug targets during drug
discovery and development.

RESULTS

Data extraction

Drug-side effect relationships were extracted from SIDER
[25], and drug-target relationships were extracted from
the DrugBank database [29]. For the natural small-
molecule compound triptolide, which was not recorded in
DrugBank, the drug-target relationships were obtained
from the STITCH database [30]. PPI datasets were
integrated from five databases, including the Human
Protein Reference Database [31], the Biomolecular
Interaction Network Database [32], the IntAct Database
[33], the Molecular Interaction Database [34] and the
Online Predicted Human Interaction Database [35], to
obtain the maximum connected subnetwork, which
contained 137,008 non-redundant PPIs for 13,337
human proteins. As a result, we obtained 645 drugs
with their corresponding recorded side effect relation-
ships. To reduce the influence of sample imbalance,
SideProwas conducted on all side effects with the number
of positive drugs larger than 100.

Performance of SidePro: retrieval of proteins
causing side effects

For each given side effect, SidePro gives a score for each
protein by measuring its contribution to the side effect,
thus producing a ranked list of proteins. We used protein-
side effect relationships for each side effect from SIDER
to validate the results. For each side effect, we used GSEA
to determine if the proteins given by SIDER had high
scores by our algorithm. The results showed that the
proteins given by SIDER had high scores for 86% of the
side effects with a significance of P< 0.05, as shown in
Figure 1A. The side effect-causing proteins in SIDER
were ranked significantly high in our algorithm.

Performance of SidePro: prediction of drug-side
effect

Testing the performance of drug-side effect prediction is
another way to validate the accuracy of SidePro. Given
the drug-protein relationships, as well as the scores of
proteins for the side effect, we predict the scores of drug-
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Figure 1. The performance ofSidePro. (A) 86% of the protein-side effect relationships from a side effect database, SIDER, were

calculated as significant (P<0.05) by SidePro. (B) Comparison of performance of drug side effect prediction between SidePro and
SVM. (C) Influence of the parameter fn. (D) Difference of performance by measuring versus not measuring non-targets. (E) An
example of inferred results around a target protein AGTR1. (F) An example of inferred results around a non-target protein BTN1A1.

For E and F, numbers in parentheses are the inferred scores for proteins. The cutoff score for proteins causing the side effect is set to
be 0.5.
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side effect relationships using Equation 2. Thus we
compared our method with the SVM prediction model
[20] using a10-fold cross-validation by leaving the drug-
side effect relationships out. The AUC (Area Under the
Curve) values were compared across different side
effects, and paired t-test was used to compare the AUC
values for all of the side effects. Overall, our method
achieved higher AUC values than the approach by the
SVM prediction model (Figure 1B, P< 0.001).

Performance of SidePro: using the PPI network

We conducted the following simulation to investigate the
importance of evaluating the contributions of non-targets
to side effects using PPI network information. For a given
side effect, 10% percent of the target proteins were chosen
randomly, and the corresponding drug-target relationships
were deleted from the training set. Thus, these target
proteins became non-targets during the training, and their
scores causing the side effect would have remained
unknown if we had not evaluated them. However, using
SidePro, we were able to integrate the PPI network to
predict the scores for these deleted proteins. Thus, we
compared the following two strategies for scoring non-
targets: scoring non-targets using the PPI network by a
diffusion kernel-based method as in SidePro versus
scoring non-targets randomly. For each side effect, a 10-
fold cross-validation was conducted, and the boxplot of
the AUC of all the side effects under the two
circumstances was plotted in Figure 1D. It could be
seen from the figure that the performance of SidePro did
not significantly suffer by the loss of these target proteins,
in turn demonstrating the significance of using the PPI
network in SidePro. On the other hand, the performance
of scoring non-targets randomly drops significantly lower.

Performance of SidePro: example of proteins
causing renal failure

To help understand why nephropathy caused by a Chinese
herb has aroused extensive attention in recent years, we
demonstrated SidePro with the side effect of renal failure
as an example.
To make the output more visual and easier to under-

stand, we demonstrated the inferred results with a target
protein and a non-target protein. In the evaluation of each
protein, our method considered the information of the
global network. For the convenience of the display, only
parts of the surrounding neighbors of the node under
consideration were plotted. Figure 1E shows the inferred
results for the target AGTR1. Seven drugs target AGTR1,
all of which cause renal failure. Based on drug-target
relationships and drug-side effect observations for
AGTR1, which is known to be involved in renal

pathogenesis [36], it was assigned with a high score. As
shown in Figure 1F, BTN1A1, a non-target protein, was
given a relatively high score of 0.65, mainly because its
neighbors target XDH, while, in contrast, PLK1 was
assigned a relatively lower score because of the low score
of neighboring proteins. As shown in Figure 1E and 1F,
the obtained scores accurately reflect the global topolo-
gical information of the network.
For renal failure as a side effect, the top 1% of the high-

scoring proteins was used to analyze GO biological
processes and pathway enrichment. As shown in Table 1,
the identified proteins were enriched in renal failure-
related GO terms and pathways. Those pathways were
also recorded as related to renal failure in the Comparative
Toxicogenomics Database (CTD). It could be shown that
these proteins cause renal failure by acting on the key
biological processes involved in pathological kidney
changes, which, in turn, supports the effectiveness of
our method.

Inferring proteins causing renal failure as a side
effect of a herbal compound triptolide

Using the protein scores obtained for renal failure as a
side effect and the targets of triptolide, triptolide was
successfully predicted to cause renal failure with a score
of 0.99. Furthermore, among the targets of triptolide,
BCL2 and PTGS2 were prioritized as the responsible
targets. BCL2 plays important roles in the regulation of
apoptosis and hypoxia-related apoptosis [37]. Studies
have shown that abnormal changes of BCL2 might induce
apoptosis and cause damage to renal cells [38,39]. PTGS2
(COX2) also participates in oxidative- and apoptosis-
related biological processes. It has been widely reported
that abnormal PTGS2 expression may be related to renal
disease [40,41]. This evidence supports the idea that
prioritized BCL2 and PTGS2 may be candidate proteins
enabling triptolideto elicit renal toxicity. The biological
processes related to renal failure, in which BCL2 and
PTGS2 participate, were shown in Figure 2B. By
targeting BCL2 and PTGS2, triptolide may interfere
with those renal biological processes, which, in turn,
causes the observed side effect.
Triptolide is a novel anti-inflammatory and immuno-

suppressive agent. Combined with evidence from the
literature and GO biological information, PTGS2, TNF,
NFKB1, and IL2 were identified among the targets of
triptolide and were determined to participate in the
therapeutic process-related inflammatory response.

DISCUSSION

This article reports an algorithm, SidePro, designed to
identify proteins that contribute to the etiology of side
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effects during drug therapy. For a given side effect, the
method applies a network-based approach to estimate
each protein’s contribution. Proteins with high scores
were identified from the PPI network, demonstrating the
performance of SidePro. Then, protein scores were
validated by using a database and computing drug-side
effect relationships. Furthermore, we studied a specific
side effect called renal failure, which is known to be
associated with the Chinese herbal compound triptolide.
We scored every target protein of triptolide using our
model and investigated the high-scoring proteins and
their related biological processes. Our model could help
distinguish between side effect targets and therapeutic
targets.
SidePro takes aim at the mechanism(s) by which drug-

protein interaction results in certain side effects [2] by
assigning contribution factors to each protein. SidePro
integrates information drawn through observation of
drug-side effect relationships, drug-target relationships,
and PPIs at the system’s level, and it gives clear and
comprehensive results at the molecular level. SidePro
presents results that are biologically pictorial and
interpretable. To score each protein-side effect relation-
ship in a probabilistic manner, SidePro employs Max-
imum Likelihood Estimation and network topological
measurements based on observations of drug-side effect
relationships. This model could be further used to predict
the probability of drugs causing the side effect. Different

probabilities of proteins represent different contributions
to the side effect. Thus for a given drug, the proteins and
biological processes involved in side effects could be
inferred (Figure 2).
Drug-side effect relationships differ between observa-

tion and reality, and no databases record drugs that do not
cause side effects. SidePro, however, takes all of this into
account by introducing the parameters fp and fn. With fn,
our method could use the drugs in databases not annotated
as causing the side effect as negative drugs.To the best of
our knowledge, SidePro evaluates, for the first time, the
whole set of proteins relative to the contributions made to
side effects in the PPI network. SidePro also evaluates the
contributions of non-target proteins for the following
reasons. First, side effects normally begin when a drug
binds to its targets, but while some targets are therapeutic,
others may be off-target proteins, and binding with these
proteins can result in the development of unwanted side
effects. Still other non-target proteins that may also play
some part in this process. Essentially, it is protein-protein
interactions that elicit signaling from a drug which
ultimately causes the side effect. Second, during drug
design, some new proteins suitable as therapeutic targets
may be developed; therefore, it is beneficial to evaluate
the contributions of non-targets to side effects. By
simulation study in Figures 1 and 3, results show the
rationale for measuring non-targets.
Target records exist for many drugs, such as those in

Table 1. Enriched renal failure-related GO terms/pathways of renal failure proteins by SidePro.
Category Enriched GO terms/pathways P-value

GO biological

processes

Renal system process 0.00213

Renal system process involved in regulation of systemic arterial blood pressure 0.0629

Renal control of peripheral vascular resistance involved in regulation of systemic arterial blood pressure 0.0274

Kidney development 0.0592

Regulation of blood volume by renin-angiotensin 0.00228

Regulation of systemic arterial blood pressure by renin-angiotensin 0.00441

Regulation of blood vessel size by renin-angiotensin 0.027466

Regulation of systemic arterial blood pressure by circulatory renin-angiotensin 0.07159

Response to oxidative stress 0.018

Regulation of apoptosis 0.0029

Pathways Renin-angiotensin system 0.0347

Renal cell carcinoma 0.0334

mTOR signaling pathway 0.0125

MAPK signaling pathway 0.00644

B cell receptor signaling pathway 0.0416

VEGF signaling pathway 0.00185

ErbB signaling pathway 0.0176

GnRH signaling pathway 0.00704
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DrugBank, but it is difficult to understand the roles these
targets play, particularly in the case of drugs that exert
both therapeutic effects and side effects via different
targets, making the underlying mechanisms of side effects
difficult to interpret. Drugs or compounds with multiple

targets fall into this category. Therefore, as an example,
we studied a specific side effect, nephrotoxicity, which is
known to be associated with symptoms of nephropathy
arising from the irrational use of the herbal compound
triptolide, a diterpenoid epoxide extracted from Tripter-

Figure 2. The inferred proteins associated with the side effect of renal failure and the anti-inflammatory efficacy exerted

by the Chinese herbal compound triptolide. (A) Inferred results for nephrotoxicity caused by triptolide. (B) Nephrotoxicity-related
processes. (C) Anti-inflammatory-related processes.
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ygium wilfordii. For triptolide, we scored the target
proteins of triptolide using our model and investigated the
high-scoring proteins and their related biological pro-
cesses. The results demonstrated that our model was able
to differentiate between the side effect targets and
therapeutic targets of triptolide (Figure 2), providing
some clues to guide the rational and precision use of this
compound. Thus, by using our algorithmic framework,
we could potentially distinguish between targets that are
toxic and those that are therapeutic, making it possible to
choose safe proteins as targets, while avoiding those that
are dangerous.
By assigning a contribution metric for proteins in

relation to the etiology of side effects, the algorithm
demonstrates many merits. First, for side effects, we are
able to determine which target and non-target proteins are
important out of the thousands of proteins. Second, most
drugs have more than one targets, and the obtained results
indicate all proteins interacting with the drug of interest,
finally resulting in the observed side effects. Third, for
drugs in ongoing clinical trials, we can predict side effects
based on drug-target relationships and the probabilities of
targets. Thus, by using existing knowledge in our
algorithm during drug development, we are able to
predict the risks of potential side effects before choosing
targets, which is important for drug safety. Such
identification efforts could be used to aid in designing
or selecting drugs that target proteins with improved side
effect profiles in future drug development efforts.
We also need to emphasize that the drug-side effect

relationships are much more complex than what we have
assumed in this study. We do not consider how dose of a
drug affects its side effects, the quantitative and the tissue
specific information of targets and PPI, and neither do we
consider drug tolerability and genetic background of each
individual, which plays a critical role of the side effects.
Nevertheless, this study presents an important step toward
our understanding of drug-side effect relationships.

METHODS

Outline of SidePro

As shown in Figure 3, SidePro employs the following
three steps to evaluate the contributions of proteins to the
etiology of a side effect.
First, for a given side effect, all drugs are classified into

two groups: one observed with the side effect and the
other without.
Second, the scores for drug-target proteins are

evaluated by globally integrating information from two
sources: drug-side effects and drug-target relationships.
The scores for other non-target proteins are evaluated
based on their connections with target proteins in the
protein-protein interaction network.

Third, proteins with high scores are considered side
effect-causing candidates, and those proteins are sub-
jected to further analysis.

Inferring the side effect scores of target proteins

The score produced by SidePro was defined as follows.
Given a specific side effect, define Pj = 1 if protein Pj

causes the side effect and Pj = 0 otherwise. Let lj denote
the probability that protein Pj causes the side effect:

lj=Pr ðPj=1Þ: (1)

Let Di denote a drug. Di = 1 if drug Di causes the side
effect, and Di = 0 otherwise. We call a drug causing the
side effect a positive drug and a drug not causing the side
effect a negative drug. Let Tij denote the j-th target
(protein) of drug Di. Tij = 1 if drug Di interacts with
protein Pj and Tij = 0 otherwise.
To evaluate the contributions of the target proteins to

the side effect, we maximize the likelihood of the
observation of drug-side effect relationships. Thus we
propose a Maximum Likelihood Estimation method with
an EM algorithm to infer target-side effect probabilities
based on data about drug-target and drug-side effect
relationships.
Assumption: We assume that a given drug causes a

side effect if and only if at least one protein targeted by the
drug causes the side effect.
Under this assumption, we obtain

Pr ðDi=1Þ=1 – ∏
m

j:=1
ð1 –Pr ðPj=1ÞÞTij=1 – ∏

m

j:=1
ð1 – ljÞTij ,

(2)

where m is the number of target proteins.
However, an observed side effect can be caused by

some factor other than the drug itself. Therefore, we need
to take into account both test errors and observation errors
in a clinical study. Since a conclusion drawn from the
clinical study through statistical testing may not be true,
we introduce two types of errors: false positives (fp), in
which a positive drug-side effect relationship was
observed (or established), but in reality does not occur,
and false negatives (fn), in which a positive drug-side
effect relationship was not reported (established), but in
reality does occur.
Let Oi denote the observed drug-side effect relationship

for drug Di, where Oi = 1 if a positive relationship is
observed and Oi = 0 otherwise. Then,

fp=Pr ðOi=1 Di=0Þ,j

fn=Pr ðOi=0 Di=1Þ:j
Thus, the following equation can be derived:
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PrðOi=1Þ
=PrðDi=1ÞPrðOi=1jDi=1Þ þ ð1 – PrðDi=1ÞÞ
PrðOi=1jDi=0Þ

=PrðDi=1Þð1 – fnÞ þ ð1 – PrðDi=1ÞÞfp

= 1 – ∏
m

j:=1
ð1 – ljÞTij

" #
ð1 – fnÞ þ ∏

m

j:=1
ð1 – ljÞTij

" #
fp

=1 – fn – ð1 – fn – fpÞ ∏
m

j:=1
ð1 – ljÞTij

" #
: (3)

The likelihood function, i.e., the probability of the

observed relationships between a specific side effect and
all drugs, is given by

L=∏
n

i=1
ðPr ðOi=1ÞÞOið1 – Pr ðOi=1ÞÞ1 –Oi , (4)

where n is the number of drugs.
The likelihood L is a function of �=ðfljg, fp, fnÞ. In the

following steps, we fix fp and fn, and we develop the
following EM algorithm to estimate each lj. The EM
algorithm distinguishes the observed data Y from the
complete data Z. In the expectation (E) step, we calculate
the expectation of the complete data Z given the observed

Figure 3. The Workflow of SidePro. For a given side effect, drugs causing the side effect and drugs not causing the side effect
were collected and denoted with red capsules and green capsules, respectively. Proteins that are targets of those drugs are denoted
with solid circle, and non-target proteins are denoted with dotted line. Edges between drugs and proteins denote drug-target

interactions, while those between proteins and proteins denote protein-protein interactions. The representation of color, shape and
interactions is consistent for all the figures in this work.
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data Y, Ẑ=EðZ Y , �ðt – 1ÞÞ
��� . In the maximization (M) step,

we obtain the MLE of �, �ðtÞ, based on Ẑ. Thus we obtain
a recursive formula to estimate �.
In our case, the observed data are the observed drug-

side effect relationships O=foi, i=1, � � � , ng, and the
complete data include all target-side effect relationships
for each drug-side effect relationship Z=fO,Pg, where O
is given above and P=fPðiÞ

j Tij=1g�� . PðiÞ
j =1 if protein Pj

is a target for drug Di and causes the side effect and

PðiÞ
j =0 otherwise.
The E-step is calculated as follows:

EðPðiÞ
j jOk=ok , 8k, �ðt – 1ÞÞ

=EðPðiÞ
j jOi=oi, �

ðt – 1ÞÞ

=
PrðPðiÞ

j =1,Oi=oij�ðt – 1ÞÞ
PrðOi=oij�ðt – 1ÞÞ

=
PrðPðiÞ

j =1j�ðt – 1ÞÞPrðOi=oijPðiÞ
j =1, �ðt – 1ÞÞ

PrðOi=oij�ðt – 1ÞÞ

=
l
ðt – 1Þ
j ð1 – fnÞoi fn1 – oi
PrðOi=oij�ðt – 1ÞÞ

, (5)

where the denominator can be calculated by Equation 3.
Let Λj be the set of drugs for which protein Pj is a target.
The MLE of lj is the fraction of the drugs in Λj for which

target protein Pj causes the side effect, P
ðkÞ
j =1. We thus

obtain the recursive formula for the M-step:

l
ðtÞ
j =

1

jΛjj
X
k∈Λj

EðPðkÞ
j jOk=ok , 8k, �ðt – 1ÞÞ

=
l
ðt – 1Þ
j

Λj

�� �� X
k∈Λj

ð1 – fnÞok fn1 – ok
PrðOk=ok j�ðt – 1ÞÞ

:
(6)

The EM algorithm is performed as follows:
i. Choose initial values for flj, j=1, � � � ,mg and

compute the probabilities Pr ðDi=1Þ by Equation 2 and
Pr ðOi=1Þ by Equation 3.
ii. Update flj, j=1, � � � ,mg by Equation 6 and com-

pute the likelihood function by Equation 4.
iii. Repeat Step (ii) until the value of the likelihood

function is unchanged (within certain error).

Inferring the scores of non-target proteins using
PPIs

The score of a non-target protein Pu is evaluated based on
the scores of all target proteins and the topological
relationships of those targets in the PPI network, which is
calculated as

PrðPu=1Þ=ðl1K1,u þ l2K2,u þ ⋯þ lnKn,uÞ
=ðK1,u þ K2,u þ ⋯þ Kn,uÞ, (7)

where l1 to ln denotes the scores of the all target proteins,
and Kj,u denotes the influence of drug target protein Pj on
protein Pu based on the topology of the PPI network,
which can be evaluated by using a diffusion kernel. The
diffusion kernel gives a value between each pair of nodes
for a network by considering the global information about
the network topology. We calculate the diffusion kernel
according to the steps of Kondor et al. [42]. Avalue of 0.5
is used for the diffusion constant.

Parameters of SidePro

There are two parameters in the model: fn and fp. The
parameter fp indicates that drugs do not cause the side
effect although positive drug-side effect relationships are
observed; in practice, this should be a low value.
Therefore, fp was given a relatively low value of
0.0001. Because the parameter fn indicates that drugs
do cause the side effect, even though positive drug-side
effect relationships are not observed, we roughly estimate
its value from the old (SIDER 1) and new (SIDER2)
versions of SIDER, a database recording drug-side effect
relationships. We obtained drug-side effect relationships
from SIDER 1 based on the Coding Symbols for a
Thesaurus of Adverse Reaction Terms (COSTART)
vocabulary and from SIDER 2 based on the Medical
Dictionary for Regulatory Activities (MedDRA) vocabu-
lary, respectively. For the common set of side effects, the
number of drug-side effect relationships was counted for
SIDER 1 and SIDER 2, respectively. The fn was
calculated as the increase in the number of drug-side
effect relationships from SIDER1 to SIDER2 divided by
the number of drug-side effect relationships in SIDER 2,
which is about 0.13.
We also tested the performance of SidePro for five

values of fn: 0.01, 0.05, 0.15, 0.25 and 0.35. The area
under the curve (AUC) of the 10-fold cross-validation
was calculated, and a one-way analysis of variance
(ANOVA) showed that the performance did not differ
significantly for different fn values (Figure 1C), which
means that our method is robust to changes in the fn
parameter. The value of fn was finally set to 0.15.

Validations and comparisons

By the absence of a large standard dataset of protein-side
effect relationships, we adopted two strategies to validate
the performance of SidePro. We extracted protein-side
effect relationships from the SIDER database by Kuhn
et al. [22] for validation. In addition, we calculated the
statistical significance (P-value) of the protein-side effect
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relationships from the SIDER database that had high
scores in SidePro using the Gene Set Enrichment
Analysis (GSEA) test [43], a method that measures the
statistical significance of a set’s ranking in another ranked
list.
To further validate the performance of SidePro, we

predicted drug-side effect relationships and compared our
results with an SVM-based method developed by Huang
et al. [20], who also used the information of drug-target
relationships and PPIs. The SVM approach was con-
ducted as follows. First, drug-target relationships were
expanded using the PPIs; that is, both the target proteins
and their direct neighbors were considered. Then, for each
drug, the number of targets was counted and listed as a
feature. Second, a rank sum test was used to select
features with P-value< 0.05. Third, an SVM approach
with probabilistic outputs [44,45] was conducted using
the selected features to predict drug-side effect relation-
ships. The performance comparison between the SVM
approach and SidePro for each side effect was based on
the same set of drug-side effect relationships, drug-target
relationships, and PPIs through a 10-fold cross-validation.
The AUC of the receiver operator characteristic (ROC)
curve was calculated as a performance indicator.
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