
Review

A quantitative understanding of microRNA-
mediated competing endogenous RNA
regulation

Ye Yuan†, Xinying Ren†, Zhen Xie and Xiaowo Wang*

Ministry of Education Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology,
Tsinghua National Laboratory for Information Science and Technology/Department of Automation, Tsinghua University, Beijing
100084, China
* Correspondence: xwwang@tsinghua.edu.cn

Received November 23, 2015; Accepted January 3, 2016

MicroRNA (miRNA) plays key roles in post-transcriptional regulations. Recently, a competing endogenous RNA
(ceRNA) hypothesis has been proposed that miRNA targets could communicate and regulate each other through
titrating shared miRNAs, which provides a new layer of gene regulation. Though a number of ceRNAs playing
biological functions have been identified, the ceRNA hypothesis remains controversial. Recent experimental and
theoretical studies argued that the modulation of a single RNA species could hardly change the expression level of
competing miRNA targets through ceRNA effect under normal physiological conditions. Here, we reviewed a
common framework to model miRNA regulations, and summarized the current theoretical and experimental studies
for quantitative understanding ceRNA effect. By revisiting a coarse-grained ceRNAmodel, we proposed that network
topology could significantly influence the competing effect and ceRNA regulation at protein level could be much
stronger than that at RNA level. We also provided a conditional independent binding equation to describe miRNA
relative repression on different target, which could be applied to quantify siRNA off-target effect.
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INTRODUCTION

MicroRNA(miRNA) is a class of small non-coding RNAs
that modulate gene expression post-transcriptionally. In
animal cells, nascent miRNA transcripts (pri-miRNAs)
are first processed to pre-miRNAs with the well-known
stem-loop structure by the RNase enzyme Drosha [1].
Pre-miRNAs are exported to cytoplasm and further
processed by another RNase enzyme Dicer to release
~22 nt long mature miRNAs, which are bound by
Argonaute protein (Ago) to form the RNA induced
silencing complex (RISC). MiRNA could guide RISC to
bind miRNA response elements (MREs) on target RNAs

through complementary base pair interaction. Typically,
perfect complementarity leads to target RNA cleavage,
which is known as the RNA interference (RNAi) pathway
[2–4], while imperfect complementarity causes target
RNA destabilization and translation inhibition, which is
known as the miRNA pathway [5,6].1

It has been well characterized that miRNA repression is
dependent on the sequence characteristics. Sequence
complementarity to the 5'-end 2–7 position (“seed”) of
the miRNA could trigger target repression [3,7,8], while
different base-pairing pattern leads to different repression
efficiency. Dozens of computational algorithms have been
developed to predict miRNA-target interactions based on
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sequence features [7,9,10]. On the other hand, recent
studies suggested that the copies per cell (cpc) of one
RNA species could vary from a few to tens of thousands,
and the cpc of the total RNA in different type of cells
could vary from ~50,000 to ~500,000 [11]. The same
miRNA-target gene pairs could show dramatic difference
repression efficiency under different molecular environ-
ment [12,13]. Incorporating expression quantities of
miRNAs and their targets could allow a more accurate
prediction of functional miRNA-target interactions [14–
16].
Due to the fact that merely 6-nt complementarity to the

“seed” could induce miRNA binding, one miRNA species
could simultaneously regulate multiple target RNA
species, including protein-coding RNA (mRNA), small
non-coding RNA, long non-coding RNA (lncRNA),
pseudogene and circular RNA [17,18]. Similarly, one
target RNA species could be simultaneously regulated by
multiple miRNAs. In this way, miRNAs and their target
RNAs compose a complex multilayered interaction
network [17–19]. It has been shown that by attenuating
shared miRNAs, target RNAs could crosstalk and
regulate each other, and such RNAs are known as
competing endogenous RNAs (ceRNAs) [17,20–23].
CeRNA regulation has been proved to play crucial roles
in many biological processes including development [24]
and cancer [25–28], which have been reviewed by recent
papers [18,27]. Using in silico and experimental
approaches, researchers have revealed that ceRNA effect
is sensitive to miRNA-target relative abundance, binding
energy, and the stability of miRNA and their targets [29–
31]. However, several recent theoretical and experimental
works also argued that obvious gene expression changes
due to ceRNA effect require an extreme high level of
miRNA targets, which is not feasible except in some
special physiological or disease status [11,31,32]. The
discoveries and controversies demand a better quantita-
tive understanding of ceRNA regulation.
In this paper, we first briefly summarized experimental

approaches to quantify miRNA regulation, and then
introduced a coarse-grained model to quantitatively
analyze miRNA regulatory networks. Next, we reviewed
recent progress towards quantitative understanding of
miRNA regulation especially the ceRNA effect, and
discussed the controversy debate whether RNA compet-
ing effect could induce significant gene expression
changes under normal physiological environment. By
revisiting the mathematic model, we proposed that
network topology could significantly influence the
competing effect and the strength of ceRNA regulation
at protein level could be much stronger than that at RNA
level, which provides new clues to understand ceRNA
regulation. Finally, we concluded by discussing the
challenges and future directions for elucidation of
ceRNA regulations.

EXPERIMENTAL APPROACHES TO
QUANTIFY miRNA REGULATION

MiRNA were found to modulate target gene expression
post-transcriptionally by both translational repression and
RNA destabilization. Accordingly, many biological
technologies have been developed to quantify miRNA
regulations at RNA or protein level respectively [33]. For
example, high throughput measurements like gene
expression microarray [34] and RNA sequencing
[35,36] have been widely used to quantify target gene
changes at RNA level. Ribosome profiling technology
was used to quantify translational rates changes induced
by miRNA [37], and stable isotope labeling by amino
acids in cell culture (SILAC) was developed to directly
quantify the changes at protein level [38–40]. Methods
based on Ago crosslinking and immunoprecipitation such
as RNA immunoprecipitation (RIP), crosslinking and
immunoprecipitation (CLIP), and crosslinking, immuno-
precipitation and sequencing of hybrids (CLASH), are of
special interest [41–46]. Such methods could directly
identify miRNA target and quantify miRNA occupancy at
each MRE, which provides important information to
build computational models to predict miRNA regulatory
effect in a certain cell type [47,48]. However, due to the
complexity of endogenous miRNA-target network [22], it
is very hard to perturb and quantify the regulation of a
single miRNA-target pair without influencing the others.
Thus in vitro experiments were used to characterize how
miRNAs find, bind and regulate their targets [3].
Recently, synthetic biology has been demonstrated to be
a powerful complementary approach to study the
quantitative characteristics of miRNA-mediated regula-
tion in a largely controlled manner [31,49–51].

MODELLING miRNA REGULATION

A commonly used titrimetric chemical reaction model for
miRNA regulation is shown in Figure 1A. mRNAi

transcribes into free mRNA (Ri) at a rate of kRi
. Ri

degrades at a rate of gRi
, and translates into proteini at a

rate of kPi
. Proteini degrades at a rate of gPi

. Ri can be
bound by the free miRNA (Sj) to form miRNA-target
complex (Cij) at a rate of kij+. Cij dissociates into Sj and Ri

at a rate of kij – . Cij degrades at a rate of gij, and along with
the degradation, the Sj will either degrade with probability
αij or recycle with probability (1 – αij). miRNAj gene is
transcribed and processed to free miRNA (Sj) at a rate of
kSj , and degrades at a rate of gSj .The range of parameter
values used in this paper were summarized in Table 1.
According to this model, the ordinary differential

equations to describe the miRNA regulatory network with
N (i = 1, ...,N) mRNAs regulated by M (j = 1, ...,M)
miRNAs could be represented as
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Figure 1. Current quantitative understanding of miRNA-mediated regulation. (A) The titrimetric chemical reaction model of
miRNA-induced repression upon single target RNA species. (B) MiRNAs regulate multiple RNA species. The target RNAs could be

mRNA, non-coding RNA (long and short ones), pseudogene, and circular RNA. The dots on the RNAs represent MREs.
(C) High miRNA binding strength sharpens the threshold-behavior of miRNA-induced repression (M = 1, and N = 1) [50]. (D) MiRNA
level shifts the threshold of miRNA-induced repression (M = 1, andN = 1) [50]. (E) Simulated relationship between free ceRNA1 level

and ceRNA1 transcriptional level with ceRNA2 containing MREs under conditions of low, middle, and high level miRNA under the
condition that the transcriptional level of ceRNA2 is proportional to that of ceRNA1. Here M = 1, and N = 1 (red curve) or 2 (blue
curve). Right panel shows the fold change of free ceRNA1 between with ceRNA2 and without ceRNA2. (F) Simulated relationship
between free ceRNA1 level and ceRNA1 transcriptional level with ceRNA2 containing MREs with the low, middle, and high binding

strength under the condition that the transcriptional level of ceRNA2 is proportional to that of ceRNA1 (M = 1, andN = 1 or 2). MiRNA
expression level is equal in each panel. Right panel shows the fold change of free ceRNA1 between the case with ceRNA2 (blue
line) and the case without ceRNA2 (red line). (G) Simulated relationship between free ceRNA1 and miRNA transcriptional level with

ceRNA2 containing MREs of no, low, high expression level (M = 1, and N = 1 or 2). The fold changes of miRNA level needed to
cause a ten-fold change of free ceRNA1 are marked. (E), (F) and (G) were modified from our previous work [31].
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dSj
dt

=kSj – SjgSj þ
XN
i=1

ð – SjkijþRiþkij –Cijþð1 – αijÞCijgijÞ,

dRi

dt
=kRi

– gRi
Ri þ

XM
j=1

ð –RikijþSj þ kij –CijÞ,

dCij

dt
=kijþRiSj – kij –Cij – gijCij,

dPi

dt
=Rikpi –PigPi

:

The model could also be applied to describe miRNA-non-
coding RNA, miRNA-pseudogene and miRNA-circRNA
kinetic processes by setting target translation rate to zero
(Figure 1B). Such model framework was first proposed to
study small RNA repression in bacteria [49] and protein
titration in Drosophila [54]. Mukherji et al. used a
simplified model to study the miRNA-induced repression
in mammalian cells [50]. Ala et al. further extended the
model to study ceRNA titration effect and introduced the
recycle rate of miRNA to describe catalyticity of reactions
[55]. This coarse-grained model simplified the detailed
biological process such as the transcription, processing
and exporting process of miRNAs and mRNAs, and
assumed that Ago supply is not saturated [42,56,57].
However it should be kept in mind that though the
expression of Ago could reach up to ~170,000 cpc [57],
Ago shortage may bias the model prediction when
miRNA level is extremely high [50].

QUANTITATIVE CHARACTERISTICS OF
miRNA-INDUCED REPRESSION

The most significant quantitative property of miRNA-
induced repression is the threshold-like behavior of target
translational level versus transcriptional level (Figure 1C
and 1D). In the condition of a constant miRNA
transcriptional level, the translational level of target is
close to zero if its transcriptional level is lower than the
threshold, while the translational level positively corre-
lates with the transcriptional level if it is higher than this
threshold. Such threshold behavior was first found
through the study of small RNA regulation in bacteria

[49], then validated for miRNA in mammalian cells [50].
Several factors impacting the threshold behavior were
also proposed: the sequence complementary pattern and
density of MREs that one target RNA harbors would
modulate the sharpness of the threshold (Figure 1C); the
concentration of miRNA would shift the threshold
position (Figure 1D) [49,50].
Another interesting quantitative characteristic is that

miRNA can control the protein expression noise of their
target genes. Using fluctuation dissipation theory and
single cell assays, Schmiedel et al. showed that miRNA
can decrease the noise of low-level expressed targets, but
increase the noise of high-level expressed targets [51].
Riba et al. also showed that miRNA regulation combining
with transcriptional factor (TF) regulation could improve
the stability of target gene expression [58]. These works
imply the key role of miRNA in system stability.

QUANTITATIVE CHARACTERISTICS OF
miRNA-MEDIATED ceRNA REGULATION

The concept of ceRNA regulation in mammalian cells
was first proposed in 2011 [17]. The cancer repressor gene
PTEN was found to be regulated by several genes [21,23]
and its pseudogene, PTENP1 [59] through the competi-
tion for shared miRNAs. The long noncoding RNA, MD1
was also found to control muscle differentiation by
regulating gene MEF2C and MAML1 through the
competing effect [20]. A large-scale extensive ceRNA
network, consisting of ~7,000 genes (nodes) and
~248,000 potential ceRNA regulations (edges) was
constructed by integration of miRNA-target predictions
and mutual information inferred from hundreds of high
throughput gene and miRNA expression profiles of
glioblastoma from the Cancer Genome Atlas (TCGA)
[22]. The authors proposed that the strong ceRNA
regulation tends to occur in the core part of the complex
ceRNA network, where nodes have high degrees. From
then on, a number of functional ceRNA pairs have been
discovered in diverse biological processes, especially in
cancer, which has been summarized by a recent review
[27].
Due to its competing nature, ceRNA regulation is highly
quantitative dependent. Ala et al. built a minimal ceRNA
model that two ceRNA species were regulated by one
miRNA species [55]. By simulating the model, they
found a threshold-like behavior in ceRNA regulation, that
the ceRNA regulation only occurs near an equimolar state
between miRNA and its target RNAs. They also found an
asymmetric ceRNA regulation between ceRNAs at
different expression level. Highly expressed ceRNA
effectively regulates the low-level one, while low-level
ceRNA only slightly influences the high-level one.
Figliuzzi et al. proposed a mathematic definition of

Table 1. Model parameter estimation.
Parameters Value Refs.

Cell volume 2000 μm3 [52]

kR, kS Variable [53]

gR, gS ~ 2.1�10–5 s–1 [53]

α 0~1 NA

k+ ~ 4.3�10–5 s–1 [3]

k – ~ 4.6�10–4 s–1 [3]

g Variable NA
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ceRNA crosstalk strength based on sensitivity analysis
[60], and they stated that specific ceRNA pairs with
proper characteristics could interact through selective
channel of communication in the complex regulation
network. Nitzan et al. found that the strength of ceRNA
regulation was determined by many factors, such as
generation and degradation rates of miRNA and target
RNAs, and the topological distance between ceRNAs in
miRNA-ceRNA network [61]. Using stochastic simula-
tion, Ala et al. found that the indirect crosstalk in miRNA-
ceRNA network can amplify the ceRNA regulation [55].
Combining stochastic simulation and differential equa-
tions, Noorbakhsh et al. proposed that the noise level of
target genes could be a useful indicator to identify ceRNA
regulation in a complex network [62].
In our previous work [31], by implementing multi-
fluorescent synthetic gene circuits in human embryonic
kidney (HEK) 293H cells, we validated that miRNA-
target relative abundance, hybridization free energy and
the number of MREs harbored in the target RNAs could
impact the strength of ceRNA regulation (Figure 1E and
1F). Especially, we proposed that by sequestering free
miRNAs, competing RNAs could sharpen the switch-like
miRNA-induced repression profoundly (Figure 1G). We
also analyzed the competing effect between miRNA
pathway and RNAi pathway by analyzing a special
ceRNA system containing both perfectly complementary
targets and imperfectly complementary targets (Figure
2A). We proposed that RNAi pathway has much lower
miRNA loss rate than the miRNA pathway, which
induced a nonreciprocal ceRNA effect.

CONTROVERSY IN CURRENT ceRNA
STUDIES

Along with rapid development of quantitative analysis, a
growing number of studies have reported experimentally
validated functional ceRNA pairs [63], such as PTEN and
PTENP1 [20,64], PTEN and VAPA [23], PTEN and
ZEB2 [21], CD44 and its ceRNAs [65,66], HMGA2 and
its ceRNAs [25], lncRNA FER1L4 and its ceRNAs [67].
However, in a recent work by Denzler et al., the authors

transfected specialized ceRNA (AldoA) containing
designed miR-122 MREs into mouse hepatocytes, and
used RNA-seq to detect the fold change of endogenous
miR-122 targets caused by ceRNA competition [32].
They found that the distinct derepression of endogenous
miR-122 targets only occurs when more than 100,000 cpc
AldoA RNAwere transfected, which is much higher than
typical endogenous gene expression level. In another
theoretical work, Jens et al. used a simplified equilibrium
steady state model considering miRNA-target binding
energy to analyze miR-20a targets [11], and got a similar
conclusion that the strong upregulation of a single mRNA

species could not notably affect gene expression through
ceRNA effect under most physiological conditions. The
RNA-seq data of our synthetic circuit experiment [31]
also indicated that only high-abundance ceRNAs can
generate global derepression changes at RNA level.
However, a recent single cell reporter assay by Bosson

et al. implied that several ceRNAs of only 300–1,000 cpc
could significantly derepress target genes. The authors
proposed a hierarchical affinity model of miRNA target
competition [29] where high-affinity targets in a low
miRNA: target ratio pool were susceptible to ceRNA
regulation, while low-affinity targets in a high miRNA:
target ratio pool were insensitive to ceRNA regulation.
Another recent experimental work further proposed that
RISC availability could modulate ceRNA regulation [30].
To summarize, a number of functional ceRNA pairs have
been experimentally identified, but the controversy
among theories and experiments needs further investiga-
tion.

REVISIT THE ceRNA MODEL

Considering the current understanding and controversy of
ceRNA regultion, we thought it is necessary to revisit the
theoretical model in more details. Here, based on
simulation analysis of the mathematical model we given
new speculations on ceRNA regulation, which would
complement current understanding of ceRNA effect.
Based on Figure 2A, we first introduce the minimum

ceRNA network kinetic model in which one miRNA
species regulates two target species [31,55]. The model
details are as follow.

dS

dt
=kS – SgS þ

XN
i=1

ð – SkiþRi þ ki –Ci þ ð1 – αiÞCigiÞ

(1)
dRi

dt
=kRi

– gRi
Ri –RikiþS þ ki –Ci, (2)

dCi

dt
=kiþRiS – ki –Ci – giCi, (3)

dPi

dt
=Rikpi –PigPi

, (4)

i=f1, 2g, N=2:

Conditional independent equation for ceRNA
regulation

By solving Equations (2) and (3) at the steady sate, we got
the ratio of free RNA to the total RNA (“free ratio” for
short) of each target RNA species as:
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R1

R0
1

=
1

1þ O1 � S
,
R2

R0
2

=
1

1þ O2 � S
,

where

O1=
k1þ
gR1

� 1

1þ k1 –
g1

, O2=
k2þ
gR2

� 1

1þ k2 –
g2

:

It indicates that the free ratio of one target RNA species is
determined only by the free miRNA concentration (S) and
by the chemical reaction parameters between miRNA and
this target RNA (O). In another words, for ceRNAs
sharing one miRNA species, the free ratio of each ceRNA
is conditional independent of each other given the free
miRNA concentration. Thus the free miRNA concentra-
tion is the communication channel between ceRNA1 and
ceRNA2. We introduce relative repression curve as
shown in Figure 2B and 2C to represent the relative
repression efficacy on ceRNA1 and ceRNA2. Each point
on the curve corresponds to the free ratios of the two
targets given a certain free miRNA level (S). It should be

noticed that the shape of the curve is determined only by
parameter O1 and O2 (Figure 2B), rather than the
expression level of miRNA or targets (Figure 2C).
Such representation could be useful to study siRNA

off-target effect. In our previous work [31], we used
ceRNA1 with partial pairing MRE to mimic off-target
[68], and ceRNA2 with perfectly complementary MRE to
mimic siRNA target (Figure 2A). By both in silico
simulation and experimental validation, we demonstrated
that the expression level of off-target has no impact on the
shape of the relative repression curve, while the relative
siRNA binding strength to target and off-target could
significantly change the curve.
This computational frame work could be generalized to

describe a general condition, in which one siRNA species
represses one target and multiple off-targets. Interestingly,
the equations still keep the form as:

Ri

R0
i

=
1

1þ Oi � S
,

where,

Figure 2. Relative repression curve. (A) Schematic diagram of model-guided quantitative analysis of a special ceRNA system

(RNAi). CeRNA2 complementary perfectly to miRNA mimics RNAi target, while ceRNA1 complementary imperfectly to miRNA
mimics off-target. (B) Binding strength between target RNA and miRNA impacts the on-target-off-target repression curve. The x-axis
and y-axis are the logarithm of free ratio of the two targets respectively. (C) Expression level of off-target has no impact on the on-

target-off-target repression curve. The parameters of (B) and (C) were set as follow: kR1
=f5,10,15g � 10 – 3, gR1

¼ 1� 10 – 5, g1=8�
10 – 5, a1=0:5, k1 –=5� 10 – 5, k1þ=f5,10,15g � 10 – 5; kR2

=5� 10 – 3, gR2
¼ 1� 10 – 5, g2=8� 10 – 5, a2=0:1, k2 –=5� 10 – 5,

k2þ=100� 10 – 5; gs=1� 105, ks=105 e 10 – 1.
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Oi=
kiþ
gRi

� 1

1þ ki –
gi

:

Again, the shape of relative repression curve of any
target-off-target pair is independent of other off-targets.
Using this model, we could evaluate the influence on each
off-target respectively. In general, the off-targets with low
self-degradation rate (gRi

), high complex-degradation rate
(gi) and high binding affinity (kiþ) should be avoided
when designing siRNAs.

Comparison of ceRNA effect at the RNA level and
the protein level of target genes

Current literature did not carefully distinguish the ceRNA
derepression effect at the RNA level from that at the
protein level. For example Denzler et al. [32] concluded
that ceRNA induced derepression was weak based on
RNA-seq data, while recent experimental evidence
supporting ceRNA hypothesis by Bosson et al. was
based on protein level data (fluorescent values) [29]. It is
known that RNA level could only explain part of the
variability in protein levels [53,69]. Considering that
RNA-seq data contains both free and miRNA-bond target
RNAs while proteins are dominantly translated from free
mRNAs [37], we speculate that the ceRNA induced
derepression detected from RNA-seq data may be
different from that at protein level.
We used the minimal model to simulate the strength of

ceRNA-induced derepression at both RNA and protein
level (Figure 3A). Here we assume that only free mRNAs
could be used to translate protein with a constant rate kP,
thus the protein level is proportional to the free mRNA
level at steady state. We increased the transcriptional rate
of ceRNA1 (kR1

), and then measured the free (propor-
tional to protein level) and total mRNA level of ceRNA2.
As shown in Figure 3B and 3C, the strength of ceRNA
regulation detected at RNA level is significantly weaker
than that in protein level. To make it clearer, we marked
the fold changes of free ceRNA2 and of whole ceRNA2
level caused by 10-fold increase of kR1

. In this ideal case,
the protein level increases around ~200 fold, while the
RNA level only increases ~6 fold (Figure 3B). Further-
more, when the self-degradation rate of ceRNA2 is larger
than the degradation rate of ceRNA2 caused by miRNA,
opposite trends occur (Figure 3C): along with the increase
of kR1

, the protein level of ceRNA2 increases while the
whole ceRNA2 level decreases instead. In summary, we
speculate that competing RNAs might be able to
significantly modulate target gene expression at protein
level with less changes at RNA level in appropriate
conditions.

Network topology can either enhance or diminish
ceRNA effect

Previous studies have found that network topology can
impact ceRNA regulation. Nitzan et al. proposed that the
long topological distance between ceRNAs weakens the
ceRNA regulation strength [61]. Using stochastic simula-
tion, Ala et al. proved that indirect ceRNA regulation
through the third ceRNA species could enhance the
ceRNA regulation [55]. Detailed quantitative study for
ceRNA network is very hard due to the exponential
growth of the complexity along with the size of network.
To demonstrate the opposite effect that the network
topology could bring to ceRNA regulation, we expanded
the minimal model to slightly more complex structures as
shown in Figure 4A and 4B. In Figure 4A, we introduced
ceRNA3 to buffer the changes of free miRNA. The fold
change of free ceRNA2 caused by 10 fold kR1

changes was
less than 10 fold (Figure 4C), compared with the ~200
fold in Figure 3B. But when we introduced indirect
regulation through ceRNA3, as shown in Figure 4B, the
10 fold kR1

changes could induce ~300 fold change of free
ceRNA2, which was 1.5 fold stronger than that in Figure
3B. Thus we conclude that different network topology can
either enhance or diminish ceRNA effect, and how to
evaluate the topological effect is of vital importance to
understand the ceRNA regulation among the complex
miRNA-target network.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

MiRNA plays key roles in many biological processes.
Here we focus on the quantitative characteristics of
miRNA-mediated post-transcriptional regulations, espe-
cially on that of competing endogenous RNA effect. We
summarized recent experimental and theoretical pro-
gresses to understand the quantitative characteristics of
ceRNA regulation.
Though a number of ceRNA pairs have been discovered,
a debate about ceRNA hypothesis still exists that strong
upregulation of a single mRNA species may not notably
affect gene regulation through ceRNA effect in normal
physiological RNA molecular concentration. Based on
simulation analysis, we speculated that the controversy
debate might result from the incomprehension of the
complex multilayered ceRNA regulation network. We
showed that different network topology could either
diminish or enhance the competing effect, and derepres-
sion magnitude evaluated at RNA level could be very
different from that at protein level. More importantly,
what we concern most is not the changes in gene
expression, but the phenotypes yielded by the changes.
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Therefore, it is of vital importance to uncover the
quantitative relationship between the changes at gene
expression level and the phenotype caused by the
changes, as small differences in gene expression could
yield distinct phenotypes [70]. Thus a new theoretical
framework taking these aspects into account is essential to
reconcile the controversy.
Predicting functional ceRNA pairs in a specific cell

type at genome scale is a challenging task. Current
methods detecting ceRNA pairs are mainly based on the
similar work flow [22,71–73]: Firstly, estimate gene-gene
association based on a large number of high throughput
gene expression profiles to identify highly correlated gene
pairs; secondly, filter the gene pairs using predicted or

experimentally validated miRNA-target RNA pairs to
predict potential ceRNA pairs; thirdly, validate the
biological relevance of the predicted pairs. The major
drawback of such a framework is that it requires a large
sample size thus could hardly be applied to datasets with
only a few samples. However, integration of multiple
types of omics data may offer information for ceRNA
prediction. For example, combination of mRNA-seq,
miRNA-seq and Ago-HITS-CLIP data could be used to
predict the target RNA’s occupancy rate by each miRNA
[16], while ribosome profiling and SILAC data offers the
production, degradation rate and cpc of mRNA and
protein [53], which could be used to validate the
calculated occupancy rate. Based on the multi-level

Figure 3. The difference of ceRNA regulation strength between at RNA level and at protein level. (A) Schematic diagram of

the strategy of measuring the ceRNA regulation in the minimal ceRNA regulation model. We increase the transcriptional rate of
mRNA1, and measure the levels of mRNA2, including the free mRNA2 that is proportional to protein level, the complex2 containing
mRNA2 and miRNA and the whole mRNA2 equaling free mRNA2 plus complex2. (B) Steady-state concentrations as function of kR1

changes under the condition that gR2
<g2. (C) Steady-state concentrations as function of kR1

changes under the condition that

gR2
> g2. (B) and (C), the left panel shows the steady-state concentrations of mRNA1 and miRNA. The right panel shows the steady-

state concentrations of mRNA2. The fold changes of mRNAs concentrations caused by a ten-fold change of kR1
are marked. The

parameters of (B) were set: kR1
=10 – 5 e 10 – 1, gR1

=1� 10 – 5, g1=8� 10 – 5, α1=0:5, k1 –=5� 10 – 5, k1þ=10� 10 – 5; kR2
=5� 10 – 3,

gR2
=1� 10 – 5, g2=8� 10 – 5, α2=0:5, k2 –=5� 10 – 5, k2þ=10� 10 – 5; gS=1� 10 – 5, kS=4� 10 – 3. The parameters of (C) were set

the same as these of (B) with an exception that g2=0:5� 10 – 5.
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omics data from a specific cell-type, one may estimate
whether the target RNA is near the threshold where it is
more susceptive to the ceRNA effect. Thus, we speculate
that new computational tools integrating a variety of data
types may be a powerful approach to predict cell-type
specific ceRNA pairs more precisely.
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