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Fundamental improvement was made for genome sequencing since the next-generation sequencing (NGS) came out
in the 2000s. The newer technologies make use of the power of massively-parallel short-read DNA sequencing,
genome alignment and assembly methods to digitally and rapidly search the genomes on a revolutionary scale, which
enable large-scale whole genome sequencing (WGS) accessible and practical for researchers. Nowadays, whole
genome sequencing is more and more prevalent in detecting the genetics of diseases, studying causative relations with
cancers, making genome-level comparative analysis, reconstruction of human population history, and giving clinical
implications and instructions. In this review, we first give a typical pipeline of whole genome sequencing, including the
lab template preparation, sequencing, genome assembling and quality control, variants calling and annotations. We
compare the difference between whole genome and whole exome sequencing (WES), and explore a wide range of
applications of whole genome sequencing for both mendelian diseases and complex diseases in medical genetics. We
highlight the impact of whole genome sequencing in cancer studies, regulatory variant analysis, predictive medicine
and precision medicine, as well as discuss the challenges of the whole genome sequencing.
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INTRODUCTION

Sequencing technology has developed swiftly and
thoroughly since location-specific primer extension
DNA sequencing strategy was first introduced by Ray
Wu and then largely improved by Frederick Sanger in the
1970s [1]. Limited to the technology and methodology,
sequencing was applied to small genomes at the first time,
such as the genome of the bacteriophage and viruses [2].
In the late 1980s, the automated DNA sequencing
method, usually considered as the first generation
sequencing, had been successfully applied for almost
two decades and achieved a serious of essential
accomplishments [3,4]. In 1995, Venter, Hamilton
Smith, and colleagues at The Institute for Genomic
Research (TIGR) published the first paper which used

the whole-genome shotgun sequencing to sequence the
complete genome of a free-living organism, the bacter-
ium Haemophilus influenza. By the year of 2001, shotgun
sequencing methods had been widely adopted to produce
the draft sequence of the large genomes, especially the
monumental world-wide achievement of the initial rough
draft of human genome [5,6].1

Despite of the steady improvement in the first
generation sequencing, it remains some fatal problems,
such as cost, speed, scalability and resolution [7].
Fundamental improvement was made for genome sequen-
cing since the next-generation sequencing (NGS) came
out in the 2000s [8,9]. The newer technologies make use
of the power of massively-parallel short-read DNA
sequencing, genome alignment and assembly methods
to digitally and rapidly search the genomes on a
revolutionary scale, which enable large-scale whole
genome sequencing accessible and practical for research-
ers [10,11]. Several NGS platforms for whole genome
sequencing have emerged with high speed, comparable
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low cost and high coverage, which makes the whole
genome sequencing a more and more popular way for
research. Nowadays, more than 90% of the reported
complete human genome sequences are produced by the
platforms of two famous companies, Illumina and
Complete Genomics (CG) [12]. Large-scale comparative
and evolutionary studies are then allowed by the
sequencing of the whole genomes of many related
organisms [13,14]. Whole genome sequencing also
provides solutions to complex genomic and genetic
research problems by offering the most comprehensive
collection of rare variants and structural variations for
sequenced individuals [15]. Recently, whole genome
sequencing has been successfully applied to reconstruc-
tion of human population history [1], uncovering the roles
of rare variants in common diseases [16,17], and provide
clinical interpretation and implications [18–21]. Even
more, it is reported that whole genome sequencing is more
powerful than whole-exome sequencing for detecting
exome variants [22].
This review first gives a typical pipeline of whole

genome sequencing, including the lab template prepara-
tion, sequencing, genome assembling and quality control,
variants calling and annotations. Then we compare the
difference between whole genome and whole exome
sequencing. We explore a wide range of applications of
whole genome sequencing for both mendelian diseases
and complex diseases in medical genetics. At last, we
highlight the impact of whole genome sequencing in
cancer studies, regulatory variant analysis, predictive
medicine and precision medicine.

A TYPICAL PIPELINE OF WHOLE
GENOME SEQUENCING

We introduce a typical pipeline of whole genome
sequencing (shown in Figure 1), which is largely built
based on literature [7,23]. After lab preparation, a proper
sequencing platform is chosen for sequencing the
samples. The next steps are genome assembling and
quality control, followed by variants calling and annota-
tions. Detected variants can be further analyzed to infer
the biological relevance, prioritized or filtered according
to the causative relation to a concerned phenotype.
Further verification tests can be applied according to
results of analysis.
High quality NGS lab preparation is an essential

procedure for accurate whole genome sequencing. As this
step is often outsourced to sequencing companies, for
more details about the lab preparation, please see the
guidebook of Preparing Samples for Sequencing Geno-
mic DNA [24] from Illumina or instructions provided in
the literature [25].

Sequencing platforms

Nowadays, many sequencing companies provide the
service of whole genome sequencing, so choosing an
affordable and accurate sequencing platform is also an
essential step to offer reliable and wholesome sequencing
outputs for further biological or bioinformatics analysis
[12,26]. Table 1 shows the properties of some current
sequencing platforms, which are summarized by the
AllSeq Knowledge Bank [27]. Besides these platforms,
Complete Genomics, the leader of whole human genome
sequencing, provides high quality sequencing outputs
(SNP calling rate> 90% with a reference consensus
accuracy of> 99.999%).

Alignment or genome assembling

Different next generation sequencing platform generates
massive short reads of different quantity and different
read length for one genome. Due to the complexity of
some genomes, the most comprehensive and accurate
genome assemblers are based on the pair-end reads
sequenced from both ends of the DNA fragment [23].
Based on whether there exists a reference genome, two
assembling approaches are dominated to integrate the
short reads into longer continuous sequences after the
quality assessment, and then build the draft genome

Figure 1. A typical pipeline of whole genome
sequencing.

116 © Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Jiaxin Wu et al.



[23,28]. The first idea is reference based assembly, which
is to align the reads to a reference genome and produce a
similar sequence with affordable difference. As this
method cannot generate novel sequences, which are
different or absent from the reference, thus, sometimes it
is combined with other methods to improve the accuracy
of the assembling [29]. A more complex and popular
approach is de novo genome assembly [30], which can
discover new sequences or generate the draft genome
whose related reference genome does not exist. The de
novo genome assembly should be treated with the
sequencing errors, repeat structures, and the computa-
tional complexity and speed of processing large amount
of data. It is more challenging for de novo assembly to
deal with shorter sequence reads [31]. Some popular
alignment and genome assembling tools for reference
based assembly or de novo assembly are listed in Table 2.

Quality assessment

Quality control is an essential step before and after reads
alignment and genome assembling. Raw reads generated
by the sequencing platforms may cause errors which are
common and inevitable during sequencing, such as reads
in bad qualities, base calling errors, small insertions or
deletions [7]. Thus, quality assessment should be
introduced to measure the quality of raw reads and
remove, trim or correct the poor reads in order to avoid
receiving wrong assembled sequences for further biolo-
gical analysis. The quality assessment before the reads
alignment and genome assembling usually includes
plotting the quality score trend provided by the sequen-
cing platforms; checking the primer contaminations, N
content per base and GC bias; as well as trimming and
filtering reads. As shown in Table 3, many tools have been

Table 2. Alignment and genome assembling tools.
Name Method Platform Link

Bowtie2 Alignment Illumina, 454 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

BWA Alignment Illumina, ABI SOLiD http://bio-bwa.sourceforge.net/

SOAP3-DP Alignment Illumina http://sourceforge.net/projects/soap3dp/

MAQ Reference Illumina, SOLiD http://sourceforge.net/projects/maq/

RMAP Reference Illumina http://rulai.cshl.edu/rmap/

SeqMan NGen Ref/De novo Illumina, SOLiD, 454, Ion Torrent,

Sanger

http://www.dnastar.com/t-nextgen-seqman-ngen.aspx

ABySS De novo Illumina,SOLid http://www.bcgsc.ca/platform/bioinfo/software/abyss

ALLPATH S-LG De novo Illumina http://www.broadinstitute.org/software/allpaths-lg/blog/

Edena De novo Illumina http://www.genomic.ch/edena.php

Euler-sr De novo Sanger, 454, Illumina http://cseweb.ucsd.edu/~ppevzner/software.html#EULER-short

Forge De novo Sanger, 454, Illumina http://archive.is/KUoP0

Newbler De novo 454 http://swes.cals.arizona.edu/maier_lab/kartchner/documentation/

index.php/home/docs/newbler

SOAPdenovo De novo Illumina http://soap.genomics.org.cn/soapdenovo.html

SPAdes De novo Illumina, PacBio http://bioinf.spbau.ru/en/spades

SSAKE De novo Illumina http://www.bcgsc.ca/platform/bioinfo/software/ssake

Velvet De novo Illumina, 454 http://www.ebi.ac.uk/~zerbino/velvet/

Table 1. Comparison of whole genome sequencing platforms.

Platform Total output Time Read length # of single reads Run price

454 (Roche) GS FLX+ 700 Mb 23 h < 1 kb 1 M ~$6k

454 (Roche) GS Jr. 35 Mb 10 h ~700 bp 0.1 M ~$1k

Illumina Hiseq X Ten 1.8 Tb 3 d 2 � 150 bp 6 B ~$12k

Illumina Hiseq 2500 HT v4 1 Tb 6 d 2 � 125 bp 4 B ~$29k

Illumina Hiseq 2500 Rapid 180 Gb 40 h 2 � 150 bp 600 M ~$8k

Illumina NextSeq 500 129 Gb 29 h 2 � 150 bp 400 M $4k

Illumina MiSeq 15 Gb ~65 h 2 � 300 bp 25 M ~$1.4k

Life Technologies SOLiD 5500xl 95 Gb 6 d 2 � 60 bp 800 M ~$10k

Life Technologies SOLiD 5500 48 Gb 6 d 2 � 60 bp 400 M ~$5k

Life Technologies Ion Torrent PI ~10 Gb 2–4 h < 200 bp < 82 M > $1k
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designed to solve the error problems caused by different
sequencing platforms.
Due to the complex genomes with large repeats, reads

error and PCR duplicate generated by sequencing
platforms, no genome assemblers can perfectly recon-
struct the sequenced genome. Quality assessments are
also suggested to control the assembled draft genomes
and correct the errors which may lead to mistaking
biological interpretations [28]. A variety of quality
metrics are built to reflect different aspects of the
assembling results, such as assembly size, contig
numbers, N50 or N90 statistic (a statistic of a set of
contigs or scaffold lengths), number of mismatches or
mis-assemblies [32]. Some popular tools for evaluating
the assemblers are collected in Table 4.

Variants calling

One prominent application of whole genome sequencing
is to identify variants from the sequenced genome for
further studying the genetic associations with diseases,
detecting mutations in cancer, or characterizing hetero-
geneous cell populations [33]. The simple procedure
includes at least two elements, an aligner and a variant
caller. The aligner aligns the sequencing reads to a
reference genome, and the variant caller assigns a
genotype and identifies the positions of variants. Accord-
ing to the different types of variants, there are three types
of variants calling tools, single nucleotide variation
(SNV) calling tools (including the indels), copy number
variation (CNV) calling tools, and structural variation
(SV) calling tools. The detection of SNVs and indels is
essential to discover the genetics of diseases and further
help clinical diagnosis or treatments for patients [34]. As
an important and special form of structural variation,

more and more evidences indicate that CNVs play an
important role in human diversity and disease suscept-
ibility, especially in complex diseases [35]. Human
genome has unexpectedly large amount of structural
variations. Even if it is not clear the exact functions of
most of the structural variations, they are not to be
overlooked in study of human diseases and population
genetics. Table 5 shows some popular variants calling
tools.

Variant annotation

Variant annotation is a crucial procedure in the analysis of
genome sequencing data, which provides functional
information for DNA variants and give implications and
evidence for biological analysis and disease studies [36].
With the dramatic increase in variant amount and
complexity given by the whole genome sequencing,
predicting the functional impact of variants becomes a
new challenge rather than the sequencing or variant
calling. There are many types of annotations ranging from
the context, conservation metrics, functional genomic
properties, transcript information, to the protein structural
and functional predictions. Most of the variant annotation
tools are available for comprehensively analyzing,
prioritizing or filtering SNVs or small indels from many
aspects, such as CADD [37], dbNSFP [38], GATK [39],
GEMINI [40], and SPRING [41]. Although it is more
complex for predicting the function of structural variants,
recently some annotations tools are available to analysis
structural variants, especially CNVs, including AnnTools
[42], ANNOVAR [43], CNVannotator [44] and VEP [45].
For a comparable complete list of variant annotations
tools and their usage hints, please see the literature [7] for
details.

Table 4. Quality assessment tools for genome assemblers.

Name Properties Link

ALE Reference-independent, statistical measure http://sc932.github.io/ALE/about.html

Picard A set of tools for processing and analyzing Illumina sequence data http://broadinstitute.github.io/picard/index.html

QUAST With and without a reference genome http://bioinf.spbau.ru/quast

REAPR Assemblers using paired end reads, without a reference genome http://www.sanger.ac.uk/resources/software/reapr/

Table 3. Quality assessment tools before the assembling.

Name Platform Link

FastQC Illumina, SOLiD, 454, PacBio http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

FASTX-Toolkit Illumina http://hannonlab.cshl.edu/fastx_toolkit/

HTQC Illumina http://sourceforge.net/projects/htqc/

NGSQC Illumina, SOLiD http://brainarray.mbni.med.umich.edu/brainarray/ngsqc/

NGS QC Toolkit Illumina, 454 http://www.nipgr.res.in/ngsqctoolkit.html

PRINSEQ Illumina, 454 http://prinseq.sourceforge.net/

SolexaQA Illumina, 454 http://solexaqa.sourceforge.net/

TileQC Illumina http://denverlab.science.oregonstate.edu/tileqc/
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COMPARISON BETWEEN WHOLE
GENOME AND WHOLE EXOME
SEQUENCING

With the rapid development of sequencing technology
and lower cost of each run of sequencing, whole genome
sequencing is more and more prevalent in the detecting
genetics of diseases, studying causative relations with
cancers, making genome-level comparative analysis, and
giving clinical implications and instructions [46,47].
Apparently, whole genome sequencing is superior to
whole exome sequencing if there is no limitations of
resources and time. Compare to the whole exome
sequencing, whole genome sequencing provides exam-
inations of SNVs, indels, CNVs and SVs in both coding
(~1% part of the genome) and non-coding regions of the
genome. Whole genome sequencing has more reliable
and unified sequence coverage, no limitations of sequen-
cing read length, no requirement of PCR amplification in
library preparation or reference genome for assembling
[46]. Whole genome sequencing possesses more advan-
tages for sequencing a species other than human. Even

more, it is reported that whole genome sequencing is more
powerful than whole exome sequencing for detecting
exome variants [22]. However, whole genome sequencing
do suffering some problems of cost and time-consuming
(see Table 6 for exact numbers), and it is more difficult to
accurately interpret a huge amount and variety of detected
variants [48].

WHOLE GENOME SEQUENCING FOR
MENDELIAN DISEASES

Mendelian diseases refer to those disorders caused by
single gene, and make up the largest proportion of human
inherited diseases. According to OMIM database [49], the
largest collection of Mendelian diseases, about 7,000
different diseases are characterized, of which ~3,500
disorders own unknown genetic causes. Traditional
approaches to pinpoint the causal genes for Mendelian
diseases are mainly based on linkage analysis [50], which
measures the segregation degree between genomic
regions and disease status. Those identified linked regions
usually contain hundreds of candidate genes, and those

Table 5. Variants calling tools for detect SNVs, CNVs or SVs.

Name Type Link

Bambino SNVs, indels https://cgwb.nci.nih.gov/goldenPath/bamview/documentation/index.html

CORTEX SNVs, indels http://cortexassembler.sourceforge.net/index.html

GATK SNVs, indels https://www.broadinstitute.org/gatk/

glfTools SNVs http://csg.sph.umich.edu/abecasis/glfTools/

SAMtools SNVs, indels http://samtools.sourceforge.net/

SNVer SNVs, indels http://snver.sourceforge.net/

SomaticSniper SNVs http://gmt.genome.wustl.edu/packages/somatic-sniper/

VarScan 2 SNVs, CNVs http://varscan.sourceforge.net/

AS-GENSENG CNVs http://sourceforge.net/projects/asgenseng/

cn.mops CNVs http://bioconductor.org/packages/2.12/bioc/html/cn.mops.html

CNV-seq CNVs http://tiger.dbs.nus.edu.sg/cnv-seq/

CNVrd2 CNVs http://www.bioconductor.org/packages/devel/bioc/html/CNVrd2.html

CopySeq CNVs http://www.embl.de/~korbel/CopySeq/

GENSENG CNVs http://sourceforge.net/projects/genseng/

GROM-RD CNVs http://grigoriev.rutgers.edu/software/

modSaRa CNVs http://c2s2.yale.edu/software/modSaRa/

RDXplorer CNVs http://rdxplorer.sourceforge.net/

QDNAseq CNVs http://www.bioconductor.org/packages/release/bioc/html/QDNAseq.html

BreakDancer SVs http://gmt.genome.wustl.edu/packages/breakdancer/

ClipCrop SVs https://github.com/shinout/clipcrop

GASV SVs http://code.google.com/p/gasv/

Pindel SVs https://github.com/genome/pindel

SLOPE SVs http://www-genepi.med.utah.edu/suppl/SLOPE/index.html

TIGRA SVs http://bioinformatics.mdanderson.org/main/TIGRA

VariationHunter SVs http://compbio.cs.sfu.ca/software-variation-hunter
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candidate genes are further validated and investigated by
Sanger sequencing. Despite of its successful cases for
identifying causal genes for some diseases, several
drawbacks of this strategy prevent it from being widely
used now. For example, linkage analysis is only effective
for those familial diseases with enough sample size [51].
Whole exome sequencing has emerged as a powerful and
popular approach to elucidate the genetic determinants of
Mendelian diseases [52]. With acceptable cost and easy
interpretation, WES has identified causal genes for many
Mendelian diseases [51,53–55]. Recent evidences suggest
the advantages of WGS over WES on detecting exonic
variants [22] from technical perspectives. For the same
task of detecting variants, including SNVs and indels in
coding regions, WGS can identify more variants that are
missed by WES than variants that are only captured by
WES but missed by WGS. This fact makes WGS a
preferable alternative to WES without consideration of
cost and time-consuming. Besides coding variants, WGS
provides more insights into genomic structural variants
and noncoding variants. Recently, WGS has also been
successfully applied to identify causal mutations in rare
Mendelian diseases [56,57].
The widely used workflow for identifying disease-

causing variants from exome sequencing in Mendelian
diseases involves combination of biological information
about genes, predicting functional consequence of
variants, variant frequency in well-known large databases
(e.g., 1000 G, ESP ) and evolutionary conservation (e.g.,
GERP [58]). The rationale behind this workflow assumes
that disease-causing variants for Mendelian diseases tend
to be rare variants that alter protein functions on disease-
related genes. Although successful applications of this
strategy in some studies, it is suspected to be powerless
when the available sample size is limited. Because normal
individuals without phenotypes for studied diseases could
also carry some such rare functional variants, thus,
additional variants in other samples or statistical evidence
are needed for establishing pathogenicity [59]. This
problem becomes even more difficult when whole
genome sequencing is applied for studying Mendelian
diseases. Due to the largely increased number of variants
compared with WES, the list of candidate variants that
need functional follow-up or manual investigation
becomes more time-consuming even if some filters are
applied. Additionally, it is harder to evaluate the

functional consequence of noncoding variants than
coding variants since coding regions are more well-
studied than noncoding part. The large number of
candidate variants and interpretative difficulty for non-
coding variants pose great challenges for applying WGS
in clinical testing and medical research. Although
hindered by such difficulties, WGS is believed to play
an important role in genetics with the development of
sequencing technologies and increased understanding
about human genome, especially noncoding regions. For
example, with the increased number of sequenced
genomes, such as 1000 G Project and others, the filters
based on variant frequency will become more powerful
with more complete catalogue of human genetic variants.
With the efforts of large constoria, such as ENCODE and
Roadmap, deeper understanding about noncoding gen-
omes and regulatory elements will enable the develop-
ment of computational methods to assess regulatory
impact of noncoding variants more precisely.
Functional prediction of sequence variants provides a

fast assessment of deleterious effect of variants, and is
widely used in sequencing based studies as filters. Many
tools have been developed for analyzing variants locating
in protein-coding region, such as SIFT [60], PolyPhen2
[61], but available methods for predicting functional
effects of noncoding sequence variants are relatively
limited. Recently, several computational methods for
whole genome variants have been developed, including
CADD [62], DANN [63], FATHMM-MKL [64], Funseq
[65,66], SInBaD [67], deltaSVM [68], GWAVA [69].
Most of those predictors utilize machine learning
approaches to discriminate harmful variants from normal
variants with various genomic annotations (e.g.,
ENCODE) as features. Of those predictors, deltaSVM is
the only one to consider cell type specificity. Training a
gkm-SVM, a method for modeling DNA sequences, on
cell type specific regulatory sequences and discovering
corresponding sequence vocabularies, deltaSVM has the
ability to evaluate the regulatory effect of sequence
variants under different cell lines. It is expected that the
development of computational prediction for noncoding
sequence variants will be an active area of research.
Besides SNVs, noncoding CNVs are believed to play

important roles in Mendelian diseases and complex
diseases [15,70–73]. CNVs refer to large alterations
happened in the genome, including deletions and

Table 6. Comparison between whole genome and whole exome sequencing.
Whole genome sequencing Whole exome sequencing

Time 6–8 weeks 1–3 weeks

Cost $795–$4150/sample $390–$1050/sample

Sequencing depth Usually 30� Usually> 50�
Sequenced region Coding and non-coding regions of the genome Exomes, promoters and enhancers
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duplications, and are believed to cause severe conse-
quences since large proportions of genes or regulatory
elements are affected. Researchers have developed many
tools for detecting both of coding CNVs [74,75] and
noncoding CNVs [76]. However, how to elucidate the
effect and predict the consequence of CNVs, especially
noncoding CNVs, remains elusive.

WHOLE GENOME SEQUENCING FOR
COMPLEX DISEASES

Common or complex diseases refer to those diseases
affected by more than one gene or one variant, which
makes it unsuitable for those methods used in Mendelian
diseases to apply to complex diseases. Usually, the
variants that contribute to disease susceptibility of
complex diseases have modest effect size, thus genome-
wide association studies (GWAS) are designed to study
complex diseases [77], in which large cohort is required to
ensure the power. However, GWAS is suspected for its
rationality due to two important issues without effective
solution. The first is called “missing heritability” [78], in
which associated common variants only explain limited
heritability, and rare variant is considered as sources for
missing heritability [79]. GWAS only genotypes common
variants, but WGS overcomes this limitation by sequen-
cing all variants, including common and rare variants. The
second problem arises from the existence of linkage
disequilibrium (LD, defined as the non-random associa-
tion of alleles at different loci), and associated variants
detected in GWAS are usually not the functional variants
but just in LD with true functional variants, which lead to
the prosperous development of fine mapping methods
[80]. General approaches for fine mapping include dense
genotyping and imputation, while WGS guarantees that
the real functional variants are sequenced. We demon-
strate the usage of GWAS for overcoming the two
important issues in detail as follows.

Association Mapping

Association mapping has been successfully applied to
discover variants associated with diseases or traits of
interest, and it will continue to be a powerful approach for
studying complex diseases or traits in WGS setting.
Recently, researcher utilized WGS to discover two loci
associated with major depressive disorder [81], providing
evidence to support the effectiveness of low-coverage
WGS. In this study, association signals of common
variants (MAF> 1%) were calculated with linear mixed
model [82,83], which was proved to be an effective
method for association mapping and controlling popula-
tion structure. Although success of WGS for association
mapping is observed, several issues should be considered

and handled properly in the future. Due to consideration
of cost, coverage of WGS for large-scale cohorts is low,
which lead to potential quality problem in variant calling
and imputation. Care must be taken to ensure the quality
of variants called, and methodological development is
needed to improve accuracy. In addition, WGS discovers
many rare variants besides common variants, therefore,
how to utilize those variants and related rare variant
association method, like SKAT [84], to find biologically
meaningful associations pose a challenge.

Genetic architecture analysis

Understanding the genetic architecture (e.g., heritability)
of complex diseases provides important insights about
them. Traditional approach to study the genetic architec-
ture of complex diseases is usually achieved with GWAS.
Considering cost and efficiency, tagging SNPs in LD
blocks are genotyped with genotyping platforms.
Although thousands of significant loci have been
discovered through GWAS, those associated SNPs only
account for small proportion of variance of traits, which is
also called “missing heritability”. Limited ability for
interpreting heritability makes research communities
suspect about GWAS, and figure out that the missing
heritability has become an important problem [78] in
recent years. WGS has the ability to genotype each loci,
thus hold the promise to figure out “missing heritability”.
Recently, Taylor et al. [85] uses WGS to study thyroid
function, and identifies more heritability than previous
GWAS does. Alanna et al. [86] studied the genetic
architecture of HDL-C, (shorts for high-density lipopro-
tein cholesterol) with whole genome sequence data of 962
individuals, and revealed that common variants accounted
for more heritability than rare variants for this complex
traits, providing some insights and evidence about the
argument between common and rare variants [87]. Those
studies highlight the utility of association tests for rare
variants [84] and linear mixed model for estimating
heritability of complex traits [88]. Since high-depth whole
genome sequencing is not feasible now, low-depth WGS
represents the major candidate for large-scale analysis.
Special care must be taken to deal with artifacts owing to
low depth, and strict quality control is essential to
guarantee eliminating false positives [89].

Fine mapping

GWAS has identified thousands of disease- or trait-
associated common variants, which provide insights
about complex diseases or traits. Considering cost,
GWAS usually only tag several SNPs within a haplotype
block that could be up to several thousands of base pairs
in distance. Thus, associated variants are usually in LD
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with real functional variants and fine-mapping is needed
to uncover the real functional sites. All variants within the
associated loci are required to be genotyped in typical
fine-mapping studies, in which targeted sequencing or
imputation based on large population data (e.g., 1000 G,
HapMap) are needed [90]. The accumulation of uncer-
tainty across those steps could undermine the identifica-
tion of causal variants underlying GWAS loci. However,
WGS has the ability to sequence all variants along the
whole genome, thus holds the promise to solve this
problem and facilitates the progress towards discovering
causal variants underlying associations. Although sig-
nificant differences exist between GWAS and WGS, the
methodological development for refining GWAS results
can also be beneficial for refiningWGS results [80,91,92].
The increasing number of genotyped variants in WGS
also poses a greater challenge for fine mapping than
GWAS.

WHOLE GENOME SEQUENCING FOR
CANCER

As an important type of complex disease, cancer is a
genetic disease and accounts for many death worldwide
each year. The popular platform now for analyzing cancer
genome is whole exome sequencing for its acceptable cost
and highly interpretation. Recently, several international
groups, like TCGA and ICGC, have paid much attention
to characterize multiple types of cancers by using WES,
such as prostate cancer [93] and gastric cancer [94].
Somatic mutations detected from more than 1 million
cancer samples are accumulated and deposited in
COSMIC database, which collects the largest number of
somatic mutations thus far. Although WES is the primary
approach for cancer research, it focuses on protein-coding
regions and ignore noncoding regions, which limit more
deep understanding about cancer [95]. Several studies
reveal the pathogenic impact of noncoding mutations on
cancer genome, especially promoter mutations in TERT
gene, which is a catalytic subunit of the enzyme
telomerase and comprises the most important unit of the
telomerase complex [96–98].
With the increasing number of sequenced cancer

genomes, systematic analysis of large-scale cancer
whole genome sequences could identify noncoding
regions of interest, which are frequently mutated across
different cancer types. Integrating whole genome
sequence data from multiple cancer samples with
regulatory annotations or expression profiles emerges as
an effective approach to study somatic mutations in
noncoding regions [99–101]. Fredriksson [100] proposed
a method to identify the associations between regulatory
regions containing somatic mutations and gene expres-
sion, and highlighted TERT promoter region with highest

statistically significant association with TERT gene
expression. Due to the low frequency of somatic
mutations, regional association test is used, which
borrows the methodology from association test for rare
population variants [84,102,103]. Weinhold [99] per-
formed three distinct analysis, including hotspot analysis,
regional recurrence analysis and transcription factor
analysis, to identify functionally important somatic
mutations in enhancer, promoter, 5´UTR and 3´UTR.
Melton [101] integrated 436 whole genome sequencing
data and regulatory annotations from ENCODE to
identify significantly mutated regulatory regions. All the
three studies [99–101] detect TERT promoter mutations
as significant mutated region across multiple cancer types.
Similar to Mendelian diseases, computational methods

for identifying deleterious variants are also important for
analysis of cancer genomes. However, variants that
disrupt protein-coding regions or regulatory elements
are not necessarily driver mutations whose effects lead to
tumor progression. Although several methods have been
developed specifically for cancer mutations [104], their
performance is far from satisfactory, suggesting further
improvement is needed.

WHOLE GENOME SEQUENCING FOR
REGULATORY VARIANT ANALYSIS

Despite the variants that disrupt the 1% protein-coding
regions tend to have large deleterious effect, variants in
the remaining 99% noncoding regions are also believed to
play important roles in human diseases. Several reviews
[105,106] have discussed about regulatory variants.
Mulin et al. [106] focused on general regulatory variants
analysis, including genetic mapping, prediction, prioriti-
zation, and functional validation. Frank et al. [105]
discussed the role that regulatory variants played in
human complex traits and disease, especially the
molecular nature of regulatory variants and their influence
on transcriptome and proteome. Ward et al. [107]
discussed the interpretation of noncoding variants dis-
covered in GWAS, with focus on enrichment analysis of
regulatory annotations among discovered loci. Here, we
highlight the recent development, especially integrative
analysis, for interpretation and systems-level analysis of
regulatory variants discovered by WGS.
QTL refers to the regions of genome containing

sequence variants that can affect molecular quantitative
traits, such as gene expression (eQTL), chromatin
accessibility (dsQTL), alterative splicing (sQTL) (see
Table 7 for more details). Studies on QTL can provide
insights about the molecular mechanisms by which causal
variants exert their effect to affect disease status. The
typical eQTL studies require two types of data to test
associations between variants and gene expression. One is
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the genotype of a recruited individual, which is often
obtained through genotyping array, and the other is gene
expression, which is often measured by microarray and
RNA sequencing. The genotyping array provides a cost-
effective solution to obtain genotypes, while this method
only assays the certain loci, which probably result in
missing hits for those stronger associations between
ungenotyped loci and gene expression. Whole genome
sequencing overcomes this problem through discovering
all sequence variants and allowing identification all
possible genetic associations between sequence variants
and gene expression. For example, a recent WGS based
eQTL mapping [114] found that indels (short insertions
and deletions) may play a more important role in cis-
eQTL than SNPs. This study fully sequenced 462
individuals and discovered all types of sequence variants,
so it provided more insights than traditional eQTL
studies.
Integration of variants discovered by WGS and

functional annotations tend to be a promising approach
for dissecting regulatory variants. Although most atten-
tion is paid on analyzing disease-associated loci dis-
covered by GWAS with integration of regulatory
annotations, the similar idea or methodology can be
also applied in WGS settings. Since WGS has the ability
to discover every variant along the genome, it is expected
to find more associations than GWAS, which poses
greater challenge for integrative analysis. Recent studies
find that disease or trait associated variants are enriched in
DHS regions [115,116], and these regions could be used
for marking regulatory elements with functional potential.
Such annotations will help to elucidate molecular
mechanisms underlying disease etiology and refine
mapping of associated variants. Several studies also
reveal the importance of TF binding in etiology of disease
and disease-associated variants may contribute to the
pathogenesis through disrupting the TF binding, such as
PolII and NFkB [116–118].

Possible computational issues

With the increasing number of sequenced genomes,
several computational issues need to be considered in

order to facilitate the application of WGS to studies of
diseases, gene regulation, and genomics etc. The first
issue is the speed of data processing of WGS data. It
usually takes long time to perform read mapping and
variant calling for WGS data, and this issue becomes
more severe when the number of samples is large.
Recently, an ultra-fast WGS pipline called SpeedSeq
[119] is developed, which greatly speed up the data-
processing procedure. How to further speed up the
process and guarantee the accuracy at the same time
will be an important computational issue that needs to be
solved. The second issue is how to quantify the impact of
variants detected fromWGS on disease or trait of interest.
We have reviewed several methods for this task on
different scenarios, like Mendelian diseases, complex
diseases, cancers and regulatory variants. The common
strategy underlying those methods is integration of WGS
data with information obtained from other sequencing
technology, like ChIP-seq [120], DNase-seq [121], RNA-
seq [117] and ATAC-seq [122]. How to integrate those
genomics data into WGS will be an important field of
research.

WHOLE GENOME SEQUENCING FOR
PREDICTIVE MEDICINE AND PRECISION
MEDICINE

Benefit from the high-throughput sequencing technolo-
gies with high speed and low cost, personal whole
genome sequencing or whole exome sequencing becomes
more and more available for customers. The genotype of a
person can be achieved from the sequencing data, and
compared to known disease databases or related pub-
lished literature to determine likelihood of trait expression
and the risk of some diseases. Our research group
developed a database of human whole-genome single
nucleotide variants and their functional predictions,
namely dbWGFP [123]. This database contains functional
predictions and annotations of nearly 8.58 billion possible
human whole-genome single nucleotide variants, with
each of them described by 48 functional predictions and
44 valuable annotations. Specifically, the 48 prediction
scores include 32 functional predictions calculated by 13
popular computational methods, 15 conservation features

Table 7. Various types of QTLs.
Name Molecular trait Other techniques Ref.

eQTL Gene expression RNA-seq or microarray Rockman [108]

dsQTL Open chromatin DNaseI-seq Degner [109]

sQTL RNA splicing RNA-seq Monlong [110]

rtQTL DNA replication timing FACS-sorting Amnon [111]

haQTL Histone acetylation ChIP-seq Rosario [112]

metQTL DNA methylation Bisulfite-seq Gibbs [113]
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derived from 4 conservation calculation approaches, and
1 sensitivity measurement. The 44 annotations are
obtained from the ENCODE project. dbWGFP is helpful
in the capture of causative variants from massive
candidate variants derived from whole-genome or
whole-exome sequencing data.
Predictive medicine is a field of medicine which may

take advantage of genetic information generated from
personal whole genome sequencing to predict the
probability of disease and what medical treatments are
appropriate for a particular individual [124–126]. Preci-
sion medicine is a medical model that formulates perso-
nalized healthcare, including disease prevention, medical
decisions and therapies [127,128]. Example of application
of predictive and precision medicine includes selecting
appropriate drugs for a patient to maximize the effect of
drugs and minimize the side effects, or giving a tailor
therapy to a patient to accelerate the recovery [129,130].

CONCLUSION AND DISCUSSION

As cost of the whole genome sequencing decreases
rapidly and approaches $1000, WGS are increasingly
used for revealing the genetic basis of Mendelian or
complex diseases, explicating novel disease biology,
helping clinical diagnosis and treatment. Whole genome
sequencing provides exceptional coverage of genomic
regions, including exonic, intronic and other unexplored
noncoding regions, and a large collection of rare variants
and comprehensive structural variants. Associated with
other type of data and annotations, WGS also successfully
helps to interpret the genetics and biology underlying the
cancer genome. In the future of predictive medicine and
precision medicine, WGS will be an important tool to
guide therapeutic prevention and treatment.
Although the introduction of WGS has successfully

applied in many researches, there exist some problems to
be solved in the future. Next-generation sequencing
technologies can generate tremendous amounts of data, in
the mean while they are suffering from the sequencing
errors, such as bias of GC/AT rich genomes and context
specific error. The amplification, which is a necessary step
for some platforms, may also bring errors. In addition,
most of the WGS studies could not provide sufficient
coverage, which may lead to some mistakes by genome
assembling and variant calling steps. Furthermore,
different sequencing platform may provide different
analysis results, especially for potential loss-of-function
mutations, or rare variants which are likely to be
pathogenic [47]. Even if the cost of whole genome
sequencing of a sample has dropped dramatically, the
sequencing of a comparable large number of samples with
high coverage is still unaffordable for most of researchers.
The main challenge in WGS studies is the processing

and interpreting whole genome sequencing data. Even if
introducing the step of quality control, there still exist errors
in the process of genome assembling, such as insufficient
read coverage or mis-assembly [131]. Another more
important step is to interpret the sequencing data, discover
the relationship from genotype to phenotype, and link the
analyzed data to clinically applications [132]. The volume
of information contained in a genome sequence is so vast
that it is hard to wholesomely and accurately explain all the
hidden knowledge. The role of most of variants, genes and
non-coding factors in the human genomes is still unclear or
incompletely known [133,134]. Although a lot of bioinfor-
matics approaches have been developed to deal with the
sequencing data for different applications, most of the
predicted or examined results remain to be testified. The
pathogenic mechanisms for some diseases, such as cancers,
are so complex, that they require the analysis of much more
WGS data in a larger sample set and combining with other
data, such as multi-omics data, functional data and clinic-
pathological data [95].
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