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Reconstruction of transcriptome by de novo assembly from next generation sequencing (NGS) short-sequence reads
provides an essential mean to catalog expressed genes, identify splicing isoforms, and capture the expression detail of
transcripts for organisms with no reference genome available. De novo transcriptome assembly faces many unique
challenges, including alternative splicing, variable expression level covering a dynamic range of several orders of
magnitude, artifacts introduced by reverse transcription, etc. In the current review, we illustrate the grand strategy in
applyingDe BruijnGraph (DBG) approach in de novo transcriptome assembly. We further analyze many parameters
proven critical in transcriptome assembly using DBG. Among them, k-mer length, coverage depth of reads, genome
complexity, performance of different programs are addressed in greater details. A multi-k-mer strategy balancing
efficiency and sensitivity is discussed and highly recommended for de novo transcriptome assembly. Future direction
points to the combination of NGS and third generation sequencing technology that would greatly enhance the power
of de novo transcriptomics study.
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HISTORY OF NGS AND ITS APPLICATION
IN TRANSCRIPTOME STUDY

First generation versus second generation
sequencing technologies

Debuted in 1977, the Sanger method [1] and hereafter
capillary-based automated sequencing technology [2]
represent the first generation sequencing technology that
contribute to a series of break-through discoveries,
including the completion of the human genome project
[3]. Despite its many successes, the impact of the first
generation technology is limited by its low throughput,

high expense, and sample requirements. To overcome its
limitation, a number of so called “second generation
sequencing” or “next generation sequencing” (NGS)
technologies emerged a decade ago, which employed
the massive parallel sequencing scheme. Compared to the
first generation sequencing, NGS technologies are
characterized with high-throughput but short sequence
reads. As the traditional Sanger method can obtain
sequence reads of 800 –1000 bp, the read length of
NGS technologies typically varies from 35 bp (SOLiD) to
700 bp (Roche 454), depending on the platform used
[4–6]. The read length of sequences would have serious
impact on the reconstruction of transcriptome from RNA-
seq data. The Roche 454 platform uses the emulsion PCR
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for DNA fragments isolation and amplification, and
pyrophosphate-based single-nucleotide addition sequen-
cing method on a micro-fabricated array of picoliter-scale
wells [4]. Initially, its average read length was 108 bases
[4], yet increased gradually to more than 300 bp [7,8]. In
the Illumina/solexa platform, the template amplicon is
achieved through bridge PCR, followed by four-color
cyclic reversible termination steps in sequencing and
imaging process [5]. The read length of Illumina/solexa
platform is usually 35–150 bp, shorter compared to 454
platform. The reversible terminator chemistry enabled the
Illumina/solexa platform with a higher throughput and
lower cost [5,7,9]. The LifeTech SOLiD platform takes
use of DNA ligase, rather than polymerase, to drive the
sequencing by synthesis [6]. These three platforms are the
most popular and commercially available technologies,
which are widely used in genomics and transcriptomics
studies because of their advantage in lower cost and
higher throughput compared to the first generation
sequencing [4,5,7,9,10].

Second generation sequencing versus other
technologies in transcriptomics study

In multi-cellular organisms, the differentiation of cell
types and their functions are defined by the constitute and
quantity of transcripts, so called transcriptome, inherited
from identical genetic make-up. Understanding the
transcriptome is essential for interpreting the function
and regulation of genes that offer insights into the
mechanism of development and diseases [11–15]. The
missions of transcriptomics studies are: (i) reconstructing/
assembling all transcripts, including mRNA and noncod-
ing RNA [16–18], small RNA [19], etc; (ii) identifying
transcript structures, e.g., transcript start/end sites [15],
exon-intron structure [20], alternative splicing [21–23],
etc; and (iii) quantifying the expression levels of
transcripts under certain biological conditions, e.g.,
development, and stress [24].

Before the development of NGS and its application in
transcriptome study (RNA-seq) technologies, a variety of
technologies have been used to study transcriptomics,
mostly based on the Sanger sequencing or the hybridiza-
tion technology (Table 1). These traditional methods were
often designed for a specific aspect of transcriptome with
severe limitations. The advantage of high-throughput and
low-cost offered by RNA-seq technology makes it
feasible to fully assess the transcriptome of organisms,
with or without their genome sequences.
The expressed sequence tags, or EST, which were

derived from cDNA libraries, had been proven to be
useful in applications of expressed gene identification
[25,26], and gene structure determination [27,28].
Because EST, which relies on the Sanger sequencing, is
generally low throughput and costly in production, it can
rarely be used to quantitative transcripts or discriminate
gene expression between tissues or developmental
samples. Notably, tag-based methods were developed
for respective usage. Serial analysis of gene expression
(SAGE) method [29], which counts sequence tags
flanking the restriction sites of endonucleases to quantify
gene expression, has been used in study of cancers, and
other human diseases [30–32]. Its shortage was also noted
to analyze changes in the regulatory regions of the
transcripts. Another tag-based approach, cap analysis of
gene expression (CAGE), captures and counts the 5´-cap
region of full-length cDNA [33], and use similar protocol
to quantify gene expression by sequencing, in analogy to
the SAGE method [33,34]. Although CAGE has
advantage in both gene expression analysis and transcrip-
tion start site identification [35,36], it also failed to reveal
variation in gene transcripts. Massively parallel signature
sequencing (MPSS) was developed as another approach
for gene expression quantification, which isolates tem-
plate fragments through digestion with type IIs restriction
endonuclease and determines their sequence after fixing
them on microbead arrays by ligation [37]. Although the
tag-based approaches are relatively high-throughput

Table 1. Comparison of methods in transcriptomic study.

Technology EST Tag-based method Microarray RNA-seq

Principle Sanger sequencing Tag-based sequencing Hybridization NGS

Throughput Low Relative high High High

Cost High High High Low

Reliance on genomic sequence No Yes Yes No

Background noise Low Low High Low

Construct full length transcript No No No Yes

Gene expression quantification Limited Yes Yes Yes

Alternative splicing identification Yes No Limited Yes

Dynamic range to quantify gene

expression level

Not practical More than two orders of

magnitude

Two or three orders of

magnitude

More than five orders of

magnitude
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compared to EST technology, their disadvantages pertain-
ing to read length (less than 20 bp), cost, and dependence
on restriction endonuclease recognition sites, are also
obvious [34,38,39]. The hybridization-based microarray
technology has been used for years to analyze gene
expression using gene probes fixed on glass or silicon
chip surface [40]. Although microarray technology is
highly advantageous in throughput, the requirements for
gene probes and predetermined gene sequences often
limit its application in model organisms. Its high back-
ground noise and limited expression dynamic range are
also factors restricting its usage in transcriptomics study
[39,41].
The NGS technology has revolutionized the field of

transcriptomics study. In contrast to the traditional
methods, RNA-seq provides a comprehensive solution
to transcriptomics study in full spectrum. Firstly, because
RNA-seq does not rely on the existing gene annotation, it
can catalog more transcripts. Not only has RNA-seq been
used to identify novel genes such as lincRNA [42], it has
also enabled more isoforms (alternative splicing) dis-
covered. For instance, more than 94% genes in human
and 61% genes in Arabidopsis are found to undergo
alternative splicing by RNA-seq study, compared to 35%
and 3% through previous methods [20,43–45]. The
strand-specific RNA-seq technique offers a unique
approach to study and distinguish sense and antisense
transcripts [46], one of novel aspects of transcriptome
discovered in recent years [47]. Secondly, RNA-seq has
been applied in definition of gene structures, including
transcriptional start sites [48], regulatory elements [49]
and polyadenylation [50]. Thirdly, compared to the
limited magnitude in gene expression change that can
be detected by microarray, the dynamic range of gene
expression can be analyzed by RNA-seq is unprecedented
[51]. Moreover, RNA-seq are used to characterize the
single nucleotide variation (SNV) [52,53] and RNA-
editing activity in gene transcripts [54,55]. Notably, in
regard to the non-model organisms that lack genome
sequences, the RNA-seq technology is an extremely
valuable tool. There are an increasing number of non-
model species that have undergone transcriptomics study
before their genome sequences were determined, espe-
cially for those crops of polyploidy [13,56,57].
RNA-seq has been applied in transcriptomics studies in

many plant and animal species. It leads to new discoveries
in alternative splicing and gene structure in model
organisms, including human [51,58], Drosophila [11],
Arabidopsis [44], and rice [59], etc. It proves to be a
powerful tool in study of unusual trans-splicing genes
[21,60–62]. Long noncoding RNA [63], new ORFs
within UTR [15], antisense transcripts [47], and gene
fusion [64] are some of the new fronts attributed to RNA-
seq. Currently, the submitted RNA-seq data to public

databases are exponentially increased each year [65].
There are more than 60 plants [66] and a large number of
animals, including insects [67–69], fishes [42], birds [22],
mammals [16,70] that are subjected to de novo tran-
scriptome study by RNA-seq, yielding insights into the
mechanism of development and gene regulation. De novo
assembly of transcriptome is a major challenge in using
RNA-seq technology for transcriptomics study. Another
strategy, the reference-based assembly, which relies on a
reference genome to first align all the reads to the genome
and then cluster those overlapping reads into transcripts
(such as Cufflinks [71]), will be covered in details in a
separate chapter. In this review, we focus on the
development of algorithms and computation details in
the de novo assembly of transcriptome.

De novo ASSEMBLY OF TRANSCRIPTOME

Application of De Bruijn graph in de novo assembly
of short-sequence reads

The use of De Bruijn graph (DBG) in assembly from
short-sequence reads was first applied in EULER
assembler [72]. Different from the overlap-layout-con-
sensus approach [73], sequencing data are dissected into
k-mers (words of k nucleotides) and organized into graph,
consisting of paths. Paths are formed from k-mers in a
certain order. Utilities that assembly from short-sequence
reads have only been developed more recently [74–80]
after the emerging of next-generation sequencing tech-
nologies. These DBG assemblers often consist of several
programs that perform error correction, merging
sequences, path building, repeat resolution, paths separa-
tion, and scaffolding with paired-end/mate-pair reads. The
major de novo transcriptome assemblers and softwares are
summarized in Table 2.

The challenge of de novo transcriptome assembly

Reconstruction of the full transcriptome by de novo
assembly from sequence reads, will help catalog
expressed genes, identify splicing isoforms, and capture
the expression detail of all transcripts. Without reference
genomes, the de novo assembly approach is considered to
be more difficult than the assembly of de novo genome
using short sequence reads [86]. In comparison to de novo
genomics assembly, De novo transcriptome assembly
faces many unique challenges [87]. Among them,
transcripts are expressed from low, medium to high
level, which can cover a dynamic range of gene
expression in several orders of magnitude [78]. In plants,
the range of gene expression in leaves was reported to
spans more than five orders of magnitude [88,89]. The
NGS platforms have associated biases, i.e., sequence
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reads redundancy, error rates tendency, etc., which can
further skew the transcript data [90]. Transcript isoforms
due to alternative splicing, which is only pertaining to
gene transcripts from eukaryotes, is another critical issue
that de novo assembly has to address [81]. Forming
contigs from isolating paths can be hindered by sequence
repeats and nucleotide variations, and also by alterna-
tively spliced isoforms. Artifacts introduced during
reverse transcription is proven to be another serious
concern, as the noise unique to RNA-seq experimental
process is not encountered in genome study. Taken
together, these accompany factors grossly compound the
difficulty in de novo transcriptome assembly.

Strategies for preprocessing and filtering sequence
reads

High-throughput sequencing data are often contaminated
with artificial elements, generated from library construc-
tion and/or PCR amplification. Thus, preprocessing of
sequence reads to remove artifacts from RNA-seq data
sets before assembly is essential to improve computa-
tional efficiency and assure the accuracy of assemblies.
For RNA-seq data, this step targets mainly four types of
sequences: adaptors [91,92], low-complexity reads [91],
PCR products of non-biological origin [93], and rRNA.
Tools recommended for the tasks include hardwired
solution [94] to programmed tools [91,92,95].
The high-throughput sequencing (NGS) data are found

to contain sequence errors pertaining to the new
technologies. For example, the Illumina platform has,
in general, an error rate between 1% and 3%, with
overwhelmingly substitution errors [96]. They are
distributed non-randomly with the error rate increasing
from 5´- to 3´-end [97]. Other NGS technologies display
similar characteristics [90]. Sequencing errors are serious
compounding factor affecting the performance of De
Bruijn graph, increasing its size and complexity, and
demanding extended memory space and processing
powers of computers [98,99]. There is added difficulty
to separate sequence errors from genuine variations for
RNA-seq data, due to the complication of post-transcrip-

tion processing of RNA. Thus, sequencing error correc-
tion becomes essential in preparing transcriptome
assembly.
Removal of sequence of low quality score is a common

practice in filtering sequencing reads (a useful review by
Yang et al. [96]). Two approaches are typically employed.
Low-quality scored nucleotides are trimmed off at either
one or both ends of the sequencing reads. Alternatively,
average quality score is computed for a sliding window of
fixed number of bases, and sequence regions with score
below certain threshold are removed. Many tools have
been developed for such tasks, namely FASTX
TOOLKIT [100], Sickle [101], FastQC [102], TRIMMO-
MATIC [103], BIO-PIECES [104], and UrQt [105].
Although aggressive quality filtering is often employed to
ensure the quality of data to be used in follow-up analysis,
sometimes this can result in discarding a substantial
portion of sequence data, thus may disproportionately
affecting some transcripts with biased nucleotide content
or lower expression level [106,107]. To determine the
optimal approach in filtering sequence reads, especially
for RNA-seq data, MacManes and Eisen performed some
carefully designed study [108,109]. Their results indi-
cated that significant improvement on assembly accuracy
was achieved by applying the error correction process
[109]. However, they noted stringent trimming of
nucleotides with quality scores£20 produced poorer
transcriptome assembly, measured with several different
metrics [108]. Thus, researchers interested in de novo
transcriptome assembly are advised to use more gentle
quality trimming scheme, or no trimming to achieve the
most favorable results [108,110].

The efficiency of different K-mer length

The K-mer length is a critical parameter in assembly using
De Bruijn graph, even more so for transcriptome
assembly. The assembly quality of a De Bruijn graph is
highly variable depending on the k-mer length, which
defines sequence overlap between two contiguous reads.
For genomics assembly, there is generally uniform reads
coverage across the genome, so the optimal k-mer length

Table 2. Existing de novo transcriptome assemblers.

Assembler
Support

for multiple k-mer

Support

for paired end reads

Support

for standard reads
Ref.

Multiple-k Yes Yes Yes [81]

SOAPdenovo No Yes Yes [80]

ABySS No Yes Yes [82]

Trans-ABySS Yes Yes No [83]

Oases (Oases-M) Yes Yes [84]

Trinity No Yes Yes [85]
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is determined as a function related to sequencing depth
[111]. However, for transcriptomics assembly, the system
is complicated with the complexity of an organism’s gene
contents, the highly variable gene expression levels, and
multiple isoforms from alternative splicing of the same
gene, in addition to the variables such as sequence depth,
error rate, etc [78,83]. On top of these, the widely existing
isoforms of transcribed genes in animals and plants [112–
114] prevent the use of coverage depth for resolving
repeated motifs. Hence, the optimal k-mer length in
transcriptome assembly is affected by a lot of more factors
[79]. In practice the k-mer value for transcriptome
assembly is sometimes determined based on the particular
study. When a more contiguous assembly is the primary
goal and the loss of lowly expressed transcripts is not a
concern, a large k-mer length is preferred. On the other
hand, small k-mer length is often used to capture poorly
expressed transcripts, resulting in more fragmented and
diverse transcripts. Such theoretical scheme and inter-
dependency of variables in transcriptome assembly were
tested and best defined in the experimental or simulated
studies using model organisms [87,115]. In common
practice, the length of k-mer is arbitrarily decided to use
an intermediate value, often as the result of a compromise
between the conflicting goals of transcript diversity and
transcript contiguity. Gruenheit et al. noted the close
correlation between the k-mer size and the coverage depth
cutoff of a transcriptome assembly, and that both
parameters need to be optimized in a balanced approach
for the best outcome [116]. Zhao et al. extensively
analyzed the efficiency of k-mer size from small to large
in capturing transcripts at different expression quantiles
[87]. Interestingly, they have shown that with the same k-
mer length, the efficiency for capturing transcripts at
different expression quantiles varied greatly. In the single
k-mer settings, when measuring with percentage of full-
length transcript constructed, Trinity [71] performed well
cross the full spectrum of gene expression levels, whereas
SOAPdenovo had the worst outcome in both low and high
expression quantiles. The outstanding performance of
Trinity, is due in part to its implementation of an
enumeration algorithm after construction of De Bruijn
graph from RNA-seq data. The algorithm scores all
possible paths and branches, recovers paths supported by
actual reads and removes ambiguous/erroneous edges, so
to retain those plausible ones. Its broad applicability was
demonstrated in recovering full-length transcripts and
isoforms in yeast, mouse, whitefly, and other non-model
organisms [71,117]. From the above analysis [87,116], it
was suggested that an extensive pre-testing and evalua-
tion of k-mer length for different transcriptome assem-
blers is needed for each individual case to determine an
appropriate k-mer size. Even so there is no guarantee that
an optimal outcome can be achieved for a given organism.

People are advised to use an approach of multiple k-mer
size, which will be the focus of next section. De novo
transcriptome assembly taking advantage of multiple k-
mer length is highly desirable.

The multi-k-mer strategy balancing efficiency and
sensitivity

The strategy to use multiple k-mers of different length was
initially proposed by Robertson et al. [83], and later by
Surget-Groba and Montoya-Burgos [81]. The principle of
the multi-k-mer approach is to assemble transcriptome
with various k-mer lengths at first. Then the outputs from
the first step are merged to form a final assembly. Using
the testing RNA-seq data set of A. aegypti [115], the
assembly with single k-mer (= 21) gave a good compro-
mise between the number of contigs and their average
length (measured with N50 value), which was determined
by comparing to the reference transcriptome from the
work of Gibbons et al. [115]. Impressively, the final
assembly from multi-k-mer approach vastly outperformed
each single k-mer assembly, marked by substantial
improvement in contiguity and increased number of
contigs with length over 100 bp [81]. The authors also
noted the multi-k-mer result achieved the highest cover-
age of the reference transcriptome, in which the base
coverage of reference transcripts was doubled compared
to the single k-mer assemblies.
The multi-k-mer approach has been applied to a number

of different assemblers, including Trans-Abyss [83],
SOAPdenovo-MK [87], and Oases-MK [87]. Robertson
et al. observed that transcripts with lower or higher read
depth were represented more effectively with smaller or
larger k-mer values, respectively. They concluded that
assembly across a range of k-mer values may be essential
to recover transcripts with very different expression levels
[83]. Their multi-k-mer version of the Abyss assembler,
Trans-ABySS reported the numbers of transcripts were
comparable to that produced by Cufflinks [118] that uses
the output of the read aligner TopHat [119] to reconstruct
transcripts. They believed that de novo assembly using
multi-k-mer approach offered a sensitive and effective
method to address the issues of variable expression levels
and multiple transcript isoforms. They noted that for
genes with contig-to-exon coverage ratio≥0.8, Trans-
ABySS and ALEXA-seq [120] (a tool for expression
analysis by sequencing) had well correlated expression
estimates (Pearson’s correlation coefficient = 0.921) [83].
In order to evaluate the efficiency and performance of
single k-mer verse multi-k-mer conditions, Zhao et al.
built a matrix of performance, including the number of
transcripts>100 bp, N50 value, total number of tran-
scripts, total transcript length, and number of full length
transcripts captured at different expression quantiles [87].
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Using the RNA-seq data sets from yeast and Drosophila,
they observed, for all tested assemblers, the multi-k-mer
method had a significant improvement in the full range of
coverage depth over their single k-mer peer. This holds
true for both S. pombe (~6,000 genes) and D. melano-
gaster (more complex; ~30,000 genes) transcriptomes.
Impressively, their work illustrated the efficiency of
assembly in capturing transcripts in full spectrum of
expression quantiles [87]. They showed that transcripts at
both ends (low and high expression quantiles) were not
efficiently recovered by any single k-mer length. The
major improvement by multi-k-mer approach over their
single k-mer peers was observed in the high-quantiles
range, but less significant in the low quantiles [87].
However, the multi-k-mer method is hindered by its
complication in computation. Melicher et al. used cloud
computing to build a bioinformatics pipeline to assemble
and analyze the transcriptome with off-site data manage-
ment and processing [121]. They employed Velvet-Oases
(using various k-mer length) or Trinity (k-mer = 21) for
the initial assembly and performed a secondary assembly
with CAP3. By reconstructing transcriptomes from three
non-model organisms, they demonstrated that their pipe-
line and the multi-k-mer method can be used broadly to
assemble higher quality transcriptomes than any single k-
mer approach [121].

The coverage depth of RNA-seq reads

While genomic sequencing coverage is generally uniform
across the genome, transcriptomics sequencing coverage
is highly variable that prevents the use of coverage
information from resolving repeated motifs [78]. Zhao et
al. showed that with increasing coverage depth, generally
a larger number of transcripts and more total bases were
assembled. However, the transcripts’ mean length and
N50, after an initial increase, peaked at a threshold and
started to decrease [87]. On the other hand, the percentage
of RMBT (reads mapped back to assembled transcripts)
had a pattern reversely correlated to increasing coverage
depth for all assemblers except Trinity. The percentage of
RMBT is an important benchmark for evaluating the
performance of an assembler. An optimal program should
use as many reads as possible to reconstruct high-quality
transcriptome. Trinity reached almost 90% in RMBT,
which may be attributed to its greedy k-mer based
approach at the Inchworm step. Oases-MK came in
second for this measure. Given the lower value in RMBT,
the performance of SOAPdenovo was not satisfactory
[87]. The peak of the mean transcript length and N50
seems to be correlated to the complexity of genome for a
species. Similar pattern was observed with the number of
constructed full-length transcripts. A peak was reached
after initial increase with the increase of coverage depth,

before the number of full-length transcripts started to
drop. The turning points appeared to be related to the
complexity of the genome, for which it was 3G
(sequencing data) for fruit fly, and between 1G and 3G
for fission yeast [87]. Others found the quantitative
difference in the assemblies using whole-animals RNA-
seq data versus tissues data [122]. In assemblies from
whole-animal data, increasing reads led to rapid increase
of short transcripts and discovery of conserved genes. But
single-tissue assemblies showed a slower discovery of
conserved genes but often with longer transcripts.
Additional study showed, in the mouse assemblies,
more reads also led to more frequent assembly errors
which must be mitigated using more stringent parameters
[122]. Gruenheit et al. noted that k-mer size and read
coverage depth are interacting factors that need to be
considered simultaneously [116]. Their analysis showed
that varying k-mer length with the coverage cutoff had a
significant impact on the success of gene assemblies, and
both parameters, k-mer length and reads coverage cut-off,
need to be optimized together for the best outcomes.

Other considerations and future direction

De novo transcriptome assembly facilitates the study of
organisms whose genome sequences are not available.
However, such tasks also create new challenges for
accurately assessing the quality of an assembly. Com-
monly, many parameters used in genomic assembly are
referred in transcriptome assemblies, such as median
contig length, number of contigs, and N50 [123,124].
However, these measures were proven insufficient and
unreliable [125,126]. With available reference genome,
the reference-based approach is helpful to estimate the
accuracy and completeness of an assembly. By comparing
assembled transcripts to a reference transcript set, the
fraction of assemblies matching a reference, the fraction
of reference being matched, and the fraction of assemblies
containing complete CDS can be estimated with high
confidence [87,123,125,127]. More recently, methods for
evaluating de novo transcriptome assembly not relying on
reference genome were developed [128,129]. They,
instead, use a probabilistic model to assess an assembly
and its underlining sequencing read data. Although these
statistics-model based methods were powerful tool and
showed to accurately reflect assembly quality in many
tested cases, care must be taken as discrepancy was also
noted when compared to traditional measures or refer-
ence-based approach.
The recent advances in de novo transcriptome assembly

have enabled the expansion of RNA-seq studies to many
organisms, with or without high-quality reference genome
available. In light of such broad application of RNA-seq
technology, there are other factors warranting considera-
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tion. While it is often critical in assembly of large
genome, resources usage for transcriptome assembly
bears some equal importance for practical reason. Zhao
et al. recorded the dramatic difference in performance
among Oases, Trinity, ABySS, and SOAPdenovo when
the same Drosophila RNA-seq data set was used for de
novo assembly [87]. They noted that Oases was the most
sensitive, and ABySS was the least sensitive in response
to increasing data size, although generally memory usage
displayed a good correlation with data size. The k-mer
length also had a great impact on both memory usage and
runtime. While runtimes for ABySS, Oases, and SOAP-
denovo were reversely correlated with the k-mer length,
memory usage remained almost constant for SOAPde-
novo and ABySS, except for Oases whose memory usage
had a reverse correlation with k-mer length. They also
found that processing of a large data set by Trinity can
exceed reasonable execution time and hence becomes
impractical [87]. Trinity was initially built for reconstruc-
tion of full-length transcripts with maximum sensitivity
[71]. Its efficiency was later improved by halving memory
requirements and increasing processing speed via paral-
lelization [130]. Currently, its newer release was recom-
mended to have ~1 GB of memory per 1 million paired-
end reads. A common multi-core server with 256 GB to
1 TB of memory would be sufficient for a set-up at
departmental core facility [117]. Recently, new de novo
transcriptome assemblers were developed. For instance,
SOAPdenovo-Trans [131] took the advantage of the
error-removal model from Trinity [85] and the robust
heuristic graph traversal method from Oases [84]. Bridger
[132] incorporated the key ideas of de novo assembler
Trinity [85] and reference-based assembler Cufflinks
[118] to construct the splicing graphs and the full-length
transcripts.
Requirements for computation resources by assembling

large transcriptome data sets can be mitigated with high-
performance cluster computing. To take use of high-
performance computing with thousands of CPU cores,
many transcriptome assemblers, like Trinity [117], Oases
[84], Trans-ABySS [83], Rnnotator [93], and SOAPde-
novo [133], employ parallel computing methods of
different levels. More recently, cloud computing (refer
to review [134]) becomes increasingly popular with the
bioinformatics community, as resources are rented as a
service per a user’s need. The Hadoop-Based project in
developing MapReduce programming paradigm is under-
way as a community effort, attributing to the effectiveness
of MapReduce in parallelization of bioinformatics algo-
rithms, particularly those as the leading application in the
area of NGS data analysis [135]. To solve the large
transcriptome assembly problem, a scalable cloud-based
solution is deemed to be the destination to meet future
computation needs.

Transcriptome analysis has seen the transition from
microarray technology to high-throughput NGS technol-
ogies. The RNA-seq approach provides transcriptome
profiling and analysis as a “comprehensive” solution that
is superior to other methods we have mentioned in the
introductory section. Meanwhile, as the RNA-seq tech-
nology and experimental protocols continue to evolve, we
foresee the emerging of new challenges for bioinforma-
ticians. Many groups and commercial vendors are
currently developing different flavors of the third
generation sequencing technology [136,137], which are
characterized with longer reads, single molecule, or
realtime data. For example, RNA-seq reads from PacBio
[138] have much longer reads (several kilobases) to
enable it to sequence a single transcript to its full length,
but are accompanied with high error rates (~15%). The
PacBio’s long reads are more advantageous when the
error rate issue is mitigated with circular consensus
sequencing mode [139]. PacBio technology has been
applied in updating genome sequence [140] and in
evaluating the assembly efficiency of de novo assembly
[141]. In such scenario, bioinformatics tools resolving
sequence errors by combining second and third genera-
tion sequencing data would become most valuable in
transcriptomics profiling and analysis.

ABBREVIATIONS

CAGE, cap analysis of gene expression; cDNA, complementary DNA;
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