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The sequencing revolution driven by high-throughput technologies has generated a huge amount of marine microbial
sequences which hide the interaction patterns among microbial species and environment factors. Exploring these
patterns is helpful for exploiting the marine resources. In this paper, we use the complex network approach to mine
and analyze the interaction patterns of marine taxa and environments in spring, summer, fall and winter seasons.
With the 16S rRNA pyrosequencing data of 76 time point taken monthly over 6 years, we first use our MtHce
clustering algorithm to generate the operational taxonomic units (OTUs). Then, employ the k-means method to divide
76 time point samples into four seasonal groups, and utilize mutual information (MI) to construct the four correlation
networks among microbial species and environment factors. Finally, we adopt the symmetrical non-negative matrix
factorization method to detect the interaction patterns, and analysis the relationship between marine species and
environment factors. The results show that the four seasonal microbial interaction networks have the characters of
complex networks, and interaction patterns are related with the seasonal variability; the same environmental factor
influences different species in the four seasons; the four environmental factors of day length, photosynthetically active

radiation, NO,+ NO; and silicate may have stronger influences on microbes than other environment factors.
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INTRODUCTION

Marine microbes account for most of the oceanic
activities. They are responsible for 98% primary ocean
production and mediate all biogeochemical processes like
the flow of nitrogen, carbon, and energy in the ocean [1].
However, most ecological functions and roles among
microbial communities and environmental factors are
poorly understood, owing to the dilute, microscopic
nature of the planktonic microbial community [2]. With
the development of high-throughput DNA sequencing
technologies that yield a mass of reads of small-subunit
rRNA gene (16S rRNA/18S rRNA) and DNA, it is
possible for us to describe the compositions of microbial
communities, their diversity and how communities may
change across space, time or experimental treatments

based on these sequence data [3]. However, most of the
current analytical approaches of describing and compar-
ing the structure of communities often focus on the total
numbers of taxa, the relative abundances of individual
taxa and the extent of phylogenetic or taxonomic overlap
between communities or community categories [1,3—-5].
Although some researchers used the network analysis to
explore co-occurrence pattern in soil and ocean [2,6-9],
they just used the over-fitting clustering method of
operational taxonomic units (OTUs), and adopted the
linear correlation approaches (e.g., Pearson or Spearman)
to construct the correlation networks for showing the co-
occurrence pattern of microbes. They did not mine the
communities of networks for further showing the
structures of co-occurrence patterns. Clustering the
rRNA sequences into OTUs with high accuracy is an
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essential requirement for downstream analysis, such as
obtaining true taxonomic diversity profile of an environ-
mental sample, constructing the correlation networks of
microbes and environmental factors. Exploring the
interaction patterns among microbes and environment
factors can offer new insight into the structure of complex
microbial communities, reveal the niche spaces shared by
the community members, identify habitat affinities or
shared physiologies, and find how the environment
influences the microbes, that could guide more experi-
mental settings. In this paper, we will construct the spring,
summer, fall and winter correlation networks of microbes
and environments by using k-means clustering method,
mutual information (MI) correlation computing approach
and our effective MtHc OTUs clustering algorithm [10],
then, introduce a symmetrical non-negative matrix
factorization (s-NMF) method to detect the interaction
patterns among marine microbes and environments. The
aim is to understand the relationship among microbes,
environments and seasonal variability and try to deter-
mine the microbial interaction pattern difference among
seasons and find which environmental factors are closely
related with marine microbes.

RESULTS AND DISCUSSION

For exploiting the correlation and co-occurrence patterns
of microbes and environments from rRNA read data, we
first need an effective clustering method and a reference
database to assign the reads to known microbial taxa for
obtaining the abundance of species, then, quantify the
similarity of two species distributions with a similarity
measure (for environment traits, treating them as addi-
tional “species”), in the end, we select all significant
pairwise relationships to construct four seasonal microbial
correlation networks, and detect the communities with s-
NMF. Due to the superior performance of MtHc [10] than
other four state-of-the-art clustering methods (MSClust
[11], ESPRIT-Tree [12], CROP [13] and BEBaC [14]), we
select MtHc method to generate the OTUs in this paper.

Topology analysis of four seasonal microbial
correlation networks

In order to analyze the microbial diversity and the
relationship among OTUs and environmental factors in
spring, summer, fall, and winter seasons, we need to
construct the correlation networks. In general, mutual
information (MI) is a natural generalization of the
correlation since it can measure the nonlinear dependency
and topology sparseness between variables [15]. Here, we
use MI to measure the similarity between two species and
obtain the significant pairwise relationships with permu-
tation test. The four seasonal microbial correlation

networks are shown in Figure 1. We also compute their
topological parameters including the average degree,
average clustering coefficient, average power law degree,
and modularity and compare them with their correspond-
ing random networks. The comparison results of
topological parameters of four seasonal networks and
their random networks are summarized in Table 1.

From Table 1, we can see that there is little difference in
the topological parameters among spring, summer, fall
networks, but there is bigger difference between winter
network and other three seasonal networks. These results
indicate that the interaction patterns among microbes and
environments in winter are significantly different from
spring, summer and fall seasons. Compared with random
networks, four seasonal microbial correlation networks
have bigger average clustering coefficient, average power
law degree, and modularity, indicating that the four
seasonal microbial associate networks have some char-
acters of complex network.

Interaction patterns detected by s-NMF in seasonal
microbial networks

We first used some annotation strategies, such as, BLAST
against Greengenes [16], SIVA [17] and RDP [18], to get
the annotation information of OTUs at taxonomic level,
then adopted s-NMF to mine the four seasonal microbial
networks. The structures of interaction patterns detected
by s-NMF are shown in Figure 2, from which we can see
that the community (or interaction pattern) numbers
detected with s-NMF are 4, 3, 3 and 6 in spring, summer,
fall and winter networks, respectively. The community
number of winter network is more than that of other three
seasonal networks, which indicates that the seasonal
variability might have the greatest influence on the marine
microbe diversity. We also find that some environmental
factors are strongly correlative with some special
microbes. For instance, in spring microbial network
(M1), the environmental factor E12 (NO,+ NOs) is
correlative with OTUS57 (SARII), OTUG65 (SARII),
OTU73 (SAR11) and OTU177 (Roseovarius). In summer
microbial network (M1), E12 is correlative with OTU40
(Pelagibacter) and OTUS2 (Pelagibacter). In fall micro-
bial network (MI1), E12 is correlative with OTU40
(Pelagibacter), OTU33 (Pelagibacter), OTU149 (Pela-
gibacter), OTU183 (Roseovarius), OTU67 (Pelagibac-
ter), OTU135 (Pelagibacter), OTU256 (Cyanobacteria),
OTU44 (Pelagibacter), OTU101 (SARII). In winter
microbial network, E12 is correlative with OTU132
(Pelagibacter) and OTU228 (Roseovarius).

We also analyzed in detail the composition of some
communities which include more environmental factors
in the four seasonal networks. The community M1 in
spring network is composed of 6 environmental factors
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Figure 1. Four correlation networks in spring, summer, fall and winter seasons with MI(O —OTU, A—environmental
factor).
Table 1. The topological parameters of four seasonal correlation networks and their corresponding random networks.
Seasonal networks Random networks
Spring Summer Fall Winter Spring Summer Fall Winter
Node Number 161 175 208 216 161 175 208 216
Edge Number 413 647 572 980 413 647 572 980
Avg. degree 5.367 5.932 5.123 10.752 5.367 5.932 5.123 10.752
Avg. power law degree 1.241 1.267 1.387 0.812 0.643 0.423 0.671 0.016
Avg. clustering coefficient 0.231 0.271 0.228 0.389 0.012 0.021 0.023 0.038
Modularity 0.565 0.553 0.512 0.371 0.381 0.337 0.412 0.221

(E1, E4, ES, E6, E12, and E14) and 40 OTUs in which the
30 OTUs come from Bacteria, 8 from organelle, and 2
OTUs have not been annotated. For the 30 Bacteria
OTUs, 21 OTUs are identified in class level as

86

Alphaproteobacteria, 9 OTUs as Gammaproteobacteria.
For 8 organelle OTUs, 6 OTUs come from Chloroplast
and 2 OTUs from Mitochondria. The community M1 in
summer network is composed of 8 environmental factors
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Figure 2. The communities (or interaction patterns) among micorbies and environment factors detected by s-NMF in four

seasonal networks (0 — OTU, A — environmental factor).
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(E2, E4, ES, E9, E12, E14, E17 and E18) and 46 OTUs
which belong to Bacteria. 24 OTUs are identified in class
level as Alphaproteobacteria, 19 OTUs as Gammapro-
teobacteria, 2 OTUs as Verrucomicrobiae, 1 OTU as
Sphingobacteria. The community M1 in fall network
contains 9 environmental factors (E1, E2, E3, ES, E9,
E10, E12, E13 and E14) and 48 OTUs in which 43 OTUs
come from Bacteria, 5 OTUs from organelle. For 43
Bacteria OTUs, 36 OTUs are identified in class level as
Alphaproteobacteria, 3 OTUs as Betaproteobacteria, 3
OTUs as Gammaproteobacteria, 1 OTU as Actinobac-
teria. The community M1 in winter network consists of 6
environmental factors (E2, E6, E7, E11, E12 and E15)
and 49 OTUs in which 41 OTUs come from Bacteria and
8 OTUs from Chloroplast. For 41 Bacteria OTUs, 32
OTUs are identified in class level as Alphaproteobacteria,
2 OTUs as Betaproteobacteria, 4 OTUs as Gammapro-
teobacteria, 1 OTU as Flavobacteria, 1 OTU as
Cyanobacteria, 1 OTU as Verrucomicrobiae. M3 in
winter network consists of 3 environmental factors (E3,
E14 and E16) and 30 OTUs in which the 29 OTUs come
from Bacteria and 1 OTU has been not annotated. For 29
Bacteria OTUs, 13 OTUs are identified in class level as
Alphaproteobacteria, 12 OTUs as Betaproteobacteria, 3
OTUs as Actinobacteria, 1 OTU as Cyanobacteria. M4 in
winter network includes 3 environmental factors (ES, E16
and E18) and 20 OTUs in which the 18 OTUs come from
Bacteria, 1 OTU is Chloroplast and 1 OTU is unknown.
For 18 Bacteria OTUs, 13 OTUs are identified in class
level as Alphaproteobacteria, 2 OTUs as Betaproteobac-
teria, 3 OTUs as Gammaproteobacteria.

From Figure 1, we can find that four seasonal networks
jointly includes the environment factors of E2 (day
length), E5 (photosynthetically active radiation), E12
(NO,+ NOs) and E14 (silicate), which indicates that the
four environmental factors may strongly influence the

microbes than other environment factors.

From Figure 2, we can see that the structure of
communities in four seasons is significantly different, for
example, two communities of fall seasonal network
contains more than 7 environment factors, and one
community of summer seasonal network contains 8
environment factors, while the communities of spring
and winter seasonal networks just contain less than 6
environment factors, meaning that same environmental
factors influence different species in four seasons, and
more environment factors jointly influence the microbes
in fall and summer seasons.

The community structural analysis of four seasonal
microbial networks shows that a large fraction microbial
interaction in class level occurs among Alphaproteobac-
teria, Betaproteobacteria and Gammaproteobacteria.
The community dense in spring, summer and fall
networks is bigger than that of winter network. The
correlative relationships between OTUs (taxa) are stron-
ger than that of OTU and environmental factor, which
may indicate that biological rather than physical factors
can be more important in defining the fine-grain
community structure.

Community alignment among four seasons

In order to study the evolution of microbes among four
seasons, we align the communities between two seasons
with MAGNA network alignment method [19]. MAGNA
can optimize any measure of alignment quality, topolo-
gical or biological and of node or edge conservation. The
aligning results of communities in four seasons are shown
in Figure 3, from which we can see that several
communities of one season evaluate into one commu-
nities of another season, and one community of one
season evaluates several communities of another season.

@/W/
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Figure 3. Evolutionary relationship of microbial communities among four seasons. The score on the line is the similarity

value between two communities.
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For example, M1, M2 and part of M3 in spring season
evaluate into M3 in summer, and M2 in fall season
evaluates into M1, M2, M4 and M6 in winter.

CONCLUSIONS

Microbial interaction networks provide further investiga-
tion angle for microbial community structure and
ecological mechanism. As more and more environmental
microbiomics data is available, developing the novel
methods to explore the potential correlation/interaction
patterns among microbial taxa and environmental factors
will play a key role in the field of environmental and
ecological system biology research. Considering the
urgent requirement that needs novel network analytical
approaches to move beyond the basic description of
compositions and diversity of microbial communities, we
use our MtHc OTU clustering method and MI correlation
computing approach to construct four seasonal microbial
networks from marine 16S rRNA sequences, and employ
s-NMF algorithm to detect the potential interaction
patterns among microbes and environments. The results
show that the four seasonal marine microbial correlation
networks have characters of complex networks; the
marine microbial interaction patterns are related with
the seasonal variability, e.g., the community dense in
spring, summer and fall networks is bigger than that of
winter network; the interaction between microbe and
environmental factor in four seasonal networks is
significantly different, that is, the same environmental
factors influence different species; the environmental
factors of day length, photosynthetically active radiation,
NO,+ NO; and silicate may strongly influence the
microbes than other environment factors. Although
these interesting analyze results do not demonstrate that
we have a comprehensive view of interactions within
marine microbial interaction patterns, our analysis
method is more feasible and interesting for exploring
the unseen patterns emerged in the complex dataset.

MATERIALS AND METHODS
Datasets

The 16S rRNA sequence data and environmental factor
data used in this paper were downloaded from http://
vamps.mbl.edu/index.php, which include 969,400
sequences and 18 environmental factors from 76 time
point seawater samples taken monthly over 6 years at a
temperate marine coastal site in the West English Channel
[7]. The 18 environmental factors are serial day (E1), day
length (E2), DX1 (E3), DX2 (E4), photosynthetically
active radiation (E5), North Atlantic Oscillation data (E6),
primary productivity (E7), daily primary productivity

(E8), mixed layer depth (E9), the concentrations of
ammonia (E10), chlorophyll(E11), NO,+ NO;s (E12),
salinity (E13), silicate (E14), SRP (E15), temperature
(E16), total organic carbon (E17) and total organic
nitrogen (E18).

Due to the marine climatic changes, it is not fit for
partition the four seasons according to the months [20].
Here, according to the environmental data of 6 years, we
first use k-means method to cluster the 76 samples into
four groups which correspond to the spring, summer, fall
and winter seasons. This seasonal partition way can better
reflect the local seasonal changes. As a result, 15, 24, 17
and 20 of the 76 samples are arranged into winter, spring,
summer and fall seasons respectively. The 16S rRNA
sequence numbers of winter, spring, summer and fall
seasons are 174,885, 256,596, 244,046 and 293,873
respectively. In order to establish the seasonal correlation
networks of microbes and environmental factors at the
taxonomic level (e.g., species, genus), the 16S rRNA
sequences are grouped into species-level operational
taxonomic units (OTUs) with our MtHc algorithm [10],
which resulted in 8,299 OTUs. MtHc method can
accurately estimate the number of species and achieve
better cluster quality.

MtHc algorithm

Most heuristic clustering methods are sensitive to the
selected seeds that represent the clusters, and a change in
the order of the input sequences may alter the clustering
results significantly. Hierarchical clustering methods
(either based on average-linage or complete-linkage)
consider all the sequences in a cluster when forming
clusters, which can add the computational burden. Model-
based clustering methods and network modularity-based
method often have a higher computational complexity,
and do not easily deal with the massive 16S rRNA data.
To address these problems, we proposed MtHc method in
previous work [10] to cluster massive 16S rRNA
sequences into OTUs. Comparing with the existing
OTU clustering methods, MtHc can achieve higher
cluster quality and lower time complexity for millions
of 16S rRNA sequences, and also bypass the selection of
hard distance threshold. In view of the better clustering
performance of MtHc, and dataset containing 969,400
sequences, we select our MtHc method to generate the
OTUs in this paper.

MtHc consists of three main phrases: searching motifs,
generating crude clusters and merging these crude clusters
into OTUs. Suppose all the 16S rRNA sequences can
construct a complete weighted network, where sequences
are viewed as nodes, each pair of sequences is connected
by an imaginary edge, and the distance of a pair of
sequences represents the weight of the edge. The process
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of MtHc method [10] can be simply described as: step 1,
heuristically search the motif that is defined as n-node
sub-graph (in the present study, n =3, 4, 5), in which the
grammar-distance between any two nodes is less than a
threshold. Step 2, use the motif as a seed to form
candidate cluster by computing the distances of other
sequences with the motif. Step 3, hierarchically merge the
candidate clusters to generate the OTUs by only
calculating the distances of motifs between two clusters.
By selecting a threshold 6, a series of sequence motifs are
searched from the imaginary complete weighted network
constructed with all the 16S rRNA sequences. Based on
these motifs, MtHc forms a series of crude clusters, then
merging them into OTUs by defining another threshold .
We have discussed in detail how to select these two
parameters in our previous work [10].

Correlation networks modeling

In order to explore the interaction patterns among marine
microbes and environments and find the marine microbial
seasonal variability, we should construct the four seasonal
microbial correlation networks. Suppose vector X, and Y,
represent OTU and environmental factor respectively.

X, = X1 X0s s Xpgs s Xps], (p=1,...,8299) (1)

Yl/: [yulayuzn o5 Vuss "-ayuS]’ (Z/: 1’ ’18) (2)

where x,; is the p-th OTU abundance value in the s-th
sampling, that is, x,, equals the ratio of the sequence
number N, contained in the p-th OTU and the total
sequence number N, contained in the s-th sampling, v, is
the v-th environmental factor value in the s-th sampling.
To reduce the sequencing effort bias, x, is set to zero if
N,s<5. For reducing the false higher correlation between
vectors, we also remove these OTU vectors which contain
less than 3 non-zero elements. After these processing, we
obtain 702 OTUs vectors, in which spring season contains
144, summer 161, fall 194 and winter 203 OTUs,
respectively. Then, four microbial abundance matrixes
and four environment factor matrixes of spring, summer,
fall and winter seasons are produced by normalizing every
OTU and environment factor vector with zero-mean
normalization method.

Because mutual information (MI) can capture non-
linear dependencies and topology sparseness between
variables [15], we use MI to compute the correlations
between variables.

MIX,Y)=- ) p(x,y)logl% 3)

where p(x, y) is the joint probability distribution of X and
Y, and p(x) and p(y) are the marginal probability

distributions of X and Y respectively.

The permutation test is used to calculate the statistical
significance. We considered that there are robust correla-
tions between OTU-OTU and OTU-environmental factor
vector if P-value <0.01, and there is a robust correlations
between environmental factor vectors if P-value<0.05.
In the end, the four marine microbial association networks
(Figure 1) of spring, summer, fall and winter seasons are
constructed. These four seasonal networks are weighted
and undirected.

Symmetrical non-negative matrix factorization
(s-NMF) algorithm

A weighted network contained n nodes can be described
by an adjacency matrix 4 =[A;],,, where 4;=>0. The
feature matrix O of the network can be calculated from A4,
which represents the node-node similarity.

Suppose that 7 nodes can be grouped into 7 overlapping
cliques (or communities). Then, a clique-node similarity
non-negative matrix W = [wy;],«, is introduced to repre-
sent the similarity degree between node and clique, where
wy; indicates the closeness degree between node i and

P

clique k. Because Z WiiW,; is an approximation of
k=1

similarity between node i and node j, and O represents

the node-node similarity, then, we can use O;; to estimate

B
Z W;iWy;. Thus, our task is that minimize the function
k=1

Fg.
. — 1o _wlnl?
min Fo(O.W) = | 0-W Wi
1
=32 lo-w'wy0-w'w), @
i

where A°B is the Hadamard product (or element-by-
element product) of matrices A4 and B. This optimization
problem can be solved by a symmetrical non-negative
matrix factorization (s-NMF) method which is an
improved method of non-negative matrix factorization
(NMF) [21]. The iteratively updated rule of s-NMF can be
described as follows:

[W,0]

—_— 5
W wiw,l] ©)

Wia=Wge

where [%{ is the Hadamard division (or element-by-
element division) of matrices 4 and B. The stable points
of Equation (5) can only fall into the set of NMF’s
stationary points, hence guaranteeing the convergence of
s-NMF. NMF has been proved that it converges to a

stationary point in many cases.
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By normalizing the column of W, we get the fuzzy
membership degree matrix U. The clique of correspond-
ing to the largest element of each column in U is
determined as the final membership clique of each node.
That is, if Uy; is the maximum in the column 7, the node i
is classified to the clique £.

In order to determine the optimal number of community
r, we iteratively increase » and choose the one which
results in the highest modularity Q [22].

1 kik;
- I S(C..C
0= 3 (-3,)€0)
where m is the sum of weighted edges, w;; is the weight of
edge connecting nodes 7 and J, k; is the degree of node i. If
node 7 and j are grouped to the same cluster, §(C;,C;) =1,
and otherwise 6(C;,C;) =0.
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