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Genome-wide chromatin interaction analysis has become important for understanding 3D topological structure of a
genome as well as for linking distal cis-regulatory elements to their target genes. Compared to the Hi-C method,
chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) is unique, in that one can interrogate
thousands of chromatin interactions (in a genome) mediated by a specific protein of interest at high resolution and
reasonable cost. However, because of the noisy nature of the data, efficient analytical tools have become necessary.
Here, we review some new computational methods recently developed by us and compare them with other existing
methods. Our intention is to help readers to better understand ChIA-PETresults and to guide the users on selection of
the most appropriate tools for their own projects.

INTRODUCTION

Recently, ChIA-PET [1,2] became one of the few exciting
high-throughput genomic technologies that can detect
global chromatin interactions at the genome scale at high
resolution. Compared to other methods (e.g., Hi-C [3,4]),
ChIA-PET allows for mapping of almost all in vivo
chromatin interactions mediated by a specific protein of
interest. At a similar sequencing depth, ChIA-PET can
detect chromatin interactions at much higher resolution,
which is necessary for studying gene regulation, such as
long-range interactions of enhancers and their target gene
promoters. Therefore, ChIA-PET is suitable for studying
regulatory function of a specific protein factor via its
chromatin interactions.1

However, a ChIA-PET experiment is relatively com-
plicated and has some characteristics and inevitable noisy
sources. It requires effective computational tools to
remove this noise in order to detect interactions with
high confidence. Below we will first review our new

method MICC [5] which involves a hierarchical mixed
probability model for calling statistically significant
interactions. Then we will describe how to build a
machine learning model that can use multiple 1D ChIP-
Seq data to predict 3D chromatin interactions [6] and
hence can help to improve ChIA-PET data analysis or to
rescue missed/novel interactions. Finally, we will intro-
duce our method 3CPET [7], which allows users to
identify possible major protein complexes mediating the
ChIA-PET-detected interactions at different loci in the
context of 3D genome.

IMPROVED ChIA-PET NOISE MODELS

A common framework for processing ChIA-PET raw data
contains five steps. First, one must filter out linkers. For
the half-linkers ChIA-PET protocol [1], one has to remove
the two types of half-linkers contained in the sequenced
paired-end-tags (PETs). The PETs with two different types
of half-linkers are designated as chimeric PETs which are
used to estimate the frequency of random ligations in
solution, while those with the same types of half-linkers
are non-chimeric PETs containing both noise and the true
signal. For the bridge-linker ChIA-PET protocol [8], the
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bridge linkers also need to be trimmed. Second, one has to
map PETs to the reference genome. The two ends of a PET
mark the location pair of the interaction sites. Third, one
carefully classifies the PETs. Because there is a consider-
able proportion of PETs formed by self-ligation of single
DNA fragments, these self-ligation PETs have relatively
smaller spans between the two ends than intrachromoso-
mal inter-ligation PETs. They should be filtered out to
enrich functional PETs. Fourth, one has to cluster the
PETs. Those PETs that link the same two anchor sites
(generally protein-binding sites) are merged to form a PET
cluster. Lastly, one can detect potentially true interactions
(e.g., with high likelihood) among PET clusters by means
of computational models. There are two main types of
noise in all ChIA-PET interaction data: chromatin random
ligation in solution and chromatin random collision during
cross-linking. The major difference between our method
and the existing methods lies in the model used to remove
these types of noise at this last step. To further improve
ChIA-PET data analysis, one would have to integrate
other data types.
There are a few methods for processing of ChIA-PET

data. Three of them are used for comparison with our
MICCmethod in this article. They are the ChIA-PET Tool
[9], ChiaSig [10], and Mango [11]. The ChIA-PET Tool is
the first freely available software to deal with ChIA-PET
data. It implies that there is only random-ligation noise
and uses a PET count (no less than 3) to filter out
interactions [9]. This strategy, however, misses many
weaker but probably true interactions. ChiaSig takes the
two types of noise into consideration and shows an
improvement over the ChIA-PET Tool via comparison
with 5C data [10]. However, ChiaSig is much too
conservative and thus has a high false negative rate [5].
Mango models the probability of observing an interaction
between genomic loci as a function of both genomic
distance and peak depth and then uses this model to
estimate statistical confidence of the interactions [11].
MICC, like ChiaSig, is aimed at removal of both random-
ligation noise and random-collision noise simultaneously.
It can detect chromatin interactions with high sensitivity
while controlling the false discovery rate (FDR) at a
reasonable level.
Here we take a brief look at the model underlying each

of these four methods, and the details of the methods can
be found in the original papers. For a PET cluster (A, B),
where A and B are two anchor sites, we denote i) cAB as
the count of PETs that link anchor A and B, ii) cAðcBÞ as
the total PET count linking anchor A (B), and iii) dAB as
the distance between two anchor regions (dAB=þ1 if A
and B are in two different chromosomes).
The assumption in the ChIA-PET Tool is that most of

the noise derives from random ligations in solution
between two ends of different DNA-protein complexes.

The ligation is completely random; thus, the ligation
probability is associated with the total PET count of either
anchor. Specifically, they use a hypergeometric distribu-
tion to describe the probability of PET cluster (A, B) as a
random ligation PET cluster (RlPC), i.e.,

PðcABjcA,cBÞ=dhyperðcAB,cA,2N – cA,cBÞ

=

cA
cAB

 !
2N – cA
cB – cAB

 !

2N

cB

� � ,

where N is the sum of all PETs and dhyperðÞ is the
probability mass function of the hypergeometric distribu-
tion. Therefore, the significance of a PET cluster as a True
interaction PET Cluster (TiPC) can be evaluated by means
of the hypergeometric p-value(s). The FDR is estimated
via a comparison with permutated p-value(s) from a
randomly shuffled dataset. Because the hypergeometric p-
value(s) tends to be optimistic for such data, the ChIA-
PET Tool requires TiPCs to have a PET count no less than
3 for predictions with higher confidence.
ChiaSig adds the description of random-collision noise

and a newly developed non-central hyper-geometric test
based on the ChIA-PET Tool. ChiaSig implies that the
probability of random collision events positively corre-
lates with the distance between two ends of the PET.
Specifically, the probability of a PET cluster that is
derived from noise is given by

PðcABjcA,cB,dABÞ=
cA
cAB

� �
2N – cA
cB – cAB

� �
[ωðdABÞ]cAB

ΣðA, BÞ cA
cAB

� �
2N – cA
cB – cAB

� �
[ωðdABÞ]cAB

,

where N is the sum of all PETs and ωðdABÞ is a distance-
related function that is used to describe the probability of
a PET with span dAB that is derived from a random
collision. The significance of a PET cluster as a TiPC can
be evaluated by means of the p-value(s) of this non-
central hyper-geometric test. The FDRs are estimated
using a discrete FDR procedure [12]. Predictions with
good confidence also require to have at least three PETs.
Mango first models the probability of observing a

single PET linking two loci as a function of their genomic
distance dAB and of the product of their read depths RAB
=cA � cB as

PðIÞ= PðI jdABÞ � PðI jRABÞ
PðCjdABÞ � PðCjRABÞ � CT

,

where PðI jdABÞ represents the probability of observing a
PET that links loci at distance dAB, PðI jRABÞ is the
probability of observing a PET linking loci with depth
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RAB, PðCjdABÞ denotes the probability of observing a pair
of loci at distance dAB (regardless of whether any PETs
link the two loci), PðCjRABÞ means the probability of
observing a pair of loci with depth RAB (regardless of
whether any PETs link the two loci), and CT is the total
number of pairwise combinations of the loci. All the terms
on the right side of the equation can be estimated from the
data. Note that this equation is based on the assumption
that the PET genomic distance of separation and the
product of the corresponding read depths are independent.
Then, according to the binomial distribution, the prob-
ability of observing exactly cAB PETs can be determined
as

PðK=cABÞ= N
cAB

� �
PðIÞcABð1 –PðIÞÞN –cAB ,

where N is the total number of PETs. Finally, p-value(s)
½PðK³cABÞ=ΣN

i=cABPðK=iÞ� for all possible pairs of
interacting loci are corrected for multiple hypothesis
testing using the Benjamini-Hochberg procedure [13].
Our MICC method builds a mixture model with three

components to distinguish TiPCs from noise. It uses the
Zeta distribution [14] to describe the probability of PET
count distribution for TiPCs and Random collision PET
Clusters (RcPCs), and uses hypergeometric distribution to
describe the PET count of RlPCs. The coefficients of the
Zeta distribution for TiPCs and RcPCs are different,
depending on distance between the anchors. Besides, it is
assumed that the prior probability of RlPCs also depends
on the distance of PET clusters, according to the
observation that chimeric PETs and non-chimeric PETs
are well separated by the PET spans. The prior probability
of RcPCs is also associated with the total PET count in
anchor regions. Let IAB=1 denote (A, B) as a TiPC, as
IAB=2 an RcPC and IAB=3 as an RlPC. The full
probability to observe a PET cluster (A, B) is therefore
given by

PðcABjcA,cB,dABÞ
=PðcABjdAB, IAB=1ÞPðIAB=1jcA,cB,dABÞ
þ PðcABjdAB, IAB=2ÞPðIAB=2jcA,cB,dABÞ
þ PðcABjcA,cB, IAB=3ÞPðIAB=3jdABÞ

=PðcABjdAB, IAB=1ÞPðIAB=1jcA,cB, IAB≠3Þ
PðIAB≠3jdABÞ
þ PðcABjdAB, IAB=2ÞPðIAB=2jcA,cB, IAB≠3Þ
PðIAB≠3jdABÞ
þ PðcABjcA,cB, IAB=3ÞPðIAB=3jdABÞ

=PðcABjdAB, IAB=1Þð1 –�ðcA,cBÞÞð1 – lðdABÞÞ
þ PðcABjdAB, IAB=2Þ�ðcA,cBÞð1 – lðdABÞÞ
þ PðcABjcA,cB, IAB=3ÞlðdABÞ:

The details for each term can be found in the
supplementary material of the MICC article [5]. The

FDR is estimated by comparing the posterior probabilities
from the original dataset to those from a randomly
generated dataset.
The comparison of performance among these four

methods was conducted by applying them to real-life
datasets. Although MICC andMango were compared with
ChiaSig and the ChIA-PET Tool respectively, in the
original research papers, there is no direct comparison
between MICC and Mango yet. To fill this gap, we
evaluated their performance on K562 Pol2 ChIA-PET
dataset GSE33664 [2]. The PET clusters as input of MICC
were obtained from the Mango pipeline, which makes the
comparison between MICC and Mango fairer. On the
basis of the comparison results shown in Figure 1 and
those in MICC and Mango original papers, we can
summarize the results as follows. First, MICC can produce
the greatest number of interactions and ChiaSig the
smallest number. Via a sampling strategy, one can see that
MICC can recover more interactions in the original
datasets from less sampled sequencing libraries than other
methods can. This means that MICC can yield more
consistent results between deeply sequenced and shal-
lowly sequenced libraries. Second, MICC shows the best
reproducibility between two experimental replicates,
especially when we select the same number of top-ranked
interactions. This finding suggests that MICC can remove
experimental noise in a more consistent manner. Third,
although the proportion of MICC-detected significant
interactions that can be validated by 5C experiments [15]
is similar to that of ChiaSig and Mango, MICC can
statistically significantly detect more 5C-validated inter-
actions in ChIA-PET data. This result indicates that MICC
has a higher sensitivity at a similar FDR as compared with
the other methods. Lastly, the time cost for calling
significant interactions in PET clusters, can be ranked as
follows (from the lowest to highest): the ChIA-PET Tool,
MICC, Mango and ChiaSig. All of them require less than
24 hours to run one current dataset as input of PET
clusters. The ChIA-PET Tool and Mango provide more
complete pipelines for processing half-linkers in ChIA-
PET raw datasets, including all five steps namely linker
removal, read mapping, PETs filtering, PET clustering and
significant interaction calling. ChiaSig and MICC simply
focus on modeling the randomness of ligation and
collision to detect the significant chromatin interactions.
Table 1 shows a brief comparison of these methods. Users
can choose one of the methods in accordance with the
requirements of a practical application.

PREDICTION OF 3D INTERACTIONS BY
INTEGRATING 1D DATA

Although the ChIA-PET experiment can detect chromatin
interactions genome wide, the list of interactions
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identified from currently available ChIA-PET data is far
from comprehensive. For example, many 5C-verified
interactions cannot be recovered by ChIA-PET, whereas a
considerable proportion of ChIA-PET predictions cannot
be validated by 3C or 5C experiment [5,15]. Along with
the availability of abundant genomic and epigenomic high
throughput data, we tested whether we can integrate the
information from multiple 1D omics data like transcrip-
tion factor (TF) binding profiles and histone modification
profiles to better study long-range chromatin interactions.
Under the assumption that long-range interactions can

be determined by means of local chromatin states which
are defined by histone modification and a TF-binding
pattern, we collected the publicly available TF and
histone modification ChIP-Seq data, and DNase-Seq
data from the same experimental conditions to predict
ERα-associated interactions in MCF7 cells [6].
Using a ChIA-PET experiment, Fullwood et al. [1,16]

detected thousands of ERα associated interactions in
MCF7 cells. Many of these interactions link distal ERα
binding sites (ERBSes) to target gene promoters.
However, a larger proportion of ERBSes was not found
to be associated with any long-range interactions. We
determined whether there are any features that can
separate these loop-associated ERBSes (laERBSes) and
non-loop-associated ERBSes (nlaERBSes). We found
that the average ChIP-Seq signals of multiple histone
modifications (such as H3K4me1/3, H3K9ac) are sig-
nificantly depleted in the center of laERBSes than those in
nlaERBSes. In the meantime, the average DNase-Seq
signal, which reflects the state of open chromatin, is
significantly enriched in the center of laERBSes than in
the center of nlaERBSes. Furthermore, we found that ERα
cofactors such as FoxA1, GATA3, AP2γ, and p300 are
significantly more enriched in laERBSes than in
nlaERBSes. Taken together, these data suggest that

Figure 1. Performance comparison between MICC and Mango. (A) The proportion of interactions called in combined libraries

of two Pol2 ChIA-PET replicates recovered by a single replicate. (B) The proportion of interactions overlapping between the sets of
top-ranked interactions from two Pol2 ChIA-PET replicates detected by Mango and MICC respectively. (C) The proportion of all 5C-
validated ChIA-PET interactions that are predicted by either the computational method (left) and the proportion of predicted ChIA-

PET interactions validated by 5C (right). p-value(s) were obtained by Fisher's exact test.

Table 1. Comparison of the ChIA-PET Tool, ChiaSig, Mango and MICC.
Methods ChIA-PET Tool ChiaSig Mango MICC

Model Hyper-geometric test Non-central

hyper-geometric test

Binomial

model

Mixture

model

Consider random ligation Yes Yes Yes Yes

Consider random collision No Yes Yes Yes

Applicable to inter-chromosomal

interactions

Yes No No Yes

Filter interactions by PET-count Yes Yes Yes No

Number of interactions Moderate Least Moderate Most

Reproducibility Moderate Worst Moderate Best

Time cost Least Most Moderate Moderate

Complete pipeline Yes No Yes No
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laERBSes are more likely to be located in the nucleo-
some-free region, binding to co-factors, though the
binding of ERα itself to DNA does not require
nucleosome depletion [17]. Furthermore, the ERBSes
with a neighboring ERBS (distance less than 3 kb) are
significantly more likely to form loops with some other
ERBSes.
According to the features listed above, we designed a

two-step classifier to predict ERα associated interactions
using multiple 1D omics data. We selected 903 high-
confidence ERα-associated interaction as a foreground
and randomly sampled ERBSes that are not associated
with any interactions as the background to compile the
training set. The first step was to find a possible laERBS
among the ~15,000 ERBSes. Three types of features were
computed:
(i) Fi, j : log-transformed read counts for ChIP-Seq data

on protein j (or DNase-Seq data) in ERBS i, with a
window size of 400 bp centered around the ERBS peak
summit.
(ii) Di: log-transformed distance between the ERBS

neighboring ERBS i and ERBS i itself.
(iii) Hi, j: differences between log-transformed ratios of

read coverage against input in the central region (� 100
bp region relative to the peak summit) to the average of
read coverage against input in the two flanking regions
( – 400 bp to – 200 bp and+ 200 bp to+ 400 bp relative
to the peak summit) of ERBS i for histone modification j.
The logistical classifier is designed as

PðEi=1Þ
= 1þ exp – k0 –

X
j
ajFi, j – bDi –

X
j
cjHi, j

� �n o – 1

where Ei is the indicator of whether ERBS i is a laERBS;
PðÞ is a probability function; and k0,aj,b, and cj are the
model parameters. After training, ERBSes were filtered
by setting the threshold of the logistic classifier to 0.2 in
order to find putative laERBSes. After this step, 96% (869
out of 903) training foreground interactions passed the
threshold and ~11,000 ERBSs were kept for further
analysis.
The second step was to predict interactions between

laERBS pairs. Recently, Hi-C experiments showed that
chromosomes are organized as large topological domains,
and interactions between regulatory elements largely take
place within these domains. Such domain structure is
highly conserved among different cell types [18]. We
noticed that the use of the domain information can greatly
reduce the number of candidate pairs but keep most of the
true interactions. Thus we restricted the predictions to the
laERBSes pairs within each topological domain. This
filter can retain the majority of true interactions in the
training set (800 out of 869 training interactions that pass
the first step) but ruled out more than 98% random

assortment ERBS pairs. Next, two types of features were
computed for each candidate pair:
(i) PFi1i2, j=Fi1, j þ Fi2, j: the sum of log-transformed

jth ChIP-Seq (or DNase-Seq) read counts for each
candidate ERBS pair (i1, i2), with a window size of 3 kb
for each end (the region � 1.5 kb relative to the peak
summit).
(ii) PDi1i2, j: the log-distance and inverse distance

between each ERBS pair ði1, i2Þ
The logistical classifier is expressed as

PðPEi1i2=1Þ

= 1þexp – k0–
X
j

ajPEi1i2, j –
X
j

bjPDi1i2, j

 !( ) – 1

where PEi1i2 is the indicator of whether ERBS pair (i1, i2)
formed an interaction, PðÞ is a probability function, and
k0,aj, and bj are the model parameters. The average true
positive rate (TPR) was 93% and average false positive
rate (FPRs) was 8% for five-fold cross validation for the
training set.
Over all, the two-step classifier recovered a large

proportion (2,356 of 3,527) of ERα interactions revealed
by ChIA-PET experiments. Meanwhile, 8,805 unreported
putative ERα-associated interactions were predicted,
many of which can be validated by independent 3C or
Pol II ChIA-PET experiments. This work suggested that
the chromatin interactions are determined or largely
influenced by local genetic and epigenetic status of the
anchor sites. The use of a machine learning model
integrating multiple 1D ChIP-Seq data can predict the
majority of ChIA-PET-identified interactions. Such com-
putational approaches may be a valuable addition to a
ChIA-PET experiment.

PREDICTION OF PROTEIN COMPLEXES
MEDIATING ChIA-PET DETECTED
INTERACTIONS

Different studies showed that proteins preferentially bind
to specific loci to participate in the establishment and
maintenance of chromatin interactions [19]. On the other
hand, existing studies are mainly focused on studying
some specific proteins such as the role of architectural
proteins like CTCF and Cohesin [20,21], even though it is
known that other proteins are also involved in the
chromatin interaction [22,23]. This drawback is mainly
due to the limitations of existing experimental methods;
as for ChIP-Seq studies, it is hard to design sensitive and
specific antibodies, whereas for mass-spectrometry, the
obtained data cannot help us to distinguish between
proteins that are involved in chromatin interactions and
those that are not.
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Among the existing experimental assays, only ChIA-
PET can give researchers information about chromatin
interactions involving a certain protein of interest. The
value of this information can be leveraged further after its
integration with various ChIP-Seq and protein-interaction
data to detect the partners of the ChIA-PET target protein.
Thus, to fill this gap, we developed 3CPET [7], a tool

based on a nonparametric Bayesian approach, to infer the
set of the most probable protein complexes involved in
the maintenance of chromatin interactions. The rationale
behind 3CPET is that transcription factors can use a
distinct combination of collaborating proteins, depending
on the genomic and spatial context. To detect these
protein complexes, 3CPET builds for each ChIA-PET
interaction a local protein-protein interaction (PPI) net-
work connecting its interacting chromatin segments. First,
a TF-related ChIP-Seq signal is used to detect the TFs
involved at the anchors of each interaction with DNA.
Then, we build the local PPIs by connecting each TF on
one side of the interaction to the other TFs on the other
side by taking the shortest path between them in the
background PPI.
Because the existing PPI networks are not condition

specific, a filtering step is needed to remove all noisy
interactions. First, we consider only nuclear proteins.
Second, we filter all the non-expressed proteins. Third, we
consider only the proteins that are co-expressed and show
a physical interaction in the PPI network. These three
filters help us limit the false positive predictions. Ideally, a
cell type specific PPI should be used.
Given the generated corpus of protein-protein interac-

tions, we aimed to find the set of the most enriched protein
subnetworks. Here, we refer to these subnetworks as
chromatin maintainer networks (CMNs). In our corpus,
we can see that the edges of each protein network can be
considered sampled from a mixture of different CMNs in
different mixture proportions in each network. To detect
these CMNs, 3CPET uses the hierarchical Dirichlet
process (HDP) model [24]. There are two reasons for
the usage of HDP. First, we noticed that the distribution of
CMNs shows a kind of hierarchy: at the corpus level, the
different CMNs show different enrichment proportions
and at the chromatin interaction level, each chromatin
interaction is enriched for different CMNs and in different
proportions (Figure 2A). Second, instead of assuming a
fixed number of CMNs, we wanted to automatically infer
the latent enriched CMNs depending on the data at hand.
Because the number of CMNs is not known, it is

allowed to grow infinitely. However, because the
Dirichlet distribution is defined on the basis of a k-
dimensional simplex, the HDP model uses the Dirichlet
process(DP) as an extension of the Dirichlet distribution
into the continuous space. If Gj � DPðα,G0Þ with base
distribution G0 and concentration parameter α, we can

express Gj using the stick-breaking representation Gj=

Σ1
k=1   αkδβk with βk representing the CMNs (Figure 2B).

Using the stick-breaking representation and introducing
label zjn for each edge ejn, the model can be expressed as:

H � DirðηÞ, βkjH � H ,

πjg � Dirðg1,g2,:::,gK ,guÞ, �njα, π � Dirðα, πÞ,

zjnj�n � Multð�nÞ, ejnjzjn,ðβkÞLk=1 � FðβzjnÞ,
where gk=

g
L , k=1:::K and gu=1 –ΣK

k=1gk and FðβkÞ
indicates the probability distribution of a CMN over all
the possible edges in our vocabulary.
Because the HDP algorithm is based on counting

element frequency, each PPI in our corpus is converted
into a bag of edges in which the frequency of each edge is
equal to the number of the shortest paths in which it
participates. This approach can help us prioritize
important edges in each local PPI. To avoid the bias
introduced by hub proteins in the background PPI and
rare interactions, we filter interactions that appear to be
more or less than a maximal threshold and minimal
threshold.
3CPET was tested on ER-α and Pol-II associated

interactions from ChIA-PET. In our study, we showed that
3CPET can predict known ER-α co-factors and yield a
significant overlap with other previously reported experi-
mental results detected in the RIME experiment [25].
Moreover, we showed that ER-α associates with different
partner proteins in different genomic contexts. Similarly,
using the RNAP-II associated interactions, we were able
to predict cofactors known to be a part of known
transcription-related complexes such as Mediator and
showed variability in RNAP-II co-factors. Simulation
tests also indicated high robustness of the method. 3CPET
was not designed solely for protein interactions, other
elements such as non-coding RNAs can be integrated into
the PPI network.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

In this review, we first introduce the basic computational
procedures of analyzing ChIA-PET raw data to get
candidate chromatin interactions. Since ChIA-PET data
may be quite noisy, it is important to distinguish the
genuine chromatin interactions from the random noise.
Several computational methods were proposed to address
this problem in the recent years. We compare these
existing statistical models which estimate the confidence
of chromatin interactions to help users better understand
the rationale behind these models and choose appropriate
tools in their own study. In the case of no ChIA-PET data
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at hand, one can predict the chromatin interactions from
1D data, such as ChIP-Seq data. The predicted chromatin
interactions may be a good starting point for further study
but users should also be aware of the false positive
discovery of the predictive method. Since ChIA-PETwas
designed to detect chromatin interactions mediated by one
specific protein, it is hardly to know the protein
complexes which mediate the chromatin interactions
with only ChIA-PET data. So we introduced a hierarch-
ical Dirichlet process model which leverage ChIA-PET,
ChIP-Seq and PPI network to predict the protein
complexes mediating ChIA-PET detected interactions.
These computational methods will be helpful in the ChIA-
PET data analysis.
Besides the perspectives we mentioned above, there are

also other attractive topics in the ChIA-PET data analysis,
e.g. integrating ChIA-PET chromatin interactions with
genetic variants. ChIA-PET has been mainly popular
among researchers who want to link genetic mutations to
target genes. Lately, many investigators have been using
ChIA-PET information as an additional layer to select
strong SNP-to-gene associations. This kind of studies can
be classified into two types: i) integrative studies that are
focused on generation of global datasets and ii) specific
studies where ChIA-PET data are used to explore SNP-
gene associations in a specific case.
Among the integrative studies on SNP-gene associa-

tions, we can list GWAS3D, which integrates chromatin
interaction data, chromatin state, functional genomic and
conservation data on top of GWAS studies designed to
associate genetic variance with regulatory pathways [26].

Another work of interest is a study by the Snyder lab
where they generated a collection of histone quantitative
trait loci (hQTLs) and chromatin contacts from ChIA-
PET to identify connections between genetic variations
and histone modifications changed at the distal elements
[27].
Other groups used ChIA-PET to focus on study of

specific diseases. Gerald et al. developed a multilevel
mapping method where they used ChIA-PET and Hi-C
data to screen novel noncoding SNPs associated with a
psychotropic drug response, e.g., disruption of a lithium
response correlates with the SNP in the promoter of the
SLC1A2 gene [28]. Smemo et al. used ChIA-PET to
uncover the mechanisms of action of a noncoding SNP in
the intron of the FTO gene and showed that this SNP
interacts with the promoter of the IRX3 gene, thus
identifying IRX3 as a new candidate for an obesity gene
[29]. Hnisz et al. found that perturbation of CTCF-CTCF
loops in nonmalignant cells is sufficient to activate proto-
oncogenes, e.g., TAL1 gene [30]. For more applications
and comparison of ChIA-PET and Hi-C results, we refer
readers to other articles [8,31,32]. We expect that
integration analysis will be an attractive topic regarding
to ChIA-PET data analysis in the near future, especially
when more ChIA-PET datasets are coming out.
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