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Background: Many existing bioinformatics predictors are based on machine learning technology. When applying
these predictors in practical studies, their predictive performances should be well understood. Different performance
measures are applied in various studies as well as different evaluation methods. Even for the same performance
measure, different terms, nomenclatures or notations may appear in different context.
Results: We carried out a review on the most commonly used performance measures and the evaluation methods for
bioinformatics predictors.
Conclusions: It is important in bioinformatics to correctly understand and interpret the performance, as it is the key
to rigorously compare performances of different predictors and to choose the right predictor.
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INTRODUCTION

The high-throughput sequencing technology, which was
developed in the most recent years, has enabled us to
acquire high quality genomic sequences at different levels
for every living cell on this planet [1]. The sequencing
technology has been widely applied in clinical trials to
find target genes of a drug or develop therapies for
complex diseases precisely [2]. All these developments
rely on the fact that the cost of sequencing is dropping
exponentially (https://www.genome.gov/sequencing-
costs/). On the contrary, the high-throughput technology
to determine the function of a gene is still lacking. Even
with comprehensive genomic sequences in hand, it is still
costly and time consuming to find out the molecular
functions of a particular gene in a cellular process. There
is a huge information gap between biological sequences
and molecular functions [3]. Moreover, this gap is
becoming wider and wider every day.
To bridge this gap, one feasible solution is to use

computational methods to predict the molecular functions
from the primary sequences. The computational predic-
tions of molecular functions may contain errors. How-

ever, it still provides informative hints to the experimental
studies [4]. Since the cost of computational predictions is
minimal, the computational approaches become more and
more popular in life sciences over the last two decades.
Various computational predictors have been established

to estimate functional information from the primary
sequences of proteins and genes. Most of these predictors
use machine learning algorithms, such as support vector
machines [5], artificial neuron networks [6], K-nearest
neighbor algorithms [7], Bayes analysis [8] and many
more [9]. Because machine learning algorithms usually
use existing data to establish predictive models, it is
possible that a predictive model is over-fitted or over-
optimized on the existing data. Here, the term “over-
fitted” or “over-optimized” means that the predictive
model works well when it is tested with existing data.
However, the prediction performance drops drastically
when it is applied in practical studies with novel data.
Therefore, when applying these computational predictors,
it is vitally important to understand their mechanisms and
the conditions of their performances in the first place.
Without such knowledge, applying predictive computa-
tional methods in studies is no better than mixing reagents
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in tubes without knowing what they are.
When a paper describes a predictive model, it always

reports its predictive performances as well as how these
performances are estimated and measured. We would like
to emphasize that the way how these performances are
estimated and measured is much more important than the
values. For example, when a predictor reports that its
prediction accuracy is 86% and the other one 84%, it is
not sure that the former one performs better than the latter
one. The actual qualities of their predictions are tightly
related with how these numbers are obtained. This is
always confusing to the users of predictors, who do not
have a strong statistics or machine learning background.
In addition, the authors of bioinformatics papers

usually have different expertise and professional back-
grounds. They may use different terminologies on the
same performance measures, or vice versa. For example,
the “accuracy”, “sensitivity” and “precision” appear
commonly in describing predictive performances of a
bioinformatics predictor. However, they may have the
same interpretations in some studies, while different in
others. The readers should pay more attention to the
definitions of these measures than their values.
In this paper, we will discuss in details on the

performance measures as well as how these measures
should be estimated and reported. We will first introduce
the general concept of machine learning, which followed
by the discussions of basic methods to test a machine
learning system. We will then introduce several statistics,
which are commonly used as performance measures in
many bioinformatics studies. We will also discuss how to
interpret the values of these measures and how to compare
the performances of different predictors.

BASIC CONCEPTS OF MACHINE
LEARNING IN BIOINFORMATICS

Machine learning, which is a subfield of computer
science, aims at developing algorithms that create models
of naturally exist systems from examples of their inputs
and outputs [10]. Machine learning algorithms are usually
based on statistics. It is also called learning from data or
learning from examples. This is different to other kind of
systems that follow strictly static program instructions
[11].
Figure 1 gives a diagram of a machine learning system.

Let S be a naturally exist system. It can be described by a
deterministic generalized function f(x). Due to our limited
knowledge of its mechanism, it is difficult to obtain the
details of f(x). However, when we give an x as the input of
S, S will give an output y that completely relies on x.
When we have many different pairs of x and y, a learning
machine, as the LM in Figure 1, can be established
using machine learning algorithms. LM can be described

as a generalized function fe(x), which is an estimation to
f(x).
We expect that LM behaves like S as much as possible.

When we give a serial of x, which have never been seen
by the LM, as the input of both LM and S, the serial of ye,
which are the output of LM, should be almost the same as
the serial of y, which are the output of S. It seems like LM
can predict the output of S, which is just why LM can be
called a “predictor”.
Due to our limited knowledge of f(x), the following

facts exist: (i) there is no way to guarantee that LM always
produces exactly the same results as S. (ii) it is difficult to
use analytical method to compare fe(x) and f(x). (iii) fe(x)
and f(x) can be way different even if LM works well on
many examples.
In bioinformatics, S is usually a biological system. For

example, S can be the cellular mechanism that recognizes
the cleavage sites of signaling peptide on protein
sequences. Given x, which represents a protein sequence,
the output of S is y, which represents the position of the
cleavage site on the sequence. LM is a predictor, like the
LabCas [12] and Cascleave [13]. Although the exact
mechanism of how S determines the position of cleavage
sites is still unknown, LM can predict a large part of
cleavage sites correctly. However, without thorough
experimental validations, we cannot say that S works
with a same or similar mechanism as LM.
A number of existing predictors in bioinformatics are

classifiers, which is a type of learning machines. The
input of a classifier is usually a vector x, which is assumed
to contain all necessary information of a sample. The
vector x is usually defined in Rd (x∈Rd). In machine
learning, the vector x is termed as the features of a sample.

Figure 1. A diagram of a machine learning system. S

represents a biological system. Its mechanism cannot be

directly obtained. The details of f(x) are unknown. We use a

serial of x as the input of S. A serial of y can be obtained from

the output of S. By using pairs of x and y, the machine learning

system LM can be trained. A function fe(x) can be established.

For the x that has never been seen by both S and LM, we

expect that LM can produce a result ye that is close to y as
much as possible.
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Rd, which contains all possible x, is called the feature
space. The output of a classifier is usually an integer y
(y∈Z), which indicates the class that x belongs to. The
integer y is called the class label of the vector x. In
bioinformatics, the vector x may represent different
biological information, such as DNA sequences, RNA
sequences, protein sequences, expression profiles and
genetic variations. The output integer y can represent
different attributes of samples, such as subcellular
locations of proteins [14], structural classes of proteins
[15,16], nucleosome positions in the genome [17],
modification states of proteins [18,19], epistatic interac-
tions [20,21] and many others [22–30].
The “multi-class classifier” [31] and the “multi-label

classifier” [32] are two different terms in machine
learning. Both of them have been introduced to bioinfor-
matics [33]. Their meanings should not be confused. The
term “multi-class classifier” describes that a classifier can
assign one and only one label from more than two
possible labels to every samples. This is to be
distinguished from the “binary classifier”, which can
assign one of only two possible labels to every sample.
The “multi-” in the “multi-class classifier” means that the
number of all possible labels is more than two. However,
the “multi-” in the “multi-label classifier” has nothing to
do with the number of all possible labels. It means that the
classifier can assign one or more than one label to every
sample. This is to be distinguished from the classical
“single-label classifiers”, which assign only one label to
every sample. For example, the Hum-PLoc [34], which
can predict protein subcellular locations, is a “multi-class
classifier”. It can assign only a single subcellular location
to every protein. On the contrary, the iLoc-Hum [35],
which can also predict protein subcellular locations, is a
“multi-label classifier”. It can assign one or more than one
subcellular locations to every protein.
Training and testing are two required procedures to

establish a practically applicable machine learning based
predictor. The training procedure establishes the learning
machine with a dataset. This dataset is called the training
dataset. The training procedure is usually an optimization
procedure that aims at minimizing the error rate on the
training dataset. The testing procedure is to validate
whether the learning machine can actually work in
predicting class labels from the features. It aims at
simulating the practical application scenario. The dataset
used in the testing procedure is called the testing dataset.
The predictive performance values, which are reported in
papers, are usually obtained from the testing procedures.
The choice of training and testing dataset and the design
of training and testing procedures are important in
evaluating the predictors. In the next part of this review,
we will discuss the commonly used protocols in
evaluating machine learning based predictors in bioinfor-
matics.

EVALUATION METHODS

While evaluating a bioinformatics predictor, it is
important to understand that the predictor has a real
predictive performance, which exists objectively and is
independent to the evaluation methods. This real
predictive performance can only be obtained by testing
the predictor with infinite number of samples that can
uniformly fill the entire feature space. Since this is always
impossible and meaningless in practice, the purpose of all
evaluation methods is to estimate this real predictive
performance using finite number of samples with known
features and labels. In bioinformatics, the samples,
especially the labels of samples, are usually expensive.
The number of samples to train a predictor is usually less
than sufficient. For example, when we created the first
protein submitochondrial location predictor, we have only
317 proteins to train a three-class predictor [36]. This is
different to other common applications of machine
learning, such as voice recognition, image recognition
or natural language processing, where millions of samples
can be acquired easily. Therefore, some concepts of
testing and evaluating predictors in machine learning
cannot be directly introduced to bioinformatics.
In machine learning, there are three different approac-

hes to evaluate a predictor. As displayed in Figure 2, they
are known as the independent dataset test, re-substituting
test and cross validation. The cross validation method can
be further divided into two different methods, the leave-
one-out cross validation and the n-fold cross validation.

In the view of machine learning, the independent
dataset test should be the most recommended. In an
independent dataset test, the testing dataset must have
sufficient size, which is usually much larger than the
training dataset. There should be no overlap between the
testing dataset and the training dataset. It is ideally that the
testing dataset uniformly distributed in the entire feature
space. However, in bioinformatics, since the available
samples are usually limited, it is hardly possible to fulfill
all these requirements.
As an accommodation in bioinformatics, the indepen-

Figure 2. Taxonomy of evaluation methods. There are
three different evaluation methods: Independent dataset test,
re-substituting test and cross validation, which can be further

divided into two different methods, the leave-one-out cross
validation and the n-fold cross validation.
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dent dataset tests are carried out in a different manner. The
whole dataset is randomly partitioned into two parts: a
larger part and a smaller part. The larger part usually
contains over 70% of all samples. It is used as the training
dataset. The remaining smaller part serves as the testing
dataset. This method can be called a subsampling test.
Although this method fulfills the requirement of inde-
pendence, the size of testing dataset is usually small,
which results in a large variance of the estimated
performance. That is to say, if this test was carried out
for several times, the predictive performance in every test
would be different and distribute in a wide range.
Therefore, in practical applications, the users are likely
to find that the predictive performance is much higher or
lower than the value that is estimated from a single run of
this kind of independent dataset test. As an augment, in
evaluating predictor SubMem [37], we reported the
predictive performances as the average value of several
times of subsampling test with different partitions of the
dataset [37].
The re-substituting test should be the least recom-

mended. This is also true in bioinformatics. In a re-
substituting test, the testing dataset is identical to the
training dataset. As the training process aims at minimiz-
ing the error rate on the training dataset, using the same
dataset to test the predictor will always yield an over-
estimated performance. The predictive performance in
practical application can be much poorer than the re-
substituting test. An amazing performance value, like
99% accuracy in a re-substituting test, usually indicates
that the predictor is over-optimized and useless in
practice.
In machine learning, cross-validation methods are

considered as a compromise solution when the number
of available samples is very limited. Due to the number of
available samples, in bioinformatics, cross validation
methods become the most recommended evaluation
methods. In a cross-validation test, all the data are used
as both training and testing dataset. However, it is not
used in the same way as the re-substituting test. In an n-
fold cross-validation test, the entire dataset was randomly
partitioned into n parts of equal size. The training and
testing process would be carried out for n rounds. In the k-
th round, the k-th part was used as the testing dataset,
while the remaining n – 1 parts form the training dataset.
After all n rounds of training and testing, every sample in
the dataset was used as testing sample once and only once.
The prediction performance can be estimated by aver-
aging the prediction results over the whole dataset. Figure
3 illustrates the process of a 5-fold cross validation. When
the number n is set to its maximum possible value, which
is the number of all samples, an n-fold cross validation
becomes a leave-one-out cross validation. A leave-one-
out cross validation is also called a jackknife test.

The jackknife test has been widely applied in
evaluating many bioinformatics predictors [4,17,38,39],
as it can easily generate fixed values of performance
measures, which makes it easy to compare different
predictors [40,41]. However, there is a minor flaw in the
jackknife test. In an n-fold cross-validation, the predic-
tions and the real results have negative correlations even
there is no relationship between them (http://www.
russpoldrack.org/2012/12/the-perils-of-leave-one-out.
html). This effect becomes more significant when n
increases. As the jackknife test uses the maximal possible
value of n, it is affected more than the 3-fold or 5-fold
cross-validations. A more quantitative discussion has
been provided by Hastie et al. [42]. Therefore, we suggest
that, the n-fold cross-validation, where n is a small
number, like 3 or 5, should be preferred in practice.
No matter which evaluation method is applied, the

predictive performance has to be represented quantita-
tively with numbers. A set of statistics, which was called
the performance measures, was introduced to represent

Figure 3. An illustration of the process of a 5-fold cross
validation. The whole process contains five steps. Step I: the

whole dataset was obtained. Step II: the whole dataset is
randomly partitioned into five different parts (A, B, C, D and E).
Step III: five rounds of training and testing are carried out.
Every part is used as the testing dataset, while the remaining

four parts are the training dataset. The shadowed part
indicates that this part is used as testing dataset. Step IV: the
testing results are collected from five rounds of training and

testing. Step V: The testing results are pooled together to
estimate the predictive performances.
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the predictive performance in many different aspects.

PERFORMANCE MEASURES

Intuitively, users of a predictor would like to know how
likely they may trust the prediction results. This can be
roughly interpreted as the probability that the predictor
makes the correct predictions. However, in practice, it is
not enough to give only a single number that indicates the
probability of getting correct predictions. For example,
the users may only care about the correct predictions
among the samples that they are interested in. The users
may only need the correct predictions under some kind of
conditions. Therefore, a set of statistical performance
measures have been developed to quantitatively describe
the predictive performances in different aspects under
different conditions.
Different sets of performance measures are applied to

the single-label predictors and multi-label predictors.
Both types of predictors have been widely applied in
bioinformatics. We will first focus on the performance
measures of single-label predictors. After that, we will
continue to introduce the performance measures of multi-
label predictors.
In a binary predictor, which we have mentioned before,

we call the two classes the positives and negatives. When
we have m (m> 2) classes, we measure the performance
on each class respectively. When the performance on the
j-th class is measured, the j-th class is the positives. All
remaining samples in m – 1 classes serve as the negatives.
When the overall performances are calculated, we use a
different measure, which will be discussed later. There-
fore, we now only focus on measuring prediction
performances of binary predictors.
For every sample in a testing process, it always has a

real label and a predicted label. The real label indicates the
class that the testing sample really belongs to. The
predicted label is the output of the predictor. Let sk (k = 1,
2, …, n) be one of n testing sample, y(sk) the real label of
sk and ye(sk) the prediction result of sk. Without loss of
generality, in a binary predictor, we use +1 as the label of
a positive sample and – 1 as the label of a negative
sample. We define the four most basic counts as the
follows:

RP=jfsk jyðskÞ=þ1gj, (1)

RN=jfsk jyðskÞ=–1gj, (2)

PP=jfsk jyeðskÞ=þ1gj, (3)

PN=jfsk jyeðskÞ=–1gj, (4)

where RP, RN, PP and PN are real positives, real
negatives, predictive positives and predictive negatives, |.|

the cardinal operator in the set theory. These four counts
give the number of positives and negatives of all testing
samples according to either their real labels or predictive
labels. Although these four counts are not commonly seen
in bioinformatics studies, they are components of
commonly used performance measures.
The other four commonly used counts are the number

of true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN). They can be defined as
follows:

TP=jfsk jyðskÞ=þ 1, yeðskÞ=þ1gj, (5)

TN=jfsk jyðskÞ=– 1, yeðskÞ=–1gj, (6)

FP=jfskjyðskÞ=– 1, yeðskÞ=þ1gj, (7)

FN=jfsk jyðskÞ=þ 1, yeðskÞ=–1gj: (8)

According to the above definitions, if both real label
and predicted label of a sample are positive, this sample is
a true positive sample. If both real label and predicted
label of a sample are negative, this sample is called a true
negative sample. If the real label of a sample is positive,
while its predicted label is negative, this sample is called a
false negative sample. If the real label of sample is
negative, while its predicted label is positive, this sample
is called a false positive sample. These definitions must be
crystal clear, as almost all the performance measures rely
on the correct number of these basic counts.
In addition, these four counts and the former four

counts form a 2-by-2 contingency table, as displayed in
Figure 4. The 2-by-2 matrix, which contains the TP, TN,
FP and FN, can be called a confusion matrix. Intuitively,
the following relationships exist:

TP þ FP=PP, (9)

TP þ FN=RP, (10)

TN þ FN=PN , (11)

TN þ FP=RN , (12)

and

n=TP þ TN þ FP þ FN

=RP þ RN

=PP þ PN : (13)

Because of these relationships, the performance
measures are not always represented by the commonly
used four counts: TP, TN, FN and FP. A different set of
notations may appear as well. For example, in literature
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[43,44], four basic counts were actually the RP, RN, FP
and FN. They were denoted by different notations. FN
was denoted as Nþ

– , while FPwas denoted as N –þ . RPwas
denoted as Nþ, while RN was denoted as N – . If the
values of TP and TN were required, Equation (10) and
Equation (12) were applied. TP was denoted as Nþ –Nþ

– ,
while TN was denoted as N – –N –þ . These notations are
only different in appearance. Their interpretations are
identical to our equivalents [5].
Based on the above definitions, three basic perfor-

mance measures, which are called sensitivity (Sen),
specificity (Spe) and accuracy (Acc), can be defined as
follows:

Sen=
TP

TP þ FN
=

TP

RP
, (14)

Spe=
TN

TN þ FP
=

TN

RN
, (15)

Acc=
TN þ TP

TN þ FN þ TP þ FP
=

1

n
ðTN þ TPÞ: (16)

These three measures indicate the performance of a
predictor in three different aspects. Sensitivity is the
frequency of correctly predicted positive samples among
all real positive samples. It measures the ability of a
predictor in identifying positive samples. Similarly,
specificity measures the ability of a predictor in identify-
ing negative samples. Accuracy measures the ability of a
predictor in correctly identifying all samples, no matter it
is positive or negative. These performance measures have

alias in different studies. Sensitivity may be termed as the
true positive rate (TPR) or recall. Specificity may be
termed as the true negative rate (TNR) or inverse recall.
In bioinformatics studies, there are two common

challenges that most of the predictors must face to. The
first challenge is that users of a predictor usually care only
about positive outputs. The negative outputs are never
important, no matter whether they are true negatives or
false negatives. The second challenge is that the datasets
are very imbalanced, no matter in training or testing. For
example, when predicting protein phosphorylation sites,
the negative samples are over 100 times more than the
positives [23,24]. The users of the predictor always care
only about the positive results, as only the phosphorylated
sites worth further studies.
To face the first challenge, several other performance

measures have to be introduced. The positive predictive
value (PPV) is one of these kinds, which can be defined as
follows:

PPV=
TP

TP þ FP
=

TP

PP
: (17)

The PPV indicates the frequency of true positives
among all positive outputs. Usually, the positive outputs
are subject to experimental validation in wet-lab. The wet-
lab cost is always much higher than computational
predictions. The average cost of getting every validated
positive result depends on the PPV. Even if the sensitivity
is very high, the predictor is still useless in practice if PPV
is not ideal. The PPV is also termed as the precision [45].
Another performance measure that is tightly related to
PPV is the false discovery rate (FDR), which can be
defined as follows:

FDR=1 –PPV=
FP

TP þ FP
=

FP

PP
: (18)

The FDR is widely used in analyzing expression profiles
[46] and genetic association studies [47,48].
The PPV and FDR do not take the false negatives into

consideration. However, false negatives are potential
discoveries that are missed by the predictor. The number
of false negatives may be considered in measuring the
predictive performances. By simultaneously removing the
true negatives from both the numerator and denominator
of the accuracy, a performance measure called Jaccard
index was introduced. It can be defined as follows:

J=
TP

TP þ FP þ FN
=

TP

n – TN
, (19)

where J is the Jaccard index. The value of J indicates the
frequency of true positives among all samples that are
either real positives or positive predictions.
When the true positives are thought to be more

important than the other samples, more weight can be

Figure 4. The confusion matrix in testing a predictor. All

the testing samples are divided into four categories, according
to the real labels and the prediction results. There are
altogether eight basic counts: RP, RN, PP, PN, TP, TN, FP

and FN. The relationships between these counts are marked
on the figure.
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put on the true positives when calculating the Jaccard
index. If true positives are considered as twice important
as the other samples, a performance measure called F1-
score can be defined as follows:

F1=
2TP

2TP þ FP þ FN
, (20)

where F1 is the F1-score. The F1-score is actually the
harmonic mean of PPV and sensitivity. The following
relationship exists:

F1=
2PPV⋅Sen

PPV þ Sen
: (21)

The above performance measures remove the true
negatives from the calculation. When the users care only
about positive outputs, these performance measures work
well.
In other cases, the training and testing datasets are very

imbalanced. However, because of the practical require-
ments, the large number of true negatives cannot be
ignored. Some other performance measures must be
developed. Here, we introduce two of this kind, the
balanced accuracy (BAcc) and the Matthew’s Correlation
Coefficients (MCC). The balanced accuracy can be
defined as the average of sensitivity and specificity:

BAcc=
1

2
ðSenþ SpeÞ

=
1

2

TP

TP þ FN
þ TN

TN þ FP

� �
: (22)

The balanced accuracy solves most of the bias
problems in an imbalanced dataset test [45,49]. The
balanced accuracy has been applied in evaluating
predictors for RNA editing [50] and posttranslational
modification sites [51].
The Matthew’s Correlation Coefficient was first

proposed in 1975 [52]. It is well recognized and widely
applied in evaluating predictors with imbalanced dataset.
Especially, when the predictor was evaluated with a
jackknife test, the MCC was usually reported along with
the sensitivity, specificity and accuracy. Actually, if the
classes are of very different sizes, there is no perfect way
of describing the confusion matrix of true and false
positives and negatives by a single number, the MCC is
generally regarded as being one of the best balanced
measures [45]. In most bioinformatics papers, theMCC is
defined as the follows:

MCC=
TP⋅TN –FP⋅FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp :

(23)

Using Equations (9)–(12), MCC can also be defined as

follows:

MCC=
TP⋅TN –FP⋅FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PP⋅PN⋅RP⋅RN

p : (24)

This definition makes the calculation of MCC very
easy. However, its statistical interpretation should be
carefully carried out. MCC ranges from –1 to+1. A zero
MCC value indicates that the predictor actually performs
random guess. Its prediction results have no relationship
to the real class labels of the samples. A positive or
negative MCC value indicates that predictor is better than
random guess. The +1 value of MCC indicates that the
predictor is perfect, which reports the class labels
correctly of every sample. The –1 value of MCC also
indicates that predictor is perfect, while its outputs should
be interpreted as the opposite meanings. In statistics,
calculating the MCC value equals to the Chi-Square test
on the confusion matrix. The following relationship
exists:

MCC2=
1

n
χ2, (25)

where c2 is the chi-square statistics on the confusion
matrix. In statistics, the MCC value is also termed as the
phi-coefficient or mean square contigency coefficient
under the background of Pearson coefficients [45].
All the above performance measures rely on the values

of TP, TN, FP and FN. However, most of the
bioinformatics predictors give scores to samples before
the class labels are assigned. The class labels are then
assigned according to the scores. If the score is higher
than a pre-defined cut-off value, the sample is predicted as
a positive one. Otherwise, it is predicted as a negative one.
Therefore, the choice of the cut-off value can affect the
prediction performance largely. An improper choice of
cut-off value makes some performance measures extre-
mely high, while the others very low. To avoid this kind of
bias, a comprehensive performance measure is necessary.
Therefore, the receiver operating characteristic (ROC)
curve methods are introduced.
An ROC curve describes the relationship between the

sensitivity and false positive rate (FPR). The FPR can be
defined as the follows:

FPR=1 – Spe=
FP

FP þ TN
: (26)

Given a scoring scheme, the values of sensitivity and
FPR will change along with the cut-off value. For every
cut-off value, a dot can be plotted using the coordinate
(FPR, Sen). A curve that connects all these dots is called
an ROC curve. A demo of ROC curve can be found in
Figure 5. The diagonal in Figure 5 separates the square
between (0,0) and (1,1) into two parts. This diagonal is
called the line of no-discrimination. An ROC curve
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should appear in the top left part. An ROC curve, which is
close to the diagonal, indicates that the predictions are
close to random guesses. An ROC curve, which is close to
the top left corner, indicates that predictor has a good
performance. When an ROC curve is plotted, we can use
the area under the curve (AUC) to measure the
performance of the predictor. As ROC curve is not
related to any particular cut-off value, the performance
bias that is related to the choice of cut-off value does not
exist. Actually, the AUC of an ROC curve equals to the
probability that a randomly selected positive sample gets
higher scores than a randomly selected negative sample.
This can be formulated as:

AUC=PðXþ > X – Þ, (27)

where AUC is the area under the curve, X+ the score of a
randomly selected positive sample, and X- the score of a
randomly selected negative sample. Given scores of all
testing samples, the probability on the right side of
Equation (27) can be estimated.
It should be noticed that the shape of an ROC curve

may be misleading when the dataset is highly imbalanced.
An ROC curve, which is close to the upper-left corner,
may not indicate a good predictor under imbalanced
dataset condition [53]. To solve this problem, an

alternative utility, which is known as the precision-recall
(PR) curve, should be applied. The PR curve is plotted
with a very similar method as the ROC curve. The only
difference is that the coordinates are (recall, precision).
The recall, as we mentioned before, equals to the
sensitivity. The precision, as we mentioned before, equals
to the PPV. As every dot in an ROC curve is related to a
confusion matrix, which can be used to calculate a pair of
recall and precision, every dot on an ROC curve can be
mapped to a dot on a PR curve [54]. Although the AUC of
a PR curve have no similar interpretations like Equation
(27) in ROC, it can also be used to compare performances
of different models. When comparing performances of
different models or algorithms on the same dataset, the
AUC of ROC curves and the AUC of PR curves always
give the same results. A larger AUC of a PR curve
indicates a better performance.
All the above discussions are based on binary

classifiers. In a multi-class classifier, there is one more
thing that we need to concern. That is the overall
performance. The overall accuracy is the only measure
that is commonly used in measuring the overall
performance of a multi-class predictor. The overall
accuracy of a multi-class predictor is usually defined as
follows:

AccOverall=
1

n

Xm
j=1

TPj, (28)

where n is the total number of testing samples, m the total
number of classes and TPj the number of true positives of
the j-th classs. The other performance measures are
usually reported separately for every class, as the
definitions of basic counts under an overall condition
will be difficult.
Recently, the multi-label classifiers are introduced to

bioinformatics [55]. In a multi-label predictor, the label of
a sample is not a single integer any more. Instead, we use
a set of integers to label a sample. A new set of
performance measures is also introduced. For the
convenience of readers, in the multi-label context, we
first revise the definitions of several notations. Let sk be
the k-th testing sample of n testing samples, y(sk) the set of
real class labels of sk, and ye(sk) the set of predicted class
labels of sk. The labels in y(sk) but not in ye(sk) are called
the under-predicted labels. The labels in ye(sk) but not in y
(sk) are called the over-predicted labels. We define an
indicator function as follows:

δk=
1, yeðskÞ=yðskÞ
0, yeðskÞ≠yðskÞ

�
, (29)

where dk is the indicator function of sk. This function
indicates that whether the prediction result of sk is
completely correct, without any over-predicted or under-

Figure 5. An ROC curve. The horizontal axis is the false
positive rate (FPR). The vertical axis is the sensitivity, which
can be termed as true positive rate (TPR). The solid curve is
the ROC curve. The dashed diagonal is called the line of no-

discrimination. An ROC curve, which is close to the top left
corner, indicates the predictor has a good performance. The
closer the curve to the top left corner, the better performance

the predictor has. The area under curve (AUC) of ROC curve
can be used as performance measures.
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predicted label. If the prediction result of sk is completely
correct, its value is 1, otherwise 0.
The set of performance measures for multi-label

predictors includes the aiming (Aim), coverage (Cov),
accuracy (Acc), absolute-true-rate (ATR) and absolute-
false-rate (AFR). They can be defined as follows:

Aim=
1

n

Xn
k=1

jyeðskÞ \ yðskÞj
jyeðskÞj

, (30)

Cov=
1

n

Xn
k=1

jyeðskÞ \ yðskÞj
jyðskÞj

, (31)

Acc=
1

n

Xn
k=1

jyeðskÞ \ yðskÞj
jyeðskÞ [ yðskÞj

, (32)

ATR=
1

n

Xn
k=1

δk , (33)

AFR=
1

n

Xn
k=1

1

m
[jyeðskÞ [ yðskÞj – jyeðskÞ \ yðskÞj], (34)

where n is the total number of testing samples and m the
number of all possible labels.
In the above equations, Aim is aiming, which describes

the average frequency of correctly predicted labels among
all predicted labels [33]. Aiming is similar to the PPV in
single label context. Therefore, it is also called the multi-
label PPV [55] or multi-label precision [56]. Cov is
coverage, which describes the average rate of correctly
predicted labels among all true labels [33]. Coverage is
similar to the sensitivity in single label context. Therefore,
it is also called the multi-label sensitivity [55] or multi-
label recall [56]. Acc is the multi-label accuracy, which
reflects the average rate of correctly predicted labels
among the labels that are either real labels or prediction
results [33]. Acc is similar to the Jaccard index in the
single-label context. ATR is the absolute-true-rate, which
describes the frequency of absolutely correct predictions
[33]. Neither over-predicted samples nor under-predicted
samples are counted as correct predictions. This is the
most strict performance measure in the multi-label
context. AFR is the absolute-false-rate, which describes
the average rate of wrongly predicted labels among all
possible labels. The wrongly predicted labels include the
over-predicted and under-predicted ones [33]. AFR is also
called the Hamming-loss [55,56]. As the AFR describes
the wrongly predicted label rate, the lower the AFR is, the
better performance a predictor will have. This is different
to other measures.
The readers may have already noticed that all these

multi-label performance measures cannot be defined for

every class separately. In fact, we agree to literatures
[33,55–57] that it is meaningless and misleading to apply
performance measures to every class separately in a multi-
label context. The above multi-label performance mea-
sures should only be used for over-all performances.

CONCLUDING REMARKS

The readers of a bioinformatics paper tend to focus more
on the performance values rather than the way how these
values are obtained and what these values actually
indicate. However, to correctly understand the perfor-
mance of a predictor, the knowledge of the performance
measures and the understanding of evaluation methods
are necessary. Besides all the performance measures that
we have defined and explained in the current review, we
would like to take this opportunity to give the readers
three tips in interpreting the performance values.
The first tip is on the performance comparison. Ideally,

a fair and rigorous performance comparison must be
carried out using identical testing dataset, identical
training dataset and identical evaluation protocols
[41,55]. These requirements are not easy to be satisfied
practically. However, the readers should notice that, if the
comparison is not carried out in a rigorous way, better
values in performance measures may not guarantee a
better performance in practical applications. The readers
should try to use their own dataset to confirm the
predictive performances in their own studies [58].
The second tip is on the feature selections. The feature

selection should be regarded as part of the training
procedures. If the feature selection uses whole dataset,
and a cross validation is carried out after that on the same
whole dataset with selected features, the predictive
performance is likely to be over-estimated [59]. It is
beyond the scope of this review too much to explain how
this happened in a strict mathematical way. The readers
may generally think that some information of the testing
sample may slip into the training dataset by helping to
decide that which features are selected. A safe evaluation
protocol involving the feature selection is to leave the
testing sample out before the feature selection process
[60].
The last tip is on how to interpret the performance

values that are obtained by a subsampling test or an n-fold
test. As we have discussed, the performance values of
subsampling test and n-fold test may vary due to different
random partitioning of the dataset. Without details of the
partitioning, which is usually not reported, it is not easy to
reproduce the performance values exactly. Therefore, we
recommend that the subsampling test and the n-fold test
should be carried out for several times with different
random partitioning. The average performance values
should be reported as well as their standard deviations
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[37].
With all the above discussions and explanations, we

hope that the current work covers most evaluation
methods and performance measures, which have been
widely applied in bioinformatics. We expect that this
paper can be a useful resource for the readers to check
when they encounter glossaries of performance measures
and evaluation methods in academic papers or reports.
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