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Background: Chromosomes are packed in the cell’s nucleus, and chromosomal conformation is critical to nearly all
intranuclear biological reactions, including gene transcription and DNA replication. Nevertheless, chromosomal
conformation is largely a mystery in terms of its formation and the regulatory machinery that accesses it.
Results: Thanks to recent technological developments, we can now probe chromatin interaction in substantial detail,
boosting research interest in modeling genome spatial organization. Here, we review the current computational
models that simulate chromosome dynamics, and explain the physical and topological properties of chromosomal
conformation, as inferred from these newly generated data.
Conclusion: Novel models shall be developed to address questions beyond averaged structure in the near further.
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INTRODUCTION

The compact conformation of nuclear genome is critical
to nearly all intranuclear cellular processes, including
transcription, DNA replication and DNA damage repair
[1,2]. Currently experimental technologies, such as
fluorescence in situ hybridization (FISH) and chromo-
some conformation capture (3C) have improve our
understanding of genome spatial organization [3–5].
The genome can be roughly organized into hierarchical
structures in multiple scales. At the bottom, genomic
DNA wraps around nucleosomes in approximately 147
base pairs, forming a 10 nm basic unit. These 10 nm
particles are, in turn, connected by linker DNA, further
forming a secondary structure known as nucleosome
fiber, which has been observed by cryogenic electron
microscopy (cryo-EM) as a 30 nm double helix structure
[6], with the possibility of other formations existing in
vivo [7]. Nucleosome fiber can further fold into a tertiary
genomic structure, but this is much less characterized by
current technologies. Several models have been proposed
based on high-throughput 3C data, e.g., the “bottle-brush”
model [8,9]. Above the tertiary structure, the genome has
been observed to occupy mutually exclusive nuclear

space for each individual chromosome [10], even between
sister chromosomes [11]. Both primary and secondary
genome structure can be observed by current microscopy
techniques, but technologies to directly observe details
beyond the secondary genome structure are not available.
Consequently, computation inference of chromatin struc-
ture has become the key toward understanding the
principles of genome spatial organization. In this review,
we introduce computational models of chromatin struc-
ture with indirect structural measurement. We first
introduce basic polymer models with scales from several
kilobases to chromosome-scale, followed by introducing
current efforts to model structural ensembles in cell
populations. Finally, we discuss integrative models on
multi-omics data for 3D genome structures.
It is natural to model chromatin as linear polymers

showing how DNA is packed into an array of nucleo-
somes in eukaryotic cells, notwithstanding variability in
the size of monomers from tens to millions of base pairs.
Let a chromosome consist of N straight and elastic
segments; then the positions of segment ends are denoted
by vectors frigNi=0, and the segment i can be written as
vector si=ri – ri –1, i=1, 2, :::,N . Because different fac-
tors control the conformation between small and large

302 © Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Quantitative Biology 2016, 4(4): 302–309
DOI 10.1007/s40484-016-0082-1



scales, we review the models in the two separate groups.

MOLECULAR DYNAMIC MODELS FOR
LOCI AND SMALL CHROMOSOMES

At small scale where the size of monomers varies from
several bases to several kilobases, chromatin conforma-
tion is largely affected by intramolecular stretching,
bending, and twisting, as well as hydrophilic and
electrostatic exclusions [12–14]. We describe the models
beginning with the definition of energy functions. The

stretching energy, EðsÞ
i , of any given segment si is defined

by

EðsÞ
i

kBT
=

1

2ðl0δÞ2
ðl0 – ksikÞ2, (1)

where kB is the Boltzmann constant, T is the absolute
temperature, l0 is the equilibrium length of the segment,
and δ is the stiffness parameter [12]. The bending energy,

Eb
i , for adjacent segments si – 1 and si, is defined by

Eb
i

kBT
=

1

2
k�hsi, siþ1i2, i=1, 2, :::,N – 1, (2)

where k� is the bending elasticity of the chain and h�,�i
denotes the torsion angle between the two vectors [15].

The twisting energy, EðtÞ
i , for segments si, i=2, 3,:::,N – 1

is defined by

EðtÞ
i

kBT
=

C

2kBTl0
τ2i , (3)

where C denotes the torsional rigidity of the segment, and
τi denotes the twist angle which is given as the angle
between the projections of si – 1 and siþ1 onto the plane
vertical to si [12]. The exclusion energy by hydrophilic
and electrostatic effect is described in detail in [12] and
can be simplified by the repulsive part of the Lennard–
Jones potential as
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where dij is the Euclidean distance between ri and rj, Ið�Þ
indicates the indicative function, and � is the thickness of the
segment [16].
With the potential field well defined, the state of

polymers can be simulated by molecular dynamics. In real
simulations, additional constraints may be applied. For
example, α and β globin loci represent a classical example
of chromatin interaction [17]. To model the interaction,
Brackley et al. have taken the DNase1 hypersensitive
sites (DHSs) as common proxy for binding of proteins
and modelled the sites of CCCTC-binding factor (CTCF)
and histone modification H3K4me3 separately [18]. On a
larger scale, the decondensation (i.e., loosening) of a
small chromosome has been simulated by a bead spring
polymer model with bead diameter of 30 nm [19]. In the
simulation, either linear or ring-shaped helical structures
were taken as the initial models, and the effects of linear
connectivity, self-avoidance and bending stiffness of the
chromatin fiber were considered, while effects from
transcription or topoisomerase were neglected. Compared
with FISH data in yeast, fly and human, the model has
successfully reproduced territory shapes and spatial
distances between chromatin loci in the genomes [19].
A whole chromosome can also be simulated by polymer
dynamics. For instance, a simulation for the chromosome
conformation of interphase haploid budding yeast has
been done with Brownian dynamics [20].

POLYMER MODELS FOR LARGE
CHROMOSOMES

For larger monomer scales, such as several thousand to
several mega bases, the molecular forces neutralize each
other, making the chromosomes behave much more like a
chain under Brownian motion [21]. Models assume that
monomers are flexibly connected to each other. The
models are then assessed by certain experimental
measurable dimensionless variables, such as the relation-
ship between the spatial (R) and genome (N ) distance of
two loci. It has been shown that hR2i=N2v [22], where
the scaling exponentv indicates the folding properties of
the polymer models. In this category, the random walk
model and the self-avoiding walk (SAW) model are
fundamental. In the random walk model, the monomers
are treated as mathematical points such that multiple
points can occupy the same spot simultaneously [22]. In
the self-avoiding walk model, a positive volume is
assumed for each monomer, implying that the monomers
are spatially mutually exclusive [22]. However, both
models failed to recapture R~N relationship when gen-
ome distance> 5 Mb [23]. For example, both models
predict that chromosome condensation forms spherical
globules, while neither mitotic nor meiotic condensed
chromosome condensation is visually spherical [24].
Moreover, the existence of chromatin loops, which is
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functionally important, cannot be explained by either
model [25,26].

MODELS FOR CHROMATIN LOOPS

To explain chromatin loops, several models have been
described in the literature, such as the dynamic loop
model [27] (Figure 1A), the random loop model [23]
(Figure 1B), the fractal globular model [4], the strings and
binders switch (SBS) model [28] (Figure 1C), and the
loop extrusion model [29] (Figure 1D). The dynamic loop
model was built on top of the random walk model. Given
a certain preassigned probability, two randomly walking
monomers will be considered to form a stable loop when
they meet each other, and a random half-life will also be
assigned to the chromatin loop as long as it is formed [27].
Similar to the dynamic loop model, the random loop
model is also built on top of the random walk model. In
addition to possible loop formation between adjacent
monomers, the random loop model also assigns non-
adjacent monomer pairs a probability to form loops; as
such, loops on all length scales are generated randomly.
Both models successfully explained FISH data for the
self-organization patterns of chromatin and cell-to-cell
variations of the chromatin structure in human [23]. The
fractal globular model is based on the so-called “globule”

models, which were originally used to describe a polymer
in a poor solvent at equilibrium [4]. The model assumes
each monomer to be a globule and iteratively crumples
the globules to form globules of globules until only a
single globule remains. The resulting structure resembles
a Peano curve [4], a continuous fractal trajectory that
densely fills 3D space without crossing itself. The model
reproduces the relationship between the interaction
frequency PC and the genome distance s of two
monomers as PcðsÞ=1=s1:08 [30]. In the SBS model,
chromosomes are driven by a SAW model in a solution
which contains DNA binding factors with a certain
concentration [31]. The binding factors are under
Brownian motion, and they bind to chromosomes when
they are spatially adjacent. A chromatin loop is formed
when a factor binds two loci simultaneously. The
concentration of the binding factors defines the behavior
of the SBS model. With increasing concentration,
chromatin conformation varies from the open SAW
conformation to a fractal globule-like structure and,
finally, a compact, nonfractal conformation, in which v
goes to 0 as genome distance increases, coinciding with
experimental observations [32]. Finally, the loop extru-
sion model considers a specific type of DNA binding
protein called motors. A motor is composed of two
functional units (heads) which can independently extrude

Figure 1. Illustration of polymer models showing the dynamics of chromatin loops. (A) Dynamic loop model. (B) Random
loop model. (C) SBS model. (D) Loop extrusion model.
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chromatin in opposite directions so that they progres-
sively bridge distal sites. In the loop extrusion model, N
motors are assumed to randomly disperse along the
chromosome. As long as the two heads of a motor bind to
the chromosome, they start to slide away from each other
stochastically and extrude a loop. When the heads of two
neighboring motors collide, they block each other and
halt. Meanwhile, the other heads of each motor remain
unperturbed and continue loop extrusion. The motor
dissociates from chromatin at a rate roff [29,33]. It has
been proposed that protein cohesins and CTCF may act
together as the motors in mammals [34]. In addition to
reproducing chromatin loops, the loop extrusion model
has also been shown to qualitatively and quantitatively
reproduce the topologically associated domains (TAD)
[35], which explains the mechanism of processive loop
enlargement by condensation in mitotic chromosome
compaction [33] and chromosome segregation in bacteria
[36].

STRUCTURAL MODELS OF THE WHOLE
GENOMES BASED ON CHROMOSOME
CONFORMATION CAPTURE DATA

With help from next-generation sequencing technology,
chromosome conformation capture (3C) [3], together with
its variations like 4C [37], 5C [38], Hi-C [4], and ChIA-
PET [39], has become a major engine for spatial
chromatin structure research [40]. The design principle
behind all 3C-based technologies is spatial approximate
ligation. More specifically, by ligating DNA fragments
that spatially aggregate in nuclear 3D space, information
about physical interaction can be converted into DNA
sequence arrangement, which can then be examined by
PCR(3C) [3], microarray(4C) [37], or next-generation
sequencing (5C, Hi-C or ChIA-PET) [4,38,39]. The
genome-wide map of chromatin interaction of yeast [41],
Drosophila [42], mouse [43] and human [4] are all in the
public domain. However, with this pairwise chromatin
interaction map, one major challenge is to reconstruct the
underlying 3D physical model of the genome. Since the
initial cell number of nearly all 3C-based technologies is
over a million, the interaction map represents all physical
structures in the cell population. Given the dynamic
nature of chromatin [44], it is hard to distinguish between
a stable interaction in a subpopulation and a dynamic
interaction in all cells when the observed interaction
frequency is not 100% in the map. Thus, two schemes
have been devised to model the physical genome structure
given the 3C-based contact map. The first scheme aimed
to reveal an average, or consensus, structure, and the
second scheme models the structures probabilistically,
with the ultimate goal of revealing the dynamic of

chromatin in the cell population.
For the first scheme, the common strategy is to seek an

optimal structure that best fits the observed chromatin
interaction map. The definition of optimal structure
completely depends on the objective function which
evaluates the goodness of a chromatin structure model
representing the experimentally observed interaction
frequency (IF) data. Normally, an objective function
takes the form Obj=f ð�Þ þ gð�Þ, where f ð�Þ denotes the
distance between a chromatin structure and IF, and gð�Þ
denotes additional physical constraints. The central part
of objective functions is f ð�Þ. Since a distance matrix can
be conveniently converted into three-dimensional
coordinates by multidimensional scaling or semidefinite
programming [45,46], f ð�Þ can be roughly written as
f ðD, IF – αÞ, where D denotes the distance matrix, and the
exponent parameter α can be fixed, or optimized, as a
hyperparameter in the model. Depending on f ðD, IF – αÞ
and constraints of gð�Þ, various objective functions and
optimization algorithms have been proposed [16,41,45–
52]. We have already seen that polymer models are
variously classified [4,41,47,50]. Taking the fractal
globule model as an example, the exponent parameter α
is set to be a fixed 1 [4]. Another group of polymer
models focus on the design of gð�Þ to represent physical
or experimental constraints, such as the space and shape
of cell or nucleus [41,49], as well as such previously
noted properties as stretching resistance, excluded
volume, and bending rigidity. Many algorithms or
platforms have been successfully applied to solve optimal
problems, for example including simulated annealing
[50], least mean squares (LMS) algorithm [16], shortest-
path method [45] or even the Integrative Modeling
Platform (IMP), which was originally designed for
protein structure prediction [49], or combinations there
of [51]. We recommend a more detailed review of these
methods [53].
The second scheme embeds as much accessible

information as possible, including observed chromatin
interaction map, chromatin physics, and systematic biases
of experiments [54], into a probability model and then
solves it by either maximum likelihood or the Bayesian
approaches. Unlike methods from the first scheme, which
only produce average or consensus structure, the models
of the second scheme produce an ensemble of structures
with likelihood or posterior probability that reflects the
dynamics or heterogeneity of chromatin structure in the
cell population. Examples of maximum likelihood-based
methods include those of Wang et al. and Tjong et al.
[55,56]. In methods based on a specific distribution, e.g.,
Boltzmann distribution [55] or empirical distribution [56],
which take into account physical or biological constraints,
the ensemble of structures and probabilities which
maximize the total likelihood of the system were inferred.
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Examples of Bayesian approaches include BASH and
MCMC5C, in which physical constraints were considered
in prior probabilities to form a Bayesian inference
problem, and a Markov chain Monte Carlo (MCMC)
sampling algorithm was designed to sample structures
from the posterior distribution [57,58]. The full list of
currently available tools can be found in this review [53].

PREDICTING GENOME STRUCTURE
BASED ON EPIGENOME DATA

It is well established that epigenetic marks, e.g., the Dnase
I hyposensitive site, are strongly associated with chroma-
tin interaction [59] and that CTCF binding is highly
enriched at the boundary of topological domains and
largely defines them [60,61]. Therefore, researchers ask if
3D chromatin structure could also be predicted from 1D
epigenome data, and attempts to do this have been made
at different levels. First, global topological genome
features, such as compartment partition [62], and TADs
[63] can be reconstructed by integration of epigenetic
data. Because (i) the two compartments roughly corre-
spond to active and repressive regions in genome and (ii)
the association between transcriptional activity of a
genome region and its epigenetic state is well established
[64–66], it is natural to predict compartments [67]. For
TAD prediction, histone markers, together with DNA
sequence information, such as PhastCons conservation
score, TSS proximity and GC content, and binding profile
of CTCF, are integrated into a Bayesian Additive
Regression Trees (BART) model, which averages results
from an ensemble of regression trees. The authors showed
distinct histone modification combinations between
chromatin interaction hubs and chromatin regions that
do not interact, as well as between TAD boundaries and
domain bodies [63]. The authors also integrated Hi-C
data, which in turn helped to predict chromatin interaction
hubs [63]. A more challenging task is to predict stable
chromatin interactions, i.e., chromatin loops from epige-
netic data, but three recent works demonstrated that it is
possible [68–70]. Thanks to multi-omics data projects,
such as ENCODE [71], hundreds of high-throughput
genomic and epigenomic data have become publicly
available. Chen et al. decomposed the correlation matrix
of epigenetic profiles and the Hi-C contact matrix using
wavelet analysis, while Zhu et al. decomposed the matrix
of multi-omics profiles by terser decomposition. By
decomposition, large-scale structure of the human
genome, such as TAD, as well as chromatin-chromatin
interaction, can be predicted with high resolution [68,69].
Whale et al. developed TargetFinder to predict enhancer-
promoter interactions across multiple cell types at fine
scale. Almost no single genomic or epigenetic feature has
sufficient efficiency on enhancer-promoter interaction

prediction; therefore, the author concluded that complex,
but consistent, combinations of genomic and epigenetic
features encode the 3D structure of regulatory interactions
[70].

FUTURE DIRECTIONS

Although methods and models have successfully revealed
features of 3D genome at various scales, the main
challenges in the field remain elusive. First, given the
current incompatibility of genome size and limited
computational power, coarse-graining is a commonly
used strategy. Here, monomers in the models could
represent genome regions at scales from single nucleo-
some to megabase length TADs. Thus, the parameters at
each level, i.e., energy functions, used in the simulations
should be carefully considered. In many cases, however,
such parameters still need to be estimated. Second,
chromatin structures are believed to be highly dynamic
and heterogeneous in the cell population [72]. Although
several attempts have been made to model chromatin
structure ensembles at given loci [18,73,74], such as
globin [74] and Xist [74], or globally by Bayesian
approaches, as discussed above [53,57,58], most current
models infer an average structure of millions of cells from
which the data were generated. Currently, making a
precise map of genome structure ensemble is unattain-
able. Therefore, new computational methods, as well as
experimental technologies, that aim to retrieve genome
structure information in single cells must be developed.
Third, 3D genome structure is always changing along a
time scale that includes gene expression regulation, cell
cycle, cell differentiation, aging and speciation. Apart
from mechanistic considerations, current models have
focused on molecular dynamics that take into account a
longer span of time. It will be mutually beneficial to
evolutionary research of 3D genome and developers of
powerful computational methods to understand the 3D
genome structure.
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