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Background: Recently we proposed a quantum theory on the conformational change of biomolecule, deduced
several equations on protein folding rate from the first principles and discussed the experimental tests of the theory.
The article is a review of these works.
Methods: Based on the general equation of the conformation-transitional rate several theoretical results are deduced
and compared with experimental data through bioinformatics methods.
Results: The temperature dependence and the denaturant concentration dependence of the protein folding rate are
deduced and compared with experimental data. The quantitative relation between protein folding rate and torsional
mode number (or chain length) is deduced and the obtained formula can be applied to RNA folding as well. The
quantum transition theory of two-state protein is successfully generalized to multi-state protein folding. Then, how to
make direct experimental tests on the quantum property of the conformational transition of biomolecule is discussed,
which includes the study of protein photo-folding and the observation of the fluctuation of the fluorescence intensity
emitted from the protein folding/unfolding event. Finally, the potential applications of the present quantum folding
theory to molecular biological problems are sketched in two examples: the glucose transport across membrane and
the induced pluripotency in stem cell.
Conclusions: The above results show that the quantum mechanics provides a unifying and logically simple
theoretical starting point in studying the conformational change of biological macromolecules. The far-reaching
results in practical application of the theory are expected.

Keywords: conformational change; quantum transition; protein folding; RNA folding; temperature dependence

INTRODUCTION

Since the birth of molecular biology, the rationalization of
life science has happened one wave after another. The
post-genomic era calls for the deep integration of physical
science and life science. Based on our personal
experience and perspective the integration can occur on
several important areas, for example, on the folding
mechanism of protein and nucleic acid molecules, on the
evolution of an informational system such as a genome,
on the molecular basis of cognition. It is interesting to
note that many of these studies are closely related to
quantum mechanics. Recently, protein and RNA folding
was explained by the quantum transition between

conformational states [1–4]. The genome evolutionary
equation was written in terms of nucleotide k-mer
frequencies varying in time and the equation was
transformed into a quantum-mechanical one to describe
the stochastic speciation events [5]. The quantum bit was
proposed to process the information in brain based on
microtubules or nuclear spins and the consciousness was
interpreted as a quantum effect [6–9]. In all above studies
the role of quantum was emphasized. In his famous book
What is Life? Schrödinger wrote that we must be prepared
to find a new type of physical law prevailing in the living
matter and the new principle is not a non-physical but “a
genuinely physical one: it is nothing else than the
principle of quantum theory over again.” Hence from
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the points of the existence of several unifying principles
between life and non-life and the deep integration of
physics and biology we learned about the importance of
quantum. However, in the present article we will focus on
reviewing our recent works on the quantum folding
problem, the problem of the conformational change of
biomolecules viewed as quantum transition. In the section
of General formula for conformational transition rate, a
general formula for conformational transition rate will be
introduced. Then the temperature dependence and
denaturant concentration dependence of protein folding
rate will be discussed in next section. The dependence of
conformational transition rate on torsion mode number N
of macromolecule and the test of the theoretical formula
in protein and RNA folding experiments will be studied in
the section of N-dependence of the folding rate for protein
and RNA molecule. In the subsequent section several
discussions will be given, including how to generalize the
theory of two-state protein folding to multi-state, the
protein photo-folding, the quantum coherence and the
direct experimental test on the quantum property of the
conformational change of macromolecules. Finally, as
two examples of the application of the quantum folding
theory, the glucose transport across membrane and the
induced pluripotency in stem cell will be sketched in the
last section.

GENERAL FORMULA FOR CONFORMA-
TIONAL TRANSITION RATE

The protein folding/unfolding is a typical example of the
conformational change of biomolecules. The two-state
protein folding can be looked at as a one-step quantum
transition between conformational states. The main
dynamical variables of the system include torsion
(dihedral) angles, bond lengths and bond angles which
determine the molecular shape. The former (torsion
namely) is the slow-varying variable, denoted as {θ}
and the latter two are fast-varying variables, denoted as
{x}. For a conformational change problem, if the
electronic variables, chemical bonds, hydrogen bonds
and other forms of energy such as hydrophobic interaction
etc. are important and should be considered, they all can
be included in the fast-varying variable set. The wave
function M(q, x) satisfies

Htor �,
∂
∂�

� �
þ Hfv x,

∂
∂x
; �

� �� �
Mð�, xÞ=EMð�, xÞ,

(1)

Htor=–
X`

2

2Ij

∂2

∂�2j
þ Utorð�Þ: (2)

Htor and Hfv are slow- and fast-variable Hamiltonian

respectively. In adiabatic approximation the wave func-
tion is expressed as

Mð�, xÞ=ψð�Þφðx, �Þ, (3)

and the two factors satisfy
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ψknαð�Þ=Eknαψknαð�Þ, (5)

respectively where α denotes the quantum number of fast-
variable wave function φ, and (k, n) refers to the
conformational (indicating which minimum the wave
function is localized around) and the vibrational state of
torsion wave function ψ.
Because M(q, x) is not a rigorous eigenstate of

Hamiltonian Htor + Hfv, there exists a transition between
adiabatic states that results from the off-diagonal elements
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Through tedious calculation we obtain the rate of
conformational transition [1,2]
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in which �=ω2ðδ�Þ2
XN
j

Ij as z=
kBT

2̀ ðδ�Þ2I0�1 and the

condition z≫1 is generally satisfied in protein folding
problem. I#V is slow-variable factor and I#E fast-variable
factor of the transitional rate, N is the number of torsion
modes participating coherently in a quantum transition, Ij
denotes the inertial moment of the atomic group of the j-th
torsion mode (I0 denotes its average), ω and ω# are
respectively the initial and final frequency parameters ωj

and ωíj of torsion potential averaged over N torsion
modes, δ� is the averaged angular shift between initial
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and final torsion potential, ΔG is the free energy decrease
per molecule between initial and final states, M is the
number of torsion angles correlated to fast variables, a2 is
the square of the matrix element of the fast-variable
Hamiltonian operator, or, more accurately, its change with
torsion angle, averaged over M modes,

a2=
1

M

XM
j

jaðjÞαíαj2,

aðjÞαíα=
i`

I1=2j

hðjÞαíα
εð0Þα – εð0Þαí

, α#≠α,

hðjÞ x,
∂
∂x

� �
=

∂Hfv x,
∂
∂x
; �

� �

∂�j

0
BB@

1
CCA

0

, (8)

εð0Þα , εð0Þαí are the eigenvalues of Hfv x,
∂
∂x
; �0

� �
. Equa-

tions (7–8) are basic equations for conformational
transition.
Note 1: The adiabatic approximation is the only

important approximation in the above deduction. The
approximation is applicable because the energy gap

between the eigenvalues εð0Þα of fast-variable Hamiltonian
is generally larger than the torsion energy [10].
Note 2: The torsion potential Utor is a function of a set

of torsion angles �=f�jg. Its form is dependent of solvent
environment of the molecule. Suppose the interaction
between water (or other solvent, ion and denaturant)
molecules (their coordinates denoted by r) and macro-
molecule is V ðr, �, xÞ, its average over r in a given set of
experimental conditions (including chemical denaturants,
solvent conditions etc.) [11] can be expressed by
hV ðr, �, xÞiav=V1ð�Þ þ V2ðx, �Þ where V1ð�Þ is x-inde-
pendent part of the average interaction. Then we

define Utorð�Þ=Utor, vacð�Þ þ V1ð�Þ and Hfv x,
∂
∂x

; �

� �

=Hfv,vac x,
∂
∂x
; �

� �
þ V2ðx, �Þ in the basic Equations

(1) and (2) with Utor,vac the torsion potential in vacuum
and Hfv,vac the fast-variable Hamiltonian in vacuum.
Therefore, although the influence of solvent is a difficult
problem in molecular dynamics approach, it has been
taken into account automatically in the present theory by
redefining the torsion potential Utor and fast-variable
Hamiltonian Hfv in the basic equations.
Note 3: The torsion mode number N describes the

coherence degree of multi-torsion transition in the
folding. For protein we assume that N is obtained by

numeration of all main-chain and side-chain dihedral
angles on the polypeptide chain except those residues on
its tail which does not belong to any contact. Each residue
in such contact fragment contributes 2 main-chain
dihedral angles and, for non-alanine and-glycine, it
contributes 1– 4 additional side-chain dihedral angles.
For nucleic acid the torsion number can be estimated by
chain length. Following IUB/IUPAC there are 7 torsion
angles for each nucleotide, namely

αðO30 –P –O50 –C50Þ,
βðP –O50 –C50 –C40Þ,
gðO50 –C50 –C40 –C30Þ,
δðC50 –C40 –C30 –O30Þ,
εðC40 –C30 –O30 – PÞ,
&ðC30 –O30 – P –O50Þ,

and

χðO40 –C10 –N1 –C2Þ ðfor PyrimidineÞ,

or χðO40 –C10 –N9 –C2Þ ðfor PurineÞ,
of which many have more than one advantageous
conformations (potential minima). If each nucleotide
has q torsion angles with multi-minimum in potential then
the torsion number N = qL, where L is chain length.

TEMPERATURE AND DENATURANT
CONCENTRATION DEPENDENCE OF
PROTEIN FOLDING

From the rate Equation (7) we have deduced a
temperature dependence law of protein folding rate W(T)

lnW ðTÞ=S

T
–RT þ 1

2
lnT þ const, (9)

where const means temperature-independent term. The
law explains the curious non-Arrhenius behavior of the
rate— temperature relationships in protein folding/
unfolding experiments [1,3]. It gives an example in
Figure 1.
The comprehensive comparisons of the theoretical

predictions with experimental rates were made in [3] for
all two-state proteins whose temperature dependence data
were available. The strong curvature of folding rate on
Arrhenius plot is due to the R term in Equation (9) which
comes from the square free energy (ΔG)2 in rate Equation
(7) for theoretical lnW. Since the factor (ΔG)2 occurs only
in rate equation of quantum theory the good agreement
between theory and experiments affords support to the
concept of quantum folding. Moreover, in this theory the
universal non-Arrhenius characteristics of folding rate are
described by only two parameters S and R and these
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parameters are related to the known folding dynamics. All
parameters related to torsion potential defined in this
theory (such as torsion frequency ω and ω#, averaged
angular shift δ� and energy gap ΔE between initial and
final torsion potential minima, etc.) can be determined,
calculated consistently with each other for all studied
proteins [3]. Furthermore, in this theory the folding and
unfolding rates are correlated with each other, needless of
introducing any further assumption as in [13]. An
interesting relation we obtained is

R0=R=ðω=ω#Þ2 (10)

(slope S and curvature R in folding are denoted as S#, R# in
unfolding). The equation explains why for some proteins
the plots of lnW versus 1/T are strongly curved but almost
linear for their unfolding by ω<ω#.
Assuming the free energy change ΔG in a temperature

interval lower than melting temperature Tc has been
measured and expressed as

ΔG=ΔG0 þ ΔG1ðT – TcÞ=αþ βT ,

α=ΔG0 –ΔG1Tc, β=ΔG1: (11)

We know that the above linear relation was tested by
experiments for many proteins [12,14–24] (Supplemen-
tary Figure S1). By using α and β given from experiments
we can re-deduce the temperature dependence of folding
rate. In fact, by inserting Equation (11) into Equation (7)
one easily obtains Equation (9) and in the equation the
slope and curvature parameters S and R are given by

S=
ðΔG0 –ΔG1TcÞ

2kB
1 –

ΔG0 –ΔG1Tc
�

� �
=

α
2kB

1 –
α
�

� �
,

R=
ðΔG1Þ2
2�kB

=
β2

2�kB
: (12)

Eliminating � in Equation (12) a universal relation
between R and S is deduced,

R=
α
2kB

– S

� �
β2

α2
: (13)

Following the similar deduction the relation between
slope and curvature parameters for unfolding rate is
obtained,

R#=–
α
2kB

þ S#
� �

β2

α2
: (14)

With the aid of known α and β from the temperature
dependence of free energy, constraints on slope and
curvature parameters can be obtained by Equations (13)
and (14) for folding/unfolding rate.
In addition to Equations (13) and (14) , from the

relation between folding rate W and unfolding rate Wu

ln
W

Wu

� �
=

ΔG
kBT

þ ðΔGÞ2
2kBTε

ω2 –ω#2

ω#2

 !
þ ln

ω
ω0 ,

ε=Nω2ðδ�Þ2I0 (15)

(ε is defined as z in Equation (7) as z≫1) we obtain the
relation between R and R#

ΔG0

kBTc
þ ðΔG0Þ2

2kBTcε
R0

R
– 1

� �
þ 1

2
ln

R0

R
=0: (16)

Here Tc is defined by W =Wu and as T = Tc one has
ΔG=ΔG0.
Equation (13) was proved at precision higher than 90%

by using experimental data on S, R, α and b of 15 two-
state proteins [4]. Equations (14) and (16) can also be
tested by experimental data. It is interesting to note that
ΔGðTcÞ � ΔG0≠0, which has been proved by the linear
temperature-dependence of free energy (Supplementary
Figure S1). If ΔG0 were 0 then R# would equal R from
Equation (16). So the inequality between R# and R
indicated by experiments would require ΔG0≠0. Of
course, ΔG0 is a small quantity in the order of

kBTcjln ω
ω0 j that can be seen from Equation (15). Usually

the free energy ΔG at given temperature T was measured
through ΔG=kBT lnðkf =kuÞ (the experimental value of W
and Wu denoted as kf and ku respectively) in literature.
However from Equation (15), this determination of free

Figure 1. Model fit to overall folding rate kf vs
temperature 1000/T for protein FBP28. Experimental
logarithm folding rates are shown by “●” (data taken from

[12]), and solid lines are theoretical model fits to the
folding rate (kf in unit s–1, T in unit Kelvin).
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energy is not accurate as T near Tc where lnðkf =kuÞ is a
small quantity and the term proportional to lnðω=ω#Þ
cannot be neglected. So, we argue that the present
measurement of free energy at temperature T near Tc,
namely ΔG0, is not accurate. We expect Equation (16)
will be experimentally tested by more precise measure-
ment data of ΔG0 and R# value.
Note: The temperature dependence Equation (9) for

protein folding rate can be generalized to other macro-
molecular conformational changes as long as the slow
variable is torsion in the process. We have demonstrated if
only electrons serve as the fast variables the folding rate
of a torsion-electron system takes the nearly same form of
temperature dependence as Equation (9) except the
unimportant term ½ lnT changes to –½ lnT [1,2].
Generally speaking, for fast-variables with energy level
spacing Δεa≫kBT the temperature variation of several
tens of degrees would not markedly change the statistical
distribution of fast-variable quantum states and therefore,
the temperature dependence Equation (9) still holds. The
unusual temperature response of intrinsically disordered
protein may be attributed to the change of protein helicity
[25]. The thermal sensitivity of secondary structure
content induces the shift of the energy level of the protein
and causes the change of the temperature dependence of
its folding rate.
The denaturant concentration dependence of protein

folding rate can be discussed in the same framework. By

setting ΔG=ΔGð0Þ þ mc , c =[denaturant] , m=
∂ðΔGÞ
∂c

at

given temperature we obtain

lnW=lnW ð0Þ þ mf cþ míf c
2,

lnWu=lnW ð0Þ
u þ mucþ míu c2,

(17)

from Equation (7). Here W(0) and Wu
(0) represent the

folding and unfolding rates in water, mf and mu are the
respective slopes of the folding and unfolding arms, míf
and míu describe their curvature

mf=
m

2kBT
1 –

2ΔGð0Þ

�

 !
; mu=–

m

2kBT
1þ 2ΔGð0Þ

�#

 !
;

míf =–
m2

2kBT�
; míu =–

m2

2kBT�#
;

�=NI0ω
2ðδ�Þ2, �#=NI0ω#

2ðδ�Þ2: (18)

One may use the four parameters,mf,mu,m
í
f andmíu to fit

the experimental data of denaturant dependence. Setting
�0

�
= ω#2

ω2 =1þ δ (jδj is a small quantity) one has

mf þ mu=
–mΔGð0Þ

kBT�
ð2 – δÞ,

míf –míu =
–m2δ
2kBT�

:

(19)

If d is near 0 and neglectable then míf =míu =m# and

�=�#=2ΔGð0Þ mu –mf

mf þ mu
. In this case only three para-

meters mf, mu, and m# are needed for fitting the experi-
mental data. By using chevron plot (the relation of the
relaxation rate constant lnkobs=lnðW þWuÞ vs denatur-
ant concentration c) to fit the experiments [11] two
examples are given in Figure 2 (details can be found in
Supplementary Table S1). In Figure 2 the classical fits are
taken from [11] where only the linear terms are retained in
the chevrons, while the quantum fits with three or four
parameters are based on the abovementioned Equations
(17) to (19). From Figure 2 one finds the quantum fits are
obviously better than the classical linear fits. In the
meantime we notice that the polynomial fitting Equation
(17) was reported recently on the frataxin folding in
denaturant urea which is in good agreement with
experiments [26]. The polynomial fitting is easily under-
stood in our quantum approach.

N-DEPENDENCE OF THE FOLDING RATE
FOR PROTEIN AND RNA MOLECULE

The protein and RNA folding rate is dependent of the
number N of the torsion modes participating in the
transition. As seen from Equation (7) the dependence
comes mainly from two factors: the fast-variables factor
IíE and the free energy ΔG.
For a large class of conformational change problems

such as the common protein and RNA folding, the
chemical reaction and electronic transition are not
involved and the fast variables include only bond lengths
and bond angles of the macromolecule. In this case an
approximate relation of the fast-variable factor IíE with
respect to torsion number N can be deduced. When the

kinetic energy inHfv x,
∂
∂x
; �

� �
is neglected as compared

with interaction potential Ufv one has

aðjÞαíα=
i`

I1=2j

1

εð0Þα – εð0Þαí
!φ�αíðr, r#Þ ∂Ufvðjr – r#j, �Þ

∂�j

� �
�0

φαðr, r#Þd3rd3r#=
i`

I1=2j

1

V ðεð0Þα – εð0Þαí Þ
! ∂Ufvðjr – r#j, �Þ

∂�j

� �
�0

d3ðr – r#Þ:

(20)
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In the above deduction of the second equality the fast-
variable wave function φαðr,r#Þ has been assumed to be a
constant and normalized in the volume V. As the energy
and volume V are dependent of the size of the molecule

one may assume energy εð0Þα and Ufv proportional to
the interacting-pair number (namely N2) and V propor-
tional to N. However, because only a small fraction of
interacting-pairs are correlated to given �jðj=1, :::, NÞ,
∂Ufvðjr – r#j, �Þ

∂�j

� �
�0

does not increase with N. So, one

estimates aðjÞαíα � N – 3. On the other hand, the integral

!
∂Ufvðjr – r#j, �Þ

∂�j

� �
�0

d3ðr – r#Þ may depend on the

molecular structure. For example, the high helix content
makes the integral increasing. It was indicated that a
protein with abundant a helices may have a quite oblong
or oblate ellipsoid, instead of spheroid, shape and this
protein has higher folding rate [3,27]. Therefore, apart
from the factor N – 3 there is another independent

structure-related factor in aðjÞαíα. Furthermore, assuming M
proportional to N, one obtains

Ma2=cfN – 5, (21)

where f is a structure-related shape parameter. It means
the fast-variable factor IíE is inversely proportional to N5.
The result is consistent with the direct fit of experimental
data of 65 proteins to a power law Ma2 � N – d that gives
d equal about 5.5 to 4.2 [3]. Finally from Equations (7)
and (21) we obtain the N-dependence of folding rate

lnW=
ΔG
2kBT

–
ðΔG=kBTÞ2

2�N
– 5:5lnN þ lnc0f , (22)

where

�=I0ω
2ðδ�Þ2=ðkBTÞ

is a torsion-energy-related parameter and c0 is an N-
independent constant, proportional to c. The relationship
of lnW with N given by Equation (22) can be tested by the
statistical analyses of 65 two-state protein folding rates kf ,
which is shown in Figure 3. The details can be found in
Ref. [3,4]. The theoretical logarithm rate lnW is in good
agreement with the experimental lnkf.
To find the relation between free energy ΔG and torsion

number N we consider the statistical relation of free

energy combination
ΔG
2kBT

–
ðΔGÞ2

2ðkBTÞ2�N
that occurs in

rate Equations (7) or (22). Assuming the free energy
differences are measured under a “standard” set of
experimental conditions [11] and setting

ΔG
2kBT

–
ðΔGÞ2

2ðkBTÞ2�N
=y, –

1

N
=x (23)

for the 65-protein dataset [27] we find a good linear
relation y=Aþ Bx existing where A and B are two
statistical parameters describing the free energy distribu-
tion. The correlation R in the linear regression is near to
0.8 for r = 0.065~0.075 and reaches maximum R =
0.7966 at r = 0.069. Thus, by single-r-fit we obtain the
best-fit statistical relation of free energy for two-state

Figure 2. The statistical analysis on the denaturant concentration dependence of folding /unfolding rates for protein GW1
and U1A. Experimental logarithm relaxation rates lnkobs are shown by “o”. Quantal and classical model fits to the experimental rates

are given by solid and dashed lines respectively. The data of experimental folding /unfolding rates and classical fits are taken from
[11].
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proteins as

y=4:306þ 541:1x, ð�=0:069Þ (24)

(Figure 4A). As the variation of r for different proteins is
taken into account the linear regression between free
energy combination y and torsion number xwill be further
improved.
Because N increases linearly with the length L of

polypeptide chain, instead of Equation (23), by setting

ΔG
2kBT

–
ðΔGÞ2

2ðkBTÞ2�LL
=y, –

1

L
=x, (25)

we obtain the best-fit statistical relation of free energy for
two-state proteins (Figure 4B) as

y=3:626þ 83:76x, ð�L=0:28Þ (26)

and the correlation coefficient R = 0.781. (Figure 4B)
About the relationship of free energy ΔG with torsion

number N or chain length L several proposals were
proposed in literature. One statistics was done by
assuming the linear relation between ΔG and

ffiffiffiffi
N

p
, ΔG=

a
ffiffiffiffi
N

p
– b (b≠0) [3]. Another was based on the assumed

relation of ΔG vs (Lg þ �BLL
2=3) [27]. By the statistics on

65 two-state proteins in the same dataset we demonstrated
that the correlation R between free energy and N or L is
0.67 for the former and 0.69 for the latter [3], both lower
than the correlation shown in Figure 4. We shall use the
statistical relation of the free-energy combination,
Equation (23), versus N in the following studies on
RNA folding.
In virtue of Equations (22–24) we obtain an approx-

imate expression for transitional rate lnW versus N for
protein folding

Figure 3. Comparison of theoretical folding rates

lnW with experimental folding rates lnkf for 65 two-
state proteins. Experimental rates for 65 two-state
proteins are taken from the database published in [27]
where the folding experiments were carried out at

temperature around 25oC and the rates were extra-
polated to denaturant-free case. The details of the
parameter choice in theoretical calculation can be found

in [3,4]. The linear regression is given by the solid line
with correlation R = 0.7818.

Figure 4. Statistical relation of free energy for two-state proteins. Experimental data are taken from 65- protein set [3,27].

Five proteins in the set denatured by temperature have been omitted in our statistics. (A) y and x are defined as Equation (23). (B) y
and x defined as Equation (25). The linear regression between y and x is plotted by the solid line and R means the correlation
coefficient.
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lnW=A –
B

N
–DlnN þ const, (27)

ðD=5:5, A=4:306, B=541:1Þ:
The quantum folding theory of protein is applicable in

principle for each step of the conformational transition of
RNA molecule. Although recent experiments have
revealed multi-stages in RNA collapse, the final search
for the native structure within compact intermediates
seems a common step in the folding process. Moreover,
the step exhibits strong cooperativity of helix assembly
[28,29]. Because the collapse transition prior to the
formation of intermediate is a fast process and the time
needed for the former is generally shorter than the latter,
the calculation of the transition from intermediate to
native fold can be directly compared with the experi-
mental data of total rate. By using N = qL (L is the chain
length of RNA), instead of Equation (27), we have

lnW=A –
B#

L
–DlnLþ c#,

ðB0=B=q, c0=const –DlnqÞ, (28)

as an alternative expression of folding rate versus chain
length. Equation (28) is deduced from quantum folding
theory with some statistical consideration and it predicts
the rate W increasing with L, attaining the maximum at
Lmax= B′/D, then decreasing with power law L–D.
In a recent work Hyeon and Thirumalai [30] indicated

that the chain length determines the folding rates of RNA.
They obtained a good empirical relation between folding
rate and chain length L in a dataset of 27 RNA sequences.
Their best-fit result is

lnWH=14:3 – 1:15� L0:46: (29)

Both Equations (28) and (29) give us the relation
between RNA folding rate and chain length. Comparing
the theoretical folding rates lnW or lnWH with the
experimental folding rates lnkf in 27 RNA dataset the
results are shown in Figure 5. We found that the
theoretical Equation (28) can fit the experimental data
on RNA folding rate equally well as the empirical
Equation (29). By using the best-fit value of B′ and D the
correlation between lnW (calculated from Equation (28))
and ln kf is R = 0.9729 (Figure 5A), while the correlation
between lnWH (calculated from Equation (29)) and lnkf is
R = 0.9752 (Figure 5B). However, in Figure 5B the slope
of the regression line is 1.03 and the line deviates from
origin by – 0.36, while in Figure 5A the slope is 1.0001,
very close to 1 and the line deviates from origin only by
– 0.0012. The reason lies in: although the two equations
have the same overall accuracy in fitting experimental
data, for large L the errors Er=jlogW – logkf j calculated
from Equation (28) are explicitly lower than ErH=
jlogWH – logkf j from Equation (29) (details can be found
in Ref. [4]). It means the folding rate lowers down with
increasing L as L –DðD ffi 5:5Þ at large L (a long-tail
existing in the W-L curve) rather than a short tail as
expð – l ffiffiffi

L
p Þ assumed in [30]. The long-tail form of

folding rate can be used to explain some small-
probability events in pluripotency conversion of gene
(see the section of Applications of quantum folding theory
in discussion).
There are two independent parameters in RNA folding

rate Equation (28), B# and D, apart from the additive

Figure 5. Comparison of experimental folding rates lnkf with theoretical folding rates lnW (Panel A) or lnWH (Panel B) for 27

RNA molecules. Experimental rates are taken from Ref. [30]. Theoretical rates are calculated from Equations (28) and (29) and
shown on the lower right of two panels. The regression equation between lnkf and lnW (or lnWH) is given on the upper left of the
panel and plotted by the solid line. R means the correlation coefficient of the regression analysis.
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constant. As seen from Figure 5Awe obtain the best-fit D
value Df = 5.619 on the 27-RNA dataset, close to D = 5.5
predicted from a general theory of quantum folding.
Simultaneously we obtain the best-fit B# value Bíf =
61.63. The Bíf value derived from RNA folding can be
compared with the B = 541.1 from protein folding
(Equation (27) if each nucleotide in RNA containing 7
torsion angles and the free energy difference between
protein and RNA are taken into account .

DISCUSSION

Multi-state protein folding

For a long time the multi-state folding mechanism was
unclear in theory. Kamagata et al. indicated that the
folding rates of non-two-state proteins show the similar
dependence on the native backbone topological para-
meters as for the two-state proteins [31]. Quantum folding
theory provides a unified point on the folding mechanism
of non-two-state and two-state proteins. Zhang and Luo
proposed that the multi-state folding can be viewed as a
joint of several quantum transitions with independent
degrees of freedom of torsion angle. So the total collapse
rate can be expressed by the formula of two-state folding
but with an additional factor indicating the time delay in
intermediate state [32].
Consider 3-state protein folding. Assuming polypep-

tide chain divided into to 2 parts and denoting initial state
as ji1i2i and final state as hf1 f2j. The transitional matrix
element of 1st order perturbation hf1f2jðHí

1 þ Hí
2 Þji1i2i=

0 where the perturbation Hamiltonian Hí
j (j = 1, 2) acts on

the j-th part only. The matrix element of 2nd order
perturbation is proportional to

X
m1m2

1

Ei1i2–Em1m2

hf1f2jðHí
1þHí

2Þjm1m2ihm1m2jðHí
1þHí

2Þji1i2i

=
1

Ei1 –Ef1

þ 1

Ei2 –Ef2

� �
hf1jHí

1 ji1ihf2jHí
2 ji2i:

So the transitional probability W of the 3-state protein is
proportional to the product of those of the two partial 2-
state proteins, W1 from i1 to f1 and W2 from i2 to f2
respectively. By using Equation (22) for two-state protein,
namely

lnWi=
ΔGi

2kBT
–
ðΔGi=kBTÞ2

2�Ni

– 5:5lnNi þ lnc0fi, i=1, 2, (30)

neglecting the difference between structure-related shape
parameters f1 and f2 in Equation (30) and denoting N and

ΔG of the 3-state protein as

N=N1 þ N2, N1=rN , N2=ð1 – rÞN ;

ΔG=ΔG1 þ ΔG2, ΔG1=rΔG, ΔG2=ð1 – rÞΔG,
we obtain

lnW=
ΔG
2kBT

–
ðrΔG=kBTÞ2

2�rN
–
ðð1 – rÞΔG=kBTÞ2

2�ð1 – rÞN

– 5:5lnN –5:5ðlnrþ lnð1 – rÞÞþ lnf þconst: (31)

Equation (31) is the theoretical folding rate for any 3-state
protein. The formula can easily be generalized to other m-
state proteins with m>3. The statistical comparisons of
the theoretical rates lnWf of multi-state protein folding
with experimental rates lnkf in a dataset of 38 multi-state
proteins [33–67] are given in Figure 6. Since most of the
multi-state proteins in databases are 3-state proteins we
use Equation (31) to calculate lnWf directly. It gives the
average error MAE(hjlnkf – lnWf ji = 1.68 and the correla-
tion between theoretical and experimental rates R =
0.8098.
The success of the above calculation shows that a

unified quantum folding mechanism does exist for multi-
state and two-state protein and the folding rate of multi-
state protein can be obtained in a simple way through
calculating the product of the rates of two-state proteins.

Figure 6. Comparison of theoretical folding rates

lnWf with experimental folding rates lnkf for 38
multi-state proteins. Experimental rates for 38
proteins are taken from refs [33–67]. In calculating

lnWf the parameters r = 0.35 and r = 0.07 are assumed.
Details can be found in Supplementary Table S2. The
regression between lnkf and lnWf is plotted by the solid
line and R means the correlation coefficient.
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Protein photo-folding

To explore the fundamental physics underlying protein
folding more deeply and to clarify the quantum nature of
the folding mechanism more clearly we have studied the
protein photo-folding processes, namely, the photon
emission or absorption in protein folding and the inelastic
scattering of photon on protein (photon-protein resonance
Raman scattering). In these processes the emission or
absorption of a photon by atomic electrons is coupled to
protein’s conformational change. To simplify the discus-
sion we assume only electrons serve as the fast variables
of the protein. After the first-principle-calculation based
on quantum electrodynamics and quantum folding theory
the rates and cross sections of these processes have been
deduced [68]. Moreover, these photo-folding processes
can be compared with common protein folding without
interaction of photons (non-radiative folding). It is
demonstrated that there exists a common factor
(thermo-averaged overlap integral of vibration wave

function) IV=
1

kBT
IíV for protein folding and protein

photo-folding. Based on this finding it is predicted that
the stimulated photo-folding rates and the resonance
fluorescence cross section show the same temperature

dependence as protein folding, namely
dlnIV
d 1=Tð Þ=Sþ

1

2
T þ RT 2.

Due to the coupling between protein structure and
electron motion, the electronic transition will inevitably
lead to the structural relaxation or conformational changes
of the protein. Therefore the spectrum of protein photo-
folding includes information of several kinds of quantum
transitions: the electron energy-level transition, the
transition between vibrational energy-levels of the
molecule, the transition between rotational energy-levels
of the molecule and the transition between different
molecular conformations. Conformational transitions are
somewhat like the rotational transitions, but the rotational
transition refers to the whole molecule, while the
conformational transition is related only to the dihedral
angle rotation of local atomic groups. Because of the
coupling with vibration and torsional transition the
spectral line of electronic transition is broadened to a
band which includes abundant vibration spectrum without
and with conformational transition. The width of the
spectral band is determined by the torsion vibration
frequency, in the order of 1013 s–1, one hundredth or
thousandth of the electronic transition frequency. Each
spectral band includes a large amount of spectral lines and
forms an abundant structure. The transition between
torsion-vibration states in different conformations is a
kind of forbidden transition since the overlap integral

between initial and final torsional wave functions is very
small, about 10–5. So, the width of these extra-narrow
spectral lines is five orders smaller than the natural
linewidth. This is an important prediction of quantum
folding theory [68].
From the experimental point of view, to observe the

extra-narrow spectral line a high-precision and high-
resolution spectroscopy is needed. The spectral resolution
of femtosecond Raman spectroscopy (FSRS) is 10 cm–1,
corresponding to Δ�=3� 1011s – 1 [69]. This resolution
is already close to the range of the width that the spectral
line of ultra-narrow conformational transitions can be
searched.
The particular form of the same temperature depen-

dence for protein nonradiative folding and photo-folding
and the abundant structure of the photo-folding spectral
band consisting of many narrow lines are two main results
deduced from protein photo-folding theory. These results
are closely related to the fundamental concepts of
quantum mechanics. First, they imply the existence of a
set of quantum oscillators in the transition process and
these oscillators are mainly of torsion vibration type of
low frequency. Second, they imply in protein folding the
quantum tunneling does exist which means the non-
locality of state and the quantum coherence of conforma-
tional-electronic motion. More experimental tests on
above two predictions are waited for.

Quantum coherence and experimental tests on
quantum property of macromolecular conforma-
tional transition

So far we have discussed the quantum transition between
torsion states in macromolecules. A fundamental problem
is: due to quantum entanglement with the environment
the decoherence possibly makes the quantum picture
ceasing to be effective for a macromolecular system.
It was estimated that the decoherence time

τD=τR
`

Δx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT

p
� �2

in a simple model where tR

means the relaxation time,
`ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mkBT
p the thermal de

Broglie wavelength, Δx the separation of position and m
the particle mass. This leads to the decoherence time
inversely proportional to particle mass m [70]. For atoms
or molecules in water the stochastic collisions with water
molecules cause the decoherence of the objects. It was
indicated that the decoherence time is lower than the
dissipation time by a factor mw/m (the mass ratio of water
molecule to solute) [71]. However the above estimates
hold only for the center-of-mass motion of particles. The
protein or nucleic acid molecule is a compact aggregate of
atoms. The coherence of the motion in internal degrees of
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freedom may be preserved for a much longer time. How
to estimate the coherence of the constituents which are
bound in the macromolecule? Set the range of movement
of the constituent denoted by d and the thermal de Broglie
wavelength of the constituent denoted by l. For electrons
in hydrogen atom, l = 1 nm and d = 0.05 nm, one has d/l
= 0.05 and the motion is coherent. For C atoms bounded
in a simple organic molecule, l = 0.007 nm and d = 0.15
nm (d calculated from the C-C or C = C bond length), one
has d/l = 21. Although the d/l ratio in this case is much
higher than the atom’s electrons the quantum coherence
of C atoms has been well established by the observed
molecular vibrational spectrum. For torsion of atomic
groups in protein, l = 0.01 (inertial moment 10–37 gram
cm2 and room temperature are taken) and d = 0.1 (from
the averaged angular shift between two minima of torsion
potential), one has d/l = 10. For N or C atoms bounded in
RNA, l = 0.007 nm and d = 0.1 nm, one has d/l = 14.
Since they have d/l value smaller than the case of
bounded C atoms in organic molecule, it is reasonable to
assume the quantum coherence existing in the latter two
cases. However, for C atoms freely moving in a
macroscopic scale (say 1 cm) the ratio d/l is about 109,
much larger than above cases, and the quantum coherence
is definitely destroyed. Therefore, the ratio d/l can serve
as a measure to determine the boundary between quantum
and classical motions and by use of the measure one may
recognize that the macromolecular conformational
motion is basically a quantum event.
What should be cut away by Occam’s Razor, classical

or quantum, in studying the conformational change of
biological macromolecules? What rules, classical or
quantum, are obeyed by the macromolecular conforma-
tional motion? We believe and showed that the quantum
mechanics provides a unifying and logically simple
theoretical starting point. Moreover, as stated above, use
of ratio d/l as a criterion to observe the bound atoms in a
molecule also supports the view of the quantum folding.
Of course, the final solution of the problem still needs
more direct experimental evidences.
Whether protein folding is quantum or classical can be

directly tested by the observation of the instantaneous
nature of the folding event. As is well known that the
change of electronic state in atomic radiation is a kind of
quantum transition and the transition is instantaneous.
The instantaneousness is characteristic of the quantum
transition. When one says the folding rate 1 ms it does not
mean the folding continues one millisecond but rather
means on average 1000 instantaneous folding events are
observed stochastically in one second. So, the observation
of the instantaneous change of the torsion angle in protein
folding provides a clue to solve the puzzling problem.
Qiu et al. used laser temperature-jump spectroscopy to

measure the folding rate of the 20-residue Trp-cage
protein. They found the fluorescence intensity (FI)
increasing rapidly from 11.5 mV to 14 mv in 4 μs and
determined the folding rate 4 μs [19]. Which law, classical
or quantum, the folding/unfolding event obeys in the
duration of 4 μs? Let’s consider the case in terms of the
gradual decrease of relevant molecular concentrations. In
the beginning, the fluorescence intensity will be wea-
kened accompanying with the lowering of Trp-cage
concentration,but the shape of the FI-t (fluorescence
intensity versus time) curve remains unchanged. As the
concentration decreased to very low, the single-molecule
motion can be observed and the fluctuation appears. For
quantum folding, the torsion takes only two possible
values corresponding to folding and unfolding states
respectively. The Trp fluorescence can be measured only
in unfolding state. So, in the duration of 4 μs the
fluorescence randomly appears and each occurrence
corresponds to one unfolding event. However, if the
folding/unfolding obeys the laws of classical physics the
torsional angle changes continuously and the Trp
fluorescence can be recorded only when the protein
reaches the unfolding state. Thus the fluorescence will be
measured near the end of 4 microsecond unfolding
process. Two pictures are different from each other. We
suggest making the observation of fluorescence fluctua-
tion to test whether the folding obeys the classical or
quantum law.
This is an important experiment. If the test has a

positive result, then firstly, the boundary between classical
and quantum physics will be modified and the applic-
ability of quantum mechanics will be expanded to the
internal degrees of freedom of macromolecules; secondly,
many strange phenomena of sudden change that is of
great importance in molecular biology and molecular
genetics will be explained from the idea of quantum
transition.

Applications of quantum folding theory

Example 1: Glucose transport across membrane. The
binding of a ligand to a membrane receptor results in a
conformational change, which then causes a specific
programmed response. Recently, the crystal structures of
several bacterial and human monosaccharide transporters
were reported. Through sequential and structural compar-
ison with other members of the sugar porter subfamily, the
basic transport mechanism of the human glucose GLUT1
is clarified [72]. It was proposed that the successive
conformational changes of the transporter occur in the
glucose transport process and form a complete cycle, from
ligand free occluded conformation (A), changed to
outward open (B), ligand bound occluded (C), and
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inward open (D), then to the ligand free occluded of the
next cycle. The conformation A is connected to the
intracellular side and the conformation C to the
extracellular side. (Figure 7)

The human glucose transporter GLUT1 works in the
following cycle:

ðiÞ A↔ B

ðiiÞ Bþ gout ↔ C

ðiiiÞ C ↔ D

ðivÞ D↔ Aþ gin
Following mass-action kinetics the reaction equations of
the macromolecular concentration in these conforma-
tional states can be written. Through solution of the set of
equations we deduced all steady states in the cycle and
demonstrated that the glucose transport across membrane
is globally stable [73].
The rate constants ki, k

í
i are key parameters in the

theory that can be calculated from quantum theory of
conformational transition. We notice that all rates

K1=k1=W ðA↕ ↓BÞ, K2=k2v0=W ðB↕ ↓CÞ,

K3=k3=W ðC↕ ↓DÞ, K4=k4=W ðD↕ ↓AÞ
and their reverses

Kí1 =kí1 =W ðB↕ ↓AÞ, Kí2 =kí2 =W ðC↕ ↓BÞ,

Kí3 =kí3 =W ðD↕ ↓CÞ, Kí4 =kí4 u0=W ðA↕ ↓DÞ

(v0 and u0 are steady state concentration of intracellular
and extracellular glucose molecule respectively) are in the
dimension of (1/time) and they can be calculated from
quantum folding rate Equation (7).
The glucose molecules are hydrogen-bonded to several

residues (for example, Gln, Asn, Trp) of the transporter
GLUT1. Set the binding energy of one sugar molecule
being Eb. The N- and C-domain of GLUT1 are connected
by an intracellular helical bundle (ICH). The ICH domain
serves as a latch that tightens the intracellular gate. The
conformational change between inward-open (or out-
ward-open) and occluded is related to the rigid-body
rotation of the N and C domains which may be achieved
through the bond-length and bong-angle variation of ICH
residues [72]. It is reasonable to assume there exist two or
more minima in the bond-length and bong-angle potential
and the conformation change occurs through the quantum
transition among them, jumping from one minimum to
another. Set the conformational energy of the outward
open (or inward open) relative to the occluded denoted by
Ep (neglecting the difference between the outward open
and inward open). Thus, we have an approximate estimate
of the free energy difference ΔGðiÞ for the i-th step
quantum transition,

ΔGð1Þ=–Ep, ΔGð2Þ=Ep þ Eb,

ΔGð3Þ=–Ep, ΔGð4Þ=Ep –Eb:

The reverse rate constants Ki’ are related to Ki as ln
Ki

Kíi
ffi

ΔGðiÞ

kBT
(see Equation (15)). Since both glucose binding

energy Eb (typically several ev) and conformational
energy Ep (typically 0.13 ev for one stretching-bending
degree of freedom) are much larger than kBT (0.026 ev at
room temperature) we have Kí2<<K2, K

í
1�K1, K

í
3�K3.

It means the reverse transition from the conformation C to
B can be neglected, while the reverse transitions from A
to B and from C to D are important in the glucose
transport cycle across membrane.
The total time needed for glucose transport across

membrane in a cycle is called the mean transport time of
glucose. We obtained the mean transport time for GLUT1

τ=
1

K1
þ 1

K2
þ 1

K3
þ 1

K4
ffi 1

K2
,

ðfor positive transportÞ

τ#=
1

Kí1
þ 1

Kí2
þ 1

Kí3
þ 1

Kí4
ffi 1

Kí2
,

ðfor negative transportÞ:
by the rate constant estimate [73]. Therefore, we

Figure 7. Quantum transition between conforma-

tional states of human glucose transporter GLUT1.
A = ligand-free occluded, B = outward open, C = ligand-
bound occluded, D = inward open, gout and gin denote

the glucose molecule extracellular or intracellular
respectively.
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concluded that the glucose transport time in a cycle is
determined mainly by the step of Bþ gout ↔ C (with rate
K2 or Kí2 ). Moreover, the positive transport time is
smaller than the negative due to Kí2 << K2. This means
the net transport of glucose is in the direction from
extracellular to intracellular.
The rate of conformational transition for biological

macromolecule is temperature dependent. Through direct
measurement of the temperature relation of the mean
transport time in a cycle we are able to give deeper insight
into the mechanism for the glucose transmembrane
transport. Simultaneously we expect other membrane
receptors and membrane transport problems can be
studied in the framework of the present theory.
Example 2: Induced pluripotency in stem cell

Recently Deng’s group reported that the induced
pluripotent stem cells (iPSC) can be created chemically
without any gene modification [74]. They used a cocktail
of seven small-molecule compounds to induce the mouse
somatic cells into stem cells (called Chemically iPSC or
CiPSC) with a higher efficiency up to 0.2%. There are
seven pluripotency genes, namely Oct4, Sox2, Nanog,
Sall4, Sox17, Gata4 and Gata6, involved in the
pluripotency circuitry during chemical reprogramming.
The circuitry is divided into 3 sub-circuits. The first sub-
circuit includes the action of small molecules CHIR(C),
FSK(F), 616452(6) and DZNep(Z) on pluripotency genes
Oct4, Sox2 and Sall4. The small molecule action makes
the gene to undergo a conformational transition from its
torsion-ground to torsion-exited state (denoted by star *
after the gene name)

ðiÞ C6F þ Sox2↕ ↓Sox2� þ C6F ðrate k1Þ;

ðiiÞ C6F þ Sall4↕ ↓Sall4� þ C6F ðrate k2Þ;

ðiiiÞ Sox2þ Sall4þ Oct4þ Z↕ ↓Sox2þ Sall4þ Oct4�

þ Z ðrate k3; with companions Sox2 and Sall4Þ:
The next 7 equations describe the torsion transfers (the
conformational transitions under gene interaction) of the
second and third sub-circuit. The second sub-circuit
includes the interaction between pluripotency genes
Sall4, Oct4, Sox17, Gata4 and Gata6. The third sub-
circuit includes the interaction between pluripotency
genes Oct4, Sox2 and Nanog. The gene interactions in
these two circuits are generally in double direction. For
gene interaction A↔ B we assume a conformational
transition from torsion-ground to torsion-exited state of
gene A (gene B) or its reverse in companion of gene B
(gene A), namely,

Aþ B↔ A� þ B, Aþ B↔ Aþ B�

(details of 10 equations in the pluripotency circuitry can
be found in [75]).
A set of reaction equations for pluripotency gene

concentrations are deduced from mass-action kinetics.
From these equations one obtains the steady states
immediately and proves the stability of these steady
states. Moreover, the relaxation times for attaining the
steady states are deduced.
The rate constants in reaction equations describe the

pluripotency transition in DNA. Since the pluripotency
transition is essentially a torsion transition we use
Equations (27) or (28) to estimate the rate constants.
From Equation (28) we predict the transition rate
decreases with increasing L as L –DðD ffi 5:5Þ at large L.
The long-tail existing in the W-L curve can be used to
explain why the pluripotency conversion of gene is a
small- probability event since the gene sequence length is
much longer than protein. On the other hand, we assume
the torsion transition from differentiate to pluripotent state
is of uphill-type (from torsion-ground to torsion excited)
while the reverse is of downhill-type (from torsion-
excited to torsion-ground). The parameter A (= 4.306) in
Equation (27) is related to the free energy change ΔG in a
dataset of two-state protein folding. However for DNA,
ΔG has different symbols for positive downhill and
negative uphill reactions. So, upon comparison with
protein folding we predict the rate of DNA uphill
transition is smaller than downhill by about a factor
e8.612≈5500. The torsion transfer between genes is
generally a slow process but the reverse transition from
torsion-excited to ground state in the circuitry is faster that
provides a positive feedback mechanism to the pluripo-
tency circuitry establishment.
From the rates of ten torsion transitions one can define

three characteristic times ta, tb and tc corresponding to

three sub-circuits. For example, τa=
1

k1
þ 1

k2
þ 1

k3
for the

first sub-circuitry. The time needed for CiPSC is estimated
by t = ta + tb + tc. Through numerical calculation we
estimated τc<<τa and as the second circuit is switched off
we have [75]

τ ffi τa ffi
1

k2
=e30:31τpt=27d=0:2%,

which is in consistency with the experimental data of
pluripotent stem cells generated at a frequency up to 0.2%
on day 30–40 [74].
So far we have shown that the pluripotency conversion

time in chemical reprogramming is calculable by using
quantum folding theory. Now we examine how other
physical factors influence the rate of the acquisition of
pluripotency. As inferred from the theory, we have:
a) Transition rate depends on temperature

Assuming the free energy decrease ΔG in pluripotency
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genes is linearly dependent of temperature T as in protein
folding we obtain the temperature dependence of the
reprogramming transition for the pluripotency gene as

lnW ðTÞ=S

T
–RT þ 1

2
lnT þ const:

b) Transition rate depends on pH
Following the biochemical principle the free energy
change ΔG of a reaction is linearly dependent on the
logarithm of ion concentration [H+]. We have

d

dpH
lnW ðpHÞ<0, ðfor ΔG<0Þ:

When pH decreases from 7 to 6 (or to 5, to 4, …) the rate
increases by a factor 3.16 (or 9.97, 31.5,…). It means one
may observe the acidity-induced pluripotency by soaking
the tissues in acidic medium below pH 6.0.
c) Transition rate depends on volume of the coherent

domain
The conformational transitional rate is strongly dependent
of the sequence length L of the gene if its nucleotides are
coherent in the transition. Assuming the molecule is a
compact aggregate having quantum coherence between
its constituents, from Equation (28) one readily obtains

W ðV Þ � fV – 5:5exp –
a

V

� �
(32)

(a>0 is a V-independent constant) due to L proportional
to the volume V of the gene. Equation (32) means W ðV Þ
grows as V decreases (in the range V >

a

5:5
). The strong

dependence of the transitional rate on coherent volume
provides a regulation mechanism in the work of
pluripotency circuitry. By deleting some unimportant
redundant nucleotides in the gene and decreasing the
sequence length one can lower down the volume of the
coherent domain and increase the transitional rate.

SUMMARY

The quantum theory of conformation change of biomo-
lecule is studied and a set of general equations on protein
and RNA folding rate are proposed. From the basic
equations the following quantitative results have been
deduced: (i) the temperature dependence of the folding
rate; (ii) the denaturant concentration dependence of the
protein folding rate; (iii) the torsion mode number
dependence of the protein folding rate; (iv) the chain
length dependence of the RNA folding rate; (v) the
folding rate of multi-state protein. Although these
problems are difficult to study in classical theory they
can be deduced easily from quantum equations and all
quantitative results can be successfully tested by experi-
mental data. Then, the quantum coherence of the internal

motion of a macromolecule is demonstrated and how to
make the direct experimental test on the quantum property
of the conformational transition are discussed. It is
suggested that the spectrum structure of protein photo-
folding and the fluctuation of the fluorescence intensity
emitted from folding/unfolding may serve as useful tools
for verifying the quantum property of the conformation
change. The idea of quantum folding is useful in dealing
with practical application problems. Two examples show
that the proposed idea and theory can help us to establish a
set of reaction equations regarding the problem and
determine the rate constants in the biological network.

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at DOI
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