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Background: The DNA strand displacement reaction, which uses flexible and programmable DNA molecules as
reaction components, is the basis of dynamic DNA nanotechnology, and has been widely used in the design of complex
autonomous behaviors.

Results: In this review, we first briefly introduce the concept of toehold-mediated strand displacement reaction and its
kinetics regulation in pure solution. Thereafter, we review the recent progresses in DNA complex circuit, the assembly
of AuNPs driven by DNA molecular machines, and the detection of single nucleotide polymorphism (SNP) using DNA
toehold exchange probes in pure solution and in interface state. Lastly, the applications of toehold-mediated strand
displacement in the genetic regulation and silencing through combining gene circuit with RNA interference systems
are reviewed.

Conclusions: The toehold-mediated strand displacement reaction makes DNA an excellent material for the
fabrication of molecular machines and complex circuit, and may potentially be used in the disease diagnosis and the
regulation of gene silencing in the near future.
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INTRODUCTION proteins, enable the possibility to establish sophisticated

nanostructures and nanodevices using DNA.
After the first introduction of the concept of toehold-
mediated strand displacement by Yurke et al. [1] in the

Because of its particular composition diversity and
predictable complementary base pairing principle for

molecular recognition, DNA attracts wide attention as a
powerful and versatile material and has been effectively
applied in genetic detection and treatment, achieving
distinct nanostructures in terms of self-assembly. More-
over, the specific interactions between DNA and metal
ions, small organic molecules, polypeptide chains, even
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early 21st century, booming developments have been
achieved in the field of dynamic DNA nanotechnology.
For toehold-mediated strand displacement, the single
stranded invading oligomer strand, first binds to the
overhanging complementary domain (referred as the
toehold domain) of the double stranded complex
constructed using the substrate and protector strands,
then initiates the strand displacement through branch
migration, and finally releases the prehybridized protector
strand. The first DNA molecular machine was reported by
Yurke and co-workers who constructed a molecular
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tweezer made from three strands of DNA [1]. This DNA
molecular tweezer can be opened and closed repeatedly
by cycling addition of auxiliary strands of “fuel” DNA,
and each cycle produces a duplex DNA waste product.
Until recent, the toehold-mediated strand displacement
reaction has been vastly used in designing molecular
devices [2], autonomous walkers [3], logic robot [4],
molecular automata [5], and structures [6,7] for molecular
diagnostics [8], and mimics of complex biological
processes [9]. Moreover, DNA dynamic nanotechnology
provides a practical method for synthetic biology [10]
through the programmable structural transformation of
biologically related nucleic acids. DNA as genetic
material can be transcribed to form messenger RNA
(mRNA) for managing gene expression regulated by
various biological molecules, especially proteins.

In this paper, we will first discuss the mechanism
understanding of and kinetic regulation of toehold-
mediated strand-displacement reaction, and then review
the progress in the construction of diverse nanostructures
or nanodevices based on DNA molecular machines, such
as logic circuits [11], innovative DNA nanoparticle (NP)
complexes [12], molecule probes [13], and single-base
discrimination biosensors [14,15]. Lastly, we will discuss
the RNA-based riboregulator and conditional RNA
interference applied to control gene expression.

TOEHOLD-MEDIATED DNA STRAND
DISPLACEMENT REACTION-BASED
DYNAMIC DNA SYSTEMS

In toehold-mediated strand displacement reactions, a
single-stranded domain first binds to the dangling toehold
domain of a pre-hybridized double-strand (substrate),
triggers the branch migration, and results in the dissocia-
tion of the third strand previously bound to the substrate.
The toehold domain plays an important role in facilitating
strand displacement, and the length of toehold is often
used to control its reaction kinetics [16]. In general,
increasing the toehold length will speed up the rate of
strand displacement because of the stronger binding
energy, that is, a long toehold will thermodynamically
enhance the energy difference between products and
reactants. To weaken the strong coupling between the
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kinetics and the thermodynamics of strand displacement,
a reaction called “toehold exchange” was first proposed
by Zhang and Winfree to improve the control of strand
displacement kinetics (Figure 1) [1]. More importantly,
the activated but formerly sequestered domain in the
substrate resulting from the toehold exchange reaction, in
combination with the reaction’s reversibility, enables the
possibility to construct large reaction networks [16].

Mechanism understanding of DNA strand
displacement

Based on the calculations of Zhang and winfree, DNA
strand displacement can be modeled as biomolecular
reactions and modulated kinetically (Figure 2) [17,18],
which facilitate the prediction of kinetics of scaled-up and
multilayer circuits. In addition, mismatched base pairs
[19] are also introduced for kinetic modeling and control
of DNA strand displacement.

The control of DNA devices and circuits abased on
conventional toehold-mediated strand displacement reac-
tions is limited within the tube spatially, because the
systems begin to operate after the addition of trigger
strands. For further regulation with external control,
tocholds are often deliberately “hidden” via various
“coverings” (Figure 3), such as hybridization [20],
bulge-loop structure [21], hairpin [22], nucleobase-caging
groups [23,24], or parallel Hoogsteen motif [25], which
are responsive to environmental stimuli, including light
and pH. Similar to the conception of “hidden”, the idea of
split was also introduced by distributing toeholds and BM
domains on different strands to break the “hard-wired”
combination between them and make the circuit design
flexible. Tied up via hybridization of additional domains,
“associative toeholds” (proposed by Chen, Figure 4A, 4B
[26]) form in a three-way junction manner, and the
formation of toeholds driven by junction structures
efficiently activate DNA circuits, such as self-replicator
[26] and logic circuits [27,28]. If toeholds and BM
domains are distributed on the same strands, another type
of split termed “remote toehold” (Figure 4C, 4D) forms
[29], which allows additional control over strand
displacement kinetics by tuning spacer regions.
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Figure 1. Mechanism of toehold exchange reaction.
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Figure 2. Toehold control and Intuitive Energy Landscape (IEL) model of DNA strand displacement. (A) Experiments show
that kinetics of strand displacement depend on sequence and length of toeholds. The “Maximum” (green) shows the kinetics of
strand displacement mediated by strong toehold (only G/C nucleotides), whereas the “Minimum” (red) shows that of weak toehold
(only A/T nucleotides), and the “Typical” (black) shows that of toehold with equal numbers of all four nucleotides; reprinted with
permission from Ref. [17], Copyright 2009 American Chemical Society. (B) The IEL models strand displacement by dividing the free
energy into several states (A-F) with the parameters of sawtooth amplitude (AGs) and plateau height (AGp); reprinted with
permission from Ref. [18], Copyright 2013 Oxford University Press.
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Figure 3. Various “coverings” for toehold hiding. Toeholds are hidden by (A) hybridization; reprinted with permission from Ref.
[20], Copyright 2008 American Chemical Society. (B) Bulge-loop structure; reprinted with permission from Ref. [21], Copyright 2011
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (C) Hairpin; reprinted with permission from Ref. [22], Copyright 2013 American
Chemical Society. (D) Nucleobase-caging groups; reprinted with permission from Ref. [24], Copyright 2013 American Chemical
Society. (E) Parallel Hoogsteen motif; reprinted with permission from Ref. [25], Copyright 2014 American Chemical Society.

Kinetics control of the toehold-mediated strand
displacement reaction

According to the suggestions proposed by Zhang and
Winfree [16], the toehold exchange reaction (Figure 1)
can be modeled as a simple biomolecular reaction. It can
be characterized using the three-step model to derive its
biomolecular reaction constant as follows:
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where &/ is the hybridization rate, and k,(,» and k,.gn) are
the first-order of toeholds " and vy d1ssoc1at1ng from
their complements, respectively. Moreover, the predicted
biomolecular rate constant depends on the toehold
binding energies, which can be calculated based on
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Figure 4. Toehold split schemes. (A) The toehold domain and the branch migration (BM) domain were distributed on different
strands (C-TH and C-BM), and they formed the “associative toehold” (C-duplex) via additional hybridization. (B) Experiment results of
the strand displacement mediated by “associative toehold”. (A) and (B), reprinted with permission from Ref. [26], Copyright 2012
American Chemical Society. (C) The toehold domain and the BM domain were distributed on the same strand and interspaced by a
spacer domain, leading to the formation of “remote toehold”. (D) Experiment results of the strand displacement mediated by “remote
toehold”. (C) and (D), reprinted with permission from Ref. [29], Copyright 2011 American Chemical Society.

initiation energy and base stacking energy parameters
[30-34]. The reaction rate of strand displacement varies
exponentially with the binding strength of toehold
domain; theoretical calculations and experiments indicate
that the biomolecular rate of the toehold exchange
reaction can be tuned by 10°-fold by modulating the
length and sequence of toehold domain [1,17,35].

Given the inaccuracy and incompleteness in nucleic
acid thermodynamic parameters and detailed biophysical
understanding of strand displacement kinetics [18], fine
control of the kinetics of DNA strand displacement
remains difficult, thereby limiting its ability to program
toehold exchange reactions into complex DNA circuits.
To address this problem, Genot and coworkers introduced
a spacer between the toehold and displacement domains,
which is referred to as remote toehold, to provide
additional control to the strand displacement rates over
at least three orders of magnitude by adjusting the length
of spacer [29]. The kinetics of strand displacement can
also be controlled by introducing a mismatch at the

incumbent domain, and altering the position of defect can
tune the reaction kinetics across three orders of magnitude
[19]. Yang and his coworkers proposed an allosteric DNA
toehold (A-toehold) design that allows the flexible
regulation of DNA strand displacement by splitting an
input strand into an A-toehold and branch migration
domain. This A-toehold design enables the dynamic
selective activation of multiple strand displacement
reactions [36]. Considering the critical role of solvent in
the stability of DNA structural properties [37,38], organic
solvents were used by Liu, Xia, and their coworkers to
adjust the kinetics of DNA hybridization [39-41]. Their
studies indicated that the hybridization kinetics of the
DNA beacon progressively rise as the ethanol content in
solvent increases, and a 70-fold rate enhancement is
achieved for DNA in a solvent with 56% ethanol [40].
Similar behavior was also observed for other types of
organic solvents. In contrast to the methodology of
kinetics control by introducing a defect or spacer in the
DNA substrate, the concentration percentage of organic
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molecules in solvent can be continuously tuned, therefore
we may continuously modulate the hybridization kinetics.
Similarly, Zhang and his coworkers recently proposed the
“stoichiometric tuning” method to adjust yield and
selectivity using the relative concentration of an auxiliary
species for hybridization probes, achieving near-contin-
uous tuning of the probe and effective free energy [42].

APPLICATIONS OF DYNAMIC DNA
MOLECULAR MACHINES

Engineering the assembly of gold nanoparticles
(AulNPs) driven by DNA molecular machines

The fabrication of well-defined architecture, such as
spatially arranging NPs in a predetermined manner, is a
classical bottom-up approach in modulating the perfor-
mance of devices. Since two pioneering groups realized
the assembly of DNA-modified AuNPs by utilizing the
base-paring interactions of oligonucleotides in 1996
[43,44], an increasing number of researchers have
focused on programming the assembly of AuNPs with
DNA strands for potential applications in sensing,
diagnosing, and constructing optical devices.

In 2008, Mirkin, Gang and their coworkers reported
DNA-programmable NP crystallization for the first time
[45,46]. Furthermore, basic design rules on DNA
sequences and length were established [47] to obtain
ordered NP arrays in three dimensions (Figure 5) [48,49].
Meanwhile, developing robust DNA framework for

=

Variations

adjusting the spatial distribution of NPs has attracted
much attention. Yan et al. demonstrated that the two- and
three-dimensional arrangement of NPs can be modulated
with DNA origami [50], on which the position of NPs can
be precisely located. Furthermore, accurate positioning of
AuNPs was achieved by integrating different origami
structures with distinct shapes, and the plasmonic
properties of the final nanostructures were finely
modulated [51,52]. Recently, Gang’s group proved that
prescribed NP architectures can be efficiently constructed
with assorted DNA frames [53,54].

Besides the progress of DNA-based assembly of NPs in
the field of materials science[55], this assembly strategy
also plays pivotal roles in sensing [56-58]. In the
traditional assembly strategy, the aggregation of DNA-
functionalized NP is initiated with the addition of a linker
strand, which can be treated as a target in the sensing
system. The construction of DNA/RNA sensors on the
basis of NP assembly has been intensively explored in
past decades [59]. To further expand the sensing capacity
on small molecules and proteins using the traditional
method, functional DNA sequences including DNAzyme
and aptamer were integrated for building a responsive
system in vitro [60] and in vivo [61,62].

However, traditional DNA sensors have their own
limitation in detection because of the continuous
consumption of targets. To address this issue, Liang’s
group proposed a new method for engineering the
assembly of DNA-modified NPs [12]. In their methodol-
ogy, the linker strand was pre-hybridized with a protector
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Figure 5. DNA-AuNP assembly. The architect of prescribed nanoparticle arrays through programming the (A) primary; reprinted
with permission from Ref. [46], Copyright 2008 Nature Publishing Group. (B, C) three-dimensional structures of DNA. (B), reprinted
with permission from Ref. [48], Copyright 2015 Nature Publishing Group. (C), reprinted with permission from Ref. [49], Copyright

2016 Nature Publishing Group.
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strand, so direct conjugation between two kinds of NPs
was inhibited. The exogenous target strands were
introduced to initiate a series of toehold-mediated strand
displacement reactions and activate the function of linker
strand. Finally, the assembly of NPs, accompanied with
the change in colorimetric signal, was achieved (Figure
6). Based on the above procedures, the limitation in DNA
detection can be efficiently decreased compared with the
traditional strategy. Moreover, this method can be applied
to construct more complexed and robust machines, such
as multiple-component logic gates for multiplexed DNA
detection.

Discrimination of single nucleotide polymorphism
(SNP)

SNP is one of the most common human heritable
variations. Discriminating single-base changes in human
DNA is highly desirable, because SNP discrimination is
essential to the diagnosis of genetic diseases. To date,
diverse tools including polymerase chain reaction (PCR)
[63], microarrays [64,65], and modern sequencing-by-
synthesis [66] have been developed for detecting such
single nucleotide variants (SNVs).

In 2012, Zhang, Chen, and Yin designed a toehold
exchange probe based on the theoretical framework of
hybridization thermodynamics; the probe can robustly
discriminate single-base changes and ensure near-optimal
specificity across concentrations, temperatures, and

protector-oligomer
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TGATGGAGGTTGA

salinities [67]. The toehold exchange probe (PC) consists
of a substrate C pre-hybridized by a protector strand P
while holding a handling toehold with a seven-base
domain. The target strand X can react with the substrate
with the help of toehold to release P and produce XC: X +
PC— P+ XC. For the toehold exchange probe, no
number change of species occurs between the reactants
and products, which means that the change in the number
of species (An) equals zero. Therefore, the hybridization
yield x is not dependent on the initial concentration of the
limiting reagent (c). Moreover, AH and AS of hybridiza-
tion are assumed temperature invariant under the standard
thermodynamic modes of DNA hybridization. The probe
is designed with its standard free energy change (AG°)
close to zero for the intended target (X =~ 0.5), and
hybridization between the spurious target (S) with single
base change and the substrate (PC) is less thermodyna-
mically favorable by AAG®. The discrimination factor is
defined as Q=1xx/Xs; theoretically Q... =exp(AAG®/
RT). This probe was tested comprehensively and
achieved discrimination factors between 3 and 100+,
with a median value of 26. More importantly, the probes
showed good robustness across a wide range of
temperature, salinity, and oligonucleotide concentration
[67].

The hybridization probe was further improved in 2013
by Chen, Zhang, and Seelig [68]. They presented a new
class of conditionally fluorescent molecular probes, which
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Figure 6. Graphical representation of the dynamic DNA-fueled molecular machine strategy and the mechanism of DNA-
AuNP assembly. Reprinted with permission from Ref. [12], Copyright 2012 American Chemical Society.
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can effectively discriminate single base changes in
double-stranded DNA (dsDNA). This approach is
designed based on the mechanism of double-stranded
toehold exchange. This novel mechanism can generate
two thermodynamically destabilizing mismatch bubbles
and effectively discriminate the single-base change in the
target. The competitive composition was first introduced
by Wang and Zhang in 2015 [69] to improve the accuracy
of hybridization-based approaches for analyzing nucleic
acids. The competitive composition comprises a target-
specific probe and wild-type (WT) sink molecule, which
is specific to the WT strand. Simulation is used to
optimize the combination of thermodynamic parameters
of the probe and sink, as well as achieve extremely high
selectivity in generating normalized fold changes in
excess of 200 for all tested 44 SNV targets, thereby
suggesting high molecular specificity. Thereafter, Chen
and Seelig [70] combined the competition with amplifica-
tion to identify mutations further away from the toehold
domain, which is beyond the capability of pure
amplification or competition probes. The newly proposed
probe functions in a two-step mechanism as follows:

1) Iy +Pampﬁ>lT + Fy ,and (i) 17 + S£> Wrp. Iy is
the intended target, Py, is the amplification probe, and §
is the sink. The discrimination factor can be theoretically
derived by using the concentrations of fluorescent signal
species in the case of intended and spurious targets ([F'7]
and [Fgyy]). Therefore, the probe system possesses
quadratically better end point discrimination than the
purely competitive system. The experiments verified the
theoretical predictions.

SNP discrimination using Dual-polarization
interferometry (DPI)

DPI is one of the most powerful approaches in the
variation measurement of the layer at a liquid-solid
interface in terms of mass, thickness, and density [71,72].

Liang’s group first utilized DPI to monitor the entire
process of a toehold-mediated DNA strand displacement
reaction in real time, and calculated its efficiency based on
the mass changes on the surface [73]. The surface mass
changes were examined instantly upon addition of the
displacement DNA with variation in toehold lengths and
DNA concentrations. The accurate displacement percen-
tage was obtained by comparing the variations in mass. It
was found that the displacement efficiency increased with
the rising of DNA concentration.

Moreover, Liang’s group developed a single-base
change discrimination strategy through the toehold-
mediated strand displacement reaction on a chip surface
by using DPI detection (Figures 7A and 7B) [13]. They
carefully compared the efficiencies in solution and on
chip surface under the same temperature and salt

concentration. As shown in Figure 7C, the reaction on
the surface was enhanced greatly by the correct target but
only slightly enhanced by the spurious targets. The
reaction with the correct target showed an efficiency of
86.1% on the chip surface but only 24.9% in solution.
These results proved that the strand displacement
efficiency on the chip surface was much higher than
that in solution under the same condition. Based on this
enhanced toehold exchange on the chip surface, a single
base difference along the DNA chain was unambiguously
discriminated.

SNP discriminated using quartz crystal
microbalance (QCM)

QCM is a powerful tool that realizes real-time, label/label-
free detection of SNPs on a sensing chip including the
toehold-mediated strand displacement reaction. For
example, Liu et al. proposed a self-assembly of one-
dimensional DNA nanostructure strategy on the QCM
platform based on the strand displacement reaction
(Figure 8A) [74]. The target p53 disturbed the capture
probe hairpin and unfolded the closed structure. Subse-
quently, two additional hairpins (H1 and H2), which were
designed to facilitate cross-hybridization to the toehold
domain, were introduced to trigger the hybridization
chain reaction. According to this design rationale, H1 and
H2 can be polymerized into a one one-dimensional DNA
nanostructure on the chip surface, and this DNA
nanostructure functioned as an amplifier for QCM
frequency shift. Recently, a new amplified QCM platform
using an oligonucleotide target-triggered layer-by-layer
assembled DNA-streptavidin dendrimer nanostructure as
an efficient amplifier has been developed [75]. The
construction and rationale are based on the fact that one
SA molecule has four binding sites for coupling with the
biotin-modified single-strand DNA (Figure 8B). The
target DNA opened the hairpin after immobilization of
the capture probe on the chip surface. Sequentially, two
building blocks (DNA1-SA and DNA2-SA) were injected
to construct a DNA-SA dendrimer nanostructure. This
strategy is very simple and specific, with no need for a
complex separation process or enzymatic reaction.
Additionally, the QCM chip platform can also be applied
in DNA logic operations [76] and highly specific
detection of single-base DNA mutation [77].

Compared with classic sandwich-type hybridization,
the advantage of toehold-mediated DNA assembly is
remarkable. As shown in Figure 8, Liang’s group
developed a method to achieve discrimination of a perfect
target from mutant sequences with single-base mismatch,
insertion, and deletion on the QCM platform (Figure 9)
[78]. This method investigates the optimal lengths of

toehold domains (y” and ™). Finally, they found that n/m
=6/8 is the best choice for this method. In this strategy,
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Figure 7. Toehold-mediated strand displacement reaction on the chip surface to discriminate SNP. (A) Schematic
representation of the DNA toehold exchange process on chip surface to detect single-base changes. (B) Real-time DPI
measurements of surface mass decrease on a sensor chip surface modified with a dsDNA probe (PC) with the addition of correct
target ssDNA (Correct). Different spurious targets have a single-base mismatch at different positions (m1T to m19T). (C) Calculated
toehold exchange efficiencies on chip surface with the addition of correct target ssDNA and different spurious targets; reprinted with
permission from Ref. [13], Copyright 2014 Royal Society of Chemistry.

DNA-AuNP can release the target sequence back into the
solution, so it can realize circular initiation of the strand
displacement reaction by displacing the target sequence
from the linker oligomer. This design is helpful for the
sensitivity of this method. Therefore, the DNA-AuNP
probe-fueled strand displacement reaction based on QCM
can achieve distinct discrimination of a single-base
mismatch, which can be used for gene detection.

DNA nanomachine-controlled AuNP assembly-
based SNP discrimination

Although various SNP genotyping methods have been
developed [79,80], these methods suffer from some

32

drawbacks, such as complex handling procedures, easy
contamination, high cost, and lack of portability. There-
fore, developing robust hybridization probes with high
specificity is strongly important for nucleic acid biotech-
nology. Given the distinct optical and chemical properties
of AuNP, AuNP-based SNP detection is of particular
interest among numerous strategies [81,82].

After Mirkin et al. established the innovative work of
DNA-AuNP assembly strategy [43], they first used the
AuNP-based colorimetric assay for SNP discrimination
[81]. This method can discriminate the correct target with
a variety of mutated targets, However, this “direct-linkage
strategy” cannot be implemented under isothermal
conditions, which may limit its application. In particular,
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the corresponding frequency and dissipation shifts of 20 nM of target p53 for the above three steps; reprinted with permission from
Ref. [74], Copyright 2012 Royal Society of Chemistry. (B) Schematic representation of the construction and rationale of DNA-SA
dendrimer-amplified QCM sensing platform; reprinted with permission from Ref. [75], Copyright 2015 Royal Society of Chemistry.
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Figure 9. Schematic representation of the design rationale of discrimination of a single-base change on platform of QCM.
Reprinted with permission from Ref. [78], Copyright 2015 Royal Society of Chemistry.

the toehold-mediated strand displacement reaction was
ingeniously introduced to engineer the catalytic assembly
of DNA-AuNPs [12,14,15,83,84]. In these systems,
DNA-AuNP assembly can be precisely regulated by
changing toehold length, sequence composite, and
concentration of substrate and target. In addition, the
target strands in these systems can be recycled after the

reaction, which is more effective compared with the
traditional “direct-linkage strategy’’[43,81,82].

Based on this new isothermal toehold-mediated strand
displacement reaction-based catalytic DNA-AuNP strat-
egy, Liang’s group reported an efficient method for the
discrimination of single-base changes at room tempera-
ture [15]. The graphical representation of the strategy for
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discriminating SNP is displayed in Figure 10A. In this
system, two types of DNA-AuNPs are initially in a
metastable state in which it is thermodynamically
favorable for them to react. Only after the addition of a
target strand (called catalyst), the system can be triggered
with a series of strand displacement reactions, and the
catalyst strand can be recycled in this system. Finally, two
kinds of DNA-AuNPs will be assembled into visible
aggregates. If the mutated DNA target is added, the
reactivity of this system will reduce. Under such
conditions, they developed a five-step model based on
the toehold exchange reaction of Zhang and Winfree to
describe the discrimination for the systems with the
addition of intended and spurious targets. For the probe,
the discrimination factor can be expressed as
D=10/(1+1/6 x 10" 4 10™"), where n and m are
the lengths of the invading and incumbent toeholds in the
first reaction step, respectively. The performance of the
probe in discriminating intended and spurious targets can
be optimized by modulating the toehold lengths. Guided
by optimization using theory, they improved sensitivity
by 10-fold to 100-fold over traditional AuNP probes.
Therefore, with the precise design of the toehold length in
the linker strand, DNA targets with a single-base change
can be distinguishable from the correct strand within 4 h
for both SNPs and indels.

Although the established strategy in Figure 10A is
effective in the discrimination of single-base changes, the
assembly of DNA-AuNPs can only be triggered by
specifically designed targets. The significant sequence
constraints imposed on the function of DNA-AuNPs
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constitute a substantial challenge. Considering that the
properties of DNA-AuNPs and hybridization on the
surface of AuNPs are greatly affected by DNA surface
density, NP size and shape, and salt concentration,
repeated DNA-AuNP synthesis will introduce uncertain
factors that may affect assay analyses.

Therefore, an integrated toehold-mediated strand dis-
placement reaction-based DNA circuitry with self-
assembly of DNA-AuNPs was developed [14]. This
improved system is composed of two subsystems: the
upstream toehold-mediated strand displacement reaction-
based catalytic circuit and the downstream DNA-AuNPs
(Figure 10B). These two subsystems can be optimized or
regulated separately and integrated through a linker
oligonucleotide, which is released through the upstream
circuit built based on the toehold-mediated strand
displacement reaction. In particular, the domains of the
strands modified on AuNPs in this system do not
participate in reactions occurring in reaction systems.
This scenario enables the synthesized DNA-AuNP
conjugates to detect arbitrary target DNAs. With this
feature, the same DNA-AuNPs are allowed to combine
with different toehold-mediated strand displacement
reaction-based DNA circuits without re-preparing new
DNA-AuNPs, which save laborious work and cost.

With the help of theoretical calculations, they opti-
mized the lengths of toehold to endow the integrated
system with the ability to discriminate single-base
changes on a sequence of target strand. The toehold
strategy for catassembler and protector was n/m = 5/5. For
all kinds of mutations (mismatch, insertion, and deletion)
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Figure 10. DNA-AuNP assembly applied to graphical representation SNP discrimination. (A) Graphical representation of
SNP discrimination using DNA-fueled molecular machine-based DNA-AuUNP assembly; reprinted with permission from Ref. [15],
Copyright 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (B) Graphical representation of the integrating catalytic circuit
with self-assembly of DNA-AuNP conjugates; reprinted with permission from Ref. [14], Copyright 2015 American Chemical Society.
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in any position of the target DNA, the integrated system
exhibited obvious discrimination between the correct
DNA and mutated DNA.

Strand displacement introduced in gene regulation

Toehold-mediated strand displacement reaction-based the
regulation of gene expression

In the field’s earliest stages, “synthetic biology” was
expressed in the gene recombination technique by Hobom
B in 1980 [85]. With the development of molecular
systems biology, E. Kool mentioned the title “synthetic
biology” again at the annual meeting of the American
Chemical Society in 2000. E. Kool introduced the title for
the synthesis of unnatural organic molecules in living
systems. Three years later, “synthetic biology” was
internationally defined as genetic engineering and engi-
neering methods of artificial biological systems research
based on system biology. A wide range of synthetic
artificial biological gene circuits were designed and
constructed by engineering principles and methods,
such as toggle switches [86] and ring oscillators [87],
which caused the rapid development of molecular
counters [88], logic gates [89—92], sensor, and others.

A new regulation mechanism called riboregulator or
toehold switches in synthetic biology [10] successfully
combined the DNA/RNA strand displacement reaction
and gene expression system. This mechanism has the
potential to expand biosensing to gene regulation and
disease gene diagnosis. Until this point, engineered
riboregulators consist of a pair of homologous RNA: a
transducer strand with an isolation of the ribosomal
binding site (RBS), and a trans-acting RNA (taRNA) that

A Conventional riboregulator

crRNA taRNA
Sequence constraints
. Loop-linear
= Repressed ) interaction
AUG gene .
Sequence constraints . .
Active

—> . gene

B

functions as a key of the switch that binds to the
transducer strand to regulate gene expression of down-
stream mRNA and biological activity (Figure 11A) [10].
In the presence of taRNA of high binding energy, the
YUNR domain first binds with taRNA as a toehold site
and then exposes the RBS domain. Gene expression
ensues by completing the RNA strand displacement
reaction. Despite its strong activity, riboregulators are
limited in diagnosis and treatment applications because of
the sequence constraints of taRNA, which cannot
distinguish real mRNA.

Green et al. [10] solved the problem in subsequent
research by locking the start codon (AUG) sequence and
placing the RBS in a loop region of a hairpin shaped
RNA, which can prevent the identification of ribosome
and the expression of signals. The corresponding trigger
RNA eliminated the sequence constraints because of the
3 nt bulge on the hairpin stem (Figure 11B). Ribosomes
bind with RBS and activate translation only when the
trigger RNA binds the toehold of switch RNA, which
releases the domain of RBS and AUG and then restores
mRNA to a linear state.

These systems realized the detection of functional
mRNA in living cells, however, due to the uncertainty of
the cell internal environment, extensive attention has been
given to external detection for synthetic biology.

In vitro synthetic biology has been in existence for
more than a decade. This field has made important
contributions for understanding the fundamental bio-
chemistry and application of a more complex genetic
response network [93-96]. Keith Pardee et al. [97]
applied the gene network related to the toehold-mediated
strand displacement reaction of mRNA to the cell-free
system and proposed a new concept that adopts synthetic

Toehold switch

Switch RNA Trigger RNA
No sequence constraints
“)AuUG
= Linear-linear
=| Linker Repressed interaction
gene ' . .
Linker .Active

14

LELEERERERERER R R R —> . gene.

Figure 11. Schematics of RNA-based riboregulator biosensors and synthetic biology applications by RNA toehold-
mediated strand displacement reaction. (A) Conventional riboregulators repress the gene by trapping the RBS through a hairpin
structure, which is released under the existence of the trans-acting RNA (taRNA). (B) Toehold switches repress translation by
locking the start codon (AUG) sequence and placing the RBS through the stem structure. In RNA-RNA interactions, the toehold
reaction activates translation and aligns the hairpin structure via binding with a complementary RNA (trigger RNA); reprinted with

permission from Ref. [10], Copyright 2014 Elsevier Inc.
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gene networks on paper (Figure 12). In this concept, by
freeze-drying onto paper or other porous substrates, cell-
free systems enable the created gene networks to be stable
for long-term storage at room temperature. More
importantly, the gene circuits are activated by simply
adding water with the diagnosis of samples, such as target
mRNA that can trigger RNA, synthetic RNA, or small
molecules.

The paper-based sensors have achieved qualitative
breakthrough applications in disease diagnosis, such as
the Zika virus outbreak in the Americas. Pardee et al. [98]
(Figure 13) created a platform of diagnostic sensors to
rapidly and conveniently implement the visual low-cost
detection of the Zika virus. The gene networks combined
with the popular CRISPR-cas9 technology were used
to increase diagnostic capabilities. This sensor based on
the strand displacement reaction play an outstanding
role in diagnostic applications, which can identify disease
by determine the pathogen in a rapid and inexpensive
way.

Conditional RNA interference (RNAi) applied to gene
regulation

RNAi has emerged as a powerful technique for post-
transcriptional gene regulation, which can use small
RNAs knockdown specific gene expression simply and
effectively without involving regulatory factors or
specific proteins in diverse eukaryotes [99]. These small
RNASs mainly include small interfering RNAs (siRNAs)
and miRNAs, of which siRNAs are dominating regula-
tory molecules that function as guides for sequence-
specific cleavage of mRNA by the RNA-induced
silencing complex. Compared with chemically synthe-
sized siRNAs, long double-stranded RNAs (dsRNAs) or

Cell-free
system Diagnosis
of sample

—

Paper disc

+RNA & -
Time (min) 0 5 10 15 20

Synthetic
gene network

short hairpin RNAs (shRNA) [100], which can be
transcribed and cleaved by the RNase III enzyme Dicer
to form functional siRNAs in vivo, can avoid unwanted
cellular toxicity and obtain effective silencing. Therefore,
they have great potential in the spatial and/or temporal
regulation of RNAI for basic gene therapy application.

Unlike conventional RNAi in which dsRNAs are
cleaved directly by Dicer enzyme, many methods are
designed to engineer an RNA-based platform, which
called a shRNA switch to control RNA interference. Such
as Beisel CL, et al. designed a model-guided of ligand-
regulated RNAi by modular coupling of an aptamer,
competing strand, and small hairpin RNA stem into a
single component that programmable control gene
expression [101]. Likewise, Sando et al. proposed a
conditional RNAi pathway that indirectly regulates the
desired siRNA formation and combines the concept of
toehold-mediated strand displacement. This strategy
comprises three parts: a synthetic hairpin-shaped RNA
fused with the sense strand of siRNA (Hp-SS), the
antisense strand of siRNA, and a single strand named
trigger strand complementary to the loop region of Hp-SS
(Figure 14A) [102]. By adjusting the stem region length
of Hp-SS, which requires AS not to hybridize with Hp-SS
directly without a trigger RNA, they used a 2'-O-methyl
(2'-OMe)-modified regulatory stem region with 19-mer
length, which is long enough to obstruct the strand
displacement reaction of Hp-SS and AS and can prevent
Hp-SS causing RNA.. In this condition, only when the
trigger strand was present, HP-SS could be opened and
RNAI could be processed.

Later, the group of Yokobayashi developed a modified
oligonucleotide-inducible RNAi (MONi-RNAi) [103]
based on previous small-molecule inducible RNAi
designs [104]. The designed RNA transcript called

RBS
AUG

Gene A  Gene B,

00000000
25 30 35 40 45 50 55 60

Figure 12. The creation of synthetic biology platforms on paper. The cell-free transcription and translation systems are
combined with the created synthetic gene networks and then freeze-dried onto paper discs to establish stability for long-term
extracellular storage of synthetic gene network. The synthetic biology platforms can be observed for the corresponding response

when response factor RNA or small molecules are added.
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Figure 13. The workflow of paper-based RNA toehold displacement sensors for Zika virus detection. The sequence of
toehold switches of paper-based RNA sensor were designed to the desired device parameters in silico, combined with the RNA
sensor and cell-free protein expression system embedded into paper discs, and freeze-dried for stable diagnostic. The Zika virus
RNA can be selected by a color change in the paper, which were isothermally amplified to a proper concentration via NASBA and
NASBACC, and used to rehydrate the paper sensor for activating reaction; reprinted with permission from Ref. [98], Copyright 2016

Elsevier Inc.
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Figure 14. Conditional RNAi regulated by strand displacement. (A) Schematic illustrations of the designed activatable siRNA
system; reprinted with permission from Ref. [101]. Copyright 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
(B) Schematic illustration of MONi-RNAi strategy and mechanism; reprinted with permission from Ref. [102], Copyright 2011
American Chemical Society.

moniRNA contained two stem-loop domains, one of RNA via toehold-mediated strand displacement proces-
which was a RNAI effector processed to repress EGFP sing and then release the 5'-long single strand, which is
expression, and another part of the moniRNA was a MON the necessary condition for Dorsha cleavage to process
sensor that could react with 2’-OMe-modified inducer RNAi (Figure 14B) [103]. They screened many
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Figure 15. The biosensor device for mRNA signal and the signal transduction process. The mRNA signal contains a
“trigger-sequence motif” 43-nt long. The biosensor device consists of a Pr:As duplex which “protecting” (Pr) strand is pre-annealed
to an “antisense” (As) strand with two 10-nt single-stranded overhangs, and a single “sense” (S) strand. The Pr:As duplex can
interact with the trigger-sequence motif. After the strand migration, the released As strand hybridizes with the single-stranded S
strand to form a canonical siRNA duplex S: As; reprinted with permission from Ref. [104], Copyright 2010 Oxford University Press.

sequences of MON sensor domain with different lengths
and free energies and then integrated two orthogonal
MONIi-RNAI systems to silence two genes respectively in
HEK?293 cells.

Furthermore, Xie and co-workers constructed and
implemented a biosensor that “transduce” mRNA levels
into bioactive, siRNA molecules via RNA strand
displacement in a cell-free Drosophila embryo lysate,
which allows a level of control that is impossible to
achieve in live cells, and yet retains many properties of the
cytoplasm (Figure 15) [105]. The nucleic acid biosensor
consists of a partially double-stranded RNA duplex (Pr:
As) and a single-stranded RNA duplex (S). The Pr strand
is complementary to the trigger-sequence motif, while the
As strand is complementary to the central half of the Pr
strand, leaving two 10-nt single-stranded toehold over-
hangs. Finally the single-stranded As molecule will free to
hybridize to the complementary S strand, forming a
functional siRNA (S:As), which is used to regulate the
subsequent expression of target gene.

These works indicated the possibility of using toehold-
mediated strand displacement to establish RNAi-based
gene logic circuits or biosensor, as well as regulate gene
expression in a native biological setting for various
applications such as gene therapy.

CONCLUSIONS

The toehold-mediated strand displacement has proved its
crucial role in dynamic DNA nanotechnology. As its key

components, predictable Watson-Crick base pairing and
tunable toehold enable it to be well understood for
theoretical modeling and experimental control. In this
case, toehold-mediated strand displacement is endowed
with outstanding modularity and scalability and has been
successfully used as building blocks to construct exquisite
molecular devices, assembly structures, complex func-
tional circuits and reaction networks. In addition, toehold-
mediated strand displacement also shows great compat-
ibility and potential in biotechnology since it has been
employed for biomedical applications such as SNP
discrimination and gene-induced disease detection, even
for gene expression regulation. In the near future, toehold-
mediated strand displacement will build a good friendship
with mankind life.
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