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Background: The increase in global population, climate change and stagnancy in crop yield on unit land area basis in
recent decades urgently call for a new approach to support contemporary crop improvements. ePlant is a
mathematical model of plant growth and development with a high level of mechanistic details to meet this challenge.
Results: ePlant integrates modules developed for processes occurring at drastically different temporal (10-8-106
seconds) and spatial (10-10—-10 meters) scales, incorporating diverse physical, biophysical and biochemical processes
including gene regulation, metabolic reaction, substrate transport and diffusion, energy absorption, transfer and
conversion, organ morphogenesis, plant environment interaction, etc. Individual modules are developed using a
divide-and-conquer approach; modules at different temporal and spatial scales are integrated through transfer
variables. We further propose a supervised learning procedure based on information geometry to combine model and
data for both knowledge discovery and model extension or advances. We finally discuss the recent formation of a
global consortium, which includes experts in plant biology, computer science, statistics, agronomy, phenomics, etc.
aiming to expedite the development and application of ePlant or its equivalents by promoting a new model
development paradigm where models are developed as a community effort instead of driven mainly by individual
labs’ effort.

Conclusions: ePlant, as a major research tool to support quantitative and predictive plant science research, will play a
crucial role in the future model guided crop engineering, breeding and agronomy.
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In 2011, we proposed the need to develop ePlant [1], a
highly mechanistic model of plant growth and develop-
mental processes throughout the whole plant growth
cycle, which will differ from all previous crop models by
having detailed mechanistic basis of all processes
spanning from molecular reactions up through plant
environment interactions. Rapid progress has been made
in recent years in development of the component modules
(or sub-models), theoretical tools and applications around
ePlant. In this perspective paper, we overview the original
rationale, concept, components for ePlant and a method

for its development. We then propose a theoretical
framework to develop and apply ePlant in the big data
era. Finally, we discuss recent efforts in developing an
international consortium on promoting quantitative and
predictive plant science research, with the realization of
ePlant being one of the central goals.

WHAT IS ePLANT AND WHY DO WE NEED
TO DEVELOP IT?

ePlant will be a mathematical model which aims to
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simulate the dynamic plant growth and development
process throughout its growth cycle. It differs from the
earlier crop models, such as APSIM [2] and DSSAT crop
models [3], by explicitly simulating the detailed mechan-
isms underlying different processes. It spans scales from
organelle, cell, tissue, organ, whole plant to ecosystem
levels; it includes the processes spanning gene regulation,
metabolic process, metabolite transport at the tissue and
organ levels, organ morphogenesis, and plant environ-
ment interactions (Figure 1). We envisage ePlant will
become a pivotal tool in the predictive and quantitative
plant science research in the modern big data era.
Firstly, ePlant or the sub-models used in ePlant, can be
used as a basic tool for quantitative study of diverse plant
systems, such as the regulatory circuits controlling the
stability of plant metabolic systems under different
conditions [4], mechanistic basis of the biophysical
signals, such as the chlorophyll fluorescence induction
curve [5,6] and mesophyll conductance [7], and identi-
fication of optimal agronomic practices for improved
biomass production [8]. Similar to the earlier crop growth

models, ePlant can be used to guide crop management [3],
selection of physiological traits for crop breeding [9] and
predicting response of crops to changing climates [10—
12].

Secondly, ePlant can be used as a critical component in
the current general circulation models (GCMs) [13].
GCMs are models of circulation of planetary atmosphere
or ocean, which can be used for weather forecasting,
studying climate and climate change. Due to the large
magnitude of CO, fluxes from terrestrial photosynthesis
and respiration [14], terrestrial processes greatly influence
the global carbon cycle. In current GCMs, compared to
models of atmosphere and soil related physical processes,
models representing plant growth and development are
much less accurate. As a reflection of this, even for some
of the best studied plant species, such as rice, no
contemporary model can accurately predict its productiv-
ity under elevated CO, and temperature at different sites
[12]. Furthermore, variations in predicted rice productiv-
ity are higher between individual crop models than
variations resulting from 16 global climate model-based
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Figure 1. Components of ePlant. ePlant includes components spanning a large range of temporal and spatial scales spanning
macromolecular complexes, organelles, cells, tissues, canopies, whole plants and ecosystems. ePlant also includes different sets of
biological processes including gene regulatory processes, metabolic processes, metabolite transport, organ morphogenesis and
plant environmental interactions. Outputs of models describing processes at the lower temporal and spatial scales can be used as
inputs to models describing processes at higher temporal and spatial scales. Some representative variables transferred between
modules are labeled. (k.o catalytic number, K.,: Michaelis Menton kinetics; K;: inhibition constant, V;max: Rubisco-limited rate of
RuBP carboxylation; Jmax: maximum electron transfer rate; AC;: photosynthetic CO, uptake versus intercellular CO, concentration;
AQ: photosynthetic CO, uptake rate versus photosynthetic photon flux density; E: transpiration rate; A.: canopy photosynthetic CO,
uptake rate, IN: inorganic nitrogen; ON: organic nitrogen; CH,O: carbohydrate.)
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scenarios [12]. One possible reason for this low predictive
power is the lack of molecular details of plant growth and
development in current crop models. ePlant, with a
mechanistic description of plant growth and develop-
mental processes and the interaction between plants and
their environments, will drastically improve predictions
of plants behavior under different climates, and hence
improve the capacity of current GCMs in predicting
climate and identifying strategies to cope at the changing
climate.

Thirdly, ePlant can be used as a basic tool to support
molecular design of crops to develop new strategies to
improve crops for desirable traits, such as improved yield
potential, improved grain quality, or higher stress
tolerance or resource use efficiency [15]. This is currently
especially relevant since it has become relatively easy to
manipulate a gene or some gene combinations in plants,
especially in agriculturally important crops. The main
challenge that remains is to identify targets to be
manipulated to gain the desired traits. Previously, through
a systems modeling approach, a number of options to
improve photosynthesis have been identified. For exam-
ple, canopy photosynthesis models were used to identify
the optimal Rubisco kinetic properties, photoprotective
properties and canopy architectural parameters [16—19],
dynamic systems models were used to identify genes
controlling photosynthetic efficiencies in both natural and
designed metabolisms [20-23], a reaction diffusion model
of mesophyll cell was used to identify major limiting
factors controlling mesophyll conductance [7] and leaf
internal light prediction model was used to demonstrate
the importance of different anatomical features on leaf
photosynthetic rates [24]. Many of the identified options
have been shown to be effective in enhancing photo-
synthesis and biomass production [25,26], demonstrating
the effectiveness of this approach. We envisage that once
ePlant is developed, it can be used to systematically
evaluate different aspects of plants that holds potential to
be improved for desirable features.

Fourthly, ePlant and the sub-models included in ePlant
(as discussed in detail later) can be used to quantitatively
represent the contemporary plant biology knowledge.
Compared to a textual representation, either in the form of
papers, textbooks or Wikipedia, the quantitative repre-
sentation of plant biological knowledge encapsulated in
ePlant or its sub-models can effectively facilitate com-
munication among researchers specializing in different
aspects of plant growth and development and hence
promote cross-fertilization of ideas. Such quantitative
representation will also help identify knowledge gaps in
the current understanding of plant growth and develop-
ment. Finally, ePlant and its modules can also be used as
effective and visual teaching tools.

THE ESSENTIAL FUNCTIONAL
MODULES OF ePLANT

To achieve the ePlant described above, at least
four categories of functions are required. Different
mathematical models therefore have been developed or
need to be developed to realize the simulation of these
functions.

Firstly, ePlant needs to explicitly incorporate the
biophysical and biochemical mechanisms controlling
photosynthesis and all the closely related metabolic
processes, such as respiration, nitrogen assimilation etc.
[27,28]. On this aspect, mechanistic models of the
metabolic process of photosynthesis have been estab-
lished now for C;, C4 and crassulacean acid metabolism
[21,29,30]. In contrast, a mechanistic model of respiration
is yet to be developed. In this line, it is worth to note that a
mechanistic model of mitochondria energy generation in a
human heart cell has been built [31] and a simplified
model for plant respiratory processes has been built [32]
earlier. A fully mechanistic model being able to predict
interactions between photosynthesis, respiration and
nitrogen assimilation is yet to be developed.

The availability of the substrate of photosynthesis, i.e.,
CO,, is controlled by stomatal conductance and meso-
phyll conductance. Stomatal conductance is influenced by
an array of internal metabolic processes and external
environmental factors [33-37]. Different models of
stomatal conductance with varying degree of mechanistic
basis have been built [38,39]. So far, a fully mechanistic
model of stomatal conductance is yet to be developed.
Mesophyll conductance is another critical factor control-
ling leaf photosynthetic efficiency. Highly mechanistic
models of mesophyll conductance have been built in
recent years [7,40,41].

Leaf anatomy controls leaf photosynthesis by influen-
cing leaf internal light environments, leaf internal CO,
temperature profiles [42,43]. Efforts to model photo-
synthesis by considering leaf anatomy have been made
recently [24,44]. Furthermore, considering the close
interaction between plant primary metabolism and other
secondary metabolism, combination of the kinetic
systems models with genomic scale models of metabolic
and regulatory processes [45] is needed to enhance the
prediction accuracy of the future systems models. Such a
combination will ultimately enable model to predict not
only the crop yield potential, but also the quality of
harvestable components since anabolism of different
metabolites related to quality, such as starch composition
and aroma related compounds, can be explicitly repre-
sented in such models.

Secondly, ePlant needs to predict the complete crop
growth and developmental process [1]. Along this line,
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models with different degree of mechanistic basis have
been built to simulate plant developmental processes, e.g.,
gradual formation of 3D canopies with time [46,47],
flowering [48], shoot patterning [49], flow of photo-
synthate from source to sink [50,51], 3D root growth
dynamics [52,53], etc. So far, however, a mechanistic
model of partitioning of assimilates among different
organs is yet to be developed [54].

Thirdly, ePlant needs to predict acclimation of plant
metabolism and structure under different environments.
Hence modules simulating the gene regulatory processes
and signal transduction processes related to crop growth
and development are needed. Predicting variation of
phenotypes under different genotype x environment X
management combinations is the holy grail of
crop systems models research [55]. Most of the research
on this topic is still in its infancy. Development of a
gene regulatory network (GRN), which incorporates
the interaction of all involved regulatory cis-elements
and trans-factors, is a critical task towards such a goal.
Various bioinformatics algorithms, based on either
correlation, or features selection, or probabilistic graph
models etc., have been developed, which use genomic
scale omics data, in particular, the transcriptomics data,
to build GRNs [56-58]. There is only limited number
of GRNs developed for plant related processes, such
as flowering date determination [59], photoperiod
and circadian clock [60], and seed setting [61]. However,
so far, these GRNs are not linked to current crop systems
models. It is worth noting that a GRN related to circadian
clock has been linked to an Arabidopsis model [62]. Such
disconnection between GRNs and crop models partially
explains why the current models, though capable of
predicting performance of crops in the regions where they
are parameterized, cannot predict crop performance as
accurately once beyond their regions or environmental
conditions or cultivars used for their parameterization.
Here we emphasize that though some work has been done
in developing GRNs based on transcriptomics data,
models predicting the regulatory processes at post-
translational levels, including transcript stability and
degradation, translation, post-translational modification
etc., are largely lacking. There is a long way to go before
any realistic model of predicting the acclimation of plants
under different environments becomes available.

Fourthly, in addition to the above discussed biological
processes, ePlant needs to include models of interaction
between plants and their surrounding soil and atmo-
sphere. These interactions control plant growth and
development. Modeling plant-environment interaction
requires simulation of soil hydraulic dynamics, nutrient
cycles and temperature profiles etc., which are the basis
for predicting the soil water status and nutrient availability
to roots. The microclimates inside the canopy, such as

light, temperature, CO,, humidity and wind speed also
need to be incorporated in a crop systems models [19,63],
to ensure an accurate prediction of the exchange of gas,
water and momentum between canopy and atmosphere.
Models of soil related processes have been well
developed, i.e., CENTURY model [64,65]; while fully
integrated canopy photosynthesis and microclimate
models are yet to be developed. ePlant needs to integrate
the above-ground processes with the below ground
processes to develop a fully integrated microclimate
model, including linking soil water status with the leaf
biological and hydrological processes [38,66,67].

USING DIVIDE-CONQUER AND TRANS-
FER VARIABLES TO REALIZE THE
MULTI-SCALE, MULTI-PHYSICS ePLANT

As discussed above, ePlant includes modules describing
processes at different temporal and spatial scales, with
each process at particular scales potentially represented
by different modules and each module potentially using
different methods (see Figure 1 and Table 1). Therefore,
ePlant is not a single model, rather it is an assembly of
modules which can be combined to form models with
different temporal, spatial and physical resolutions. ePlant
development follows a two-step strategy, i.e., first divide-
and-conquer to develop individual modules and then
integrate modules through transfer variables. When we
divide plant growth and developmental processes into
different units, i.e., modules, we follow the principle of
maximizing connections within modules while minimiz-
ing connections between modules, as did during devel-
opment of the ePhotosynthesis models [20,29,78]. The
connectivity between photosystem II unit with other
components of ePhotosynthesis is minimal, which
justifies development of an independent module for
PSIT photochemistry and biophysical processes [78];
similarly, the connectivity between the photosynthetic
carbon metabolism with that of photosynthetic light
reactions is relatively less, which justifies the develop-
ment of an independent model of photosynthetic carbon
metabolism [20]. Another principle that can be used to
divide modules is to separate reactions/processes occur-
ring at drastically different time scales because every
process in ePlant can be viewed as dynamic at a higher
time resolution; similarly, every step can be viewed as a
steady-state process if viewed at a lower time resolution.
Processes at similar temporal and spatial scales can be
grouped together as a module. ePlant hence includes
modules working at different temporal and spatial scales,
i.e., ecosystems level, crop physiology level, metabolism
level, and gene regulatory network level (Figures 1 and
2). Transfer variables, which are defined as an output of a
lower level modules, which at the same time are also
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Table 1. Components of ePlant.

Physical and biological processes Modeling methods Example models Refs.

Ecophysiological processes Ordinary differential system APSIM, DSSAT, WIMVOAC [68-71]

Physiological processes Ordinary differential system Photosynthesis, sunlit shaded model [72,73]

Metabolic processes Ordinary differential equation models ~ Photosynthesis, starch metabolism [29,74]

Metabolic process at the whole genome  Constraint based modeling Aragem, C4gem [75,76]
scale

Gas diffusion, nutrient cycling, water Reaction diffusion models Mesophyll conductance [7,23,77]
cycling processes

Light propagation process Ray tracing algorithms Rice canopy model, sugarcane model [8,19,24]

Morphogenesis L systems, Greenlab Maize, rice [46,47]

Gene regulatory process Probabilistic graph model, information  Circadian rhythm, seed setting [60,61]

theory, correlation

Models at different

hierarchical levels

Gene regulatory network level

Metabolism level models

Physiology level models

Ecosystems level models

Photosynthesis

Gene regulatory network models
controlling photosynthetic genes

Enzyme activity

Metabolic systems model of leaf
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A

C
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Figure 2. Strategy used to build the multi-scale multi-physics ePlant model. The multi-scale multi-physics ePlant is
developed using a divide-and-conquer strategy and transfer variables. Processes involved in ePlant spanning multiple scales are
represented in a multi-scale framework. Here we use the models related to C; photosynthesis to illustrate the concept of transfer
variable. Specifically, enzyme activity is the transfer variable between the gene regulatory network model and metabolic systems
model, the Rubisco-limited rate of RuBP carboxylation (V.max) and maximal electron transfer rate (Jyax) are the transfer variables
between metabolic systems model and sunlit shaded canopy photosynthesis model; while canopy photosynthesis rate (A.) is the
transfer variable between sunlit-shaded canopy photosynthesis model and the gross productivity model.

inputs to higher levels, are used to integrate modules at
these different scales (Figure 1).

Photosynthetic CO, uptake occurs at different temporal
and spatial scales. Here we use modules of photosynthetic
CO; uptake to illustrate how transfer variables are used to
integrate modules at different scales. At the ecosystem
scale, photosynthetic CO, uptake can be predicted using a
sunlit-shaded model which calculates canopy photosynth-
esis by summing up CO, uptake rate of both sunlit and

264

shaded leaves [72]. At the leaf scale, photosynthetic CO,
uptake can be predicted using models which explicitly
describes both the leaf anatomy and leaf metabolic
processes [24]. The leaf scale photosynthetic CO, uptake
can also be predicted with a steady state biochemical
model with consideration of stoichiometric relationship
between reactions [73]. Photosynthetic CO, uptake rate at
the metabolism scale can be predicted with a dynamic
systems model with consideration of both the stoichio-
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metry and also enzyme kinetics [20]. Photosynthetic CO,
uptake rate at the level of gene regulatory network can be
predicted with a detailed consideration of the regulatory
processes influencing photosynthesis [79]. If we need to
integrate a physiological model of canopy photosynthesis,
e.g., a sunlit-shaded model [72], with a dynamic systems
model of C; photosynthesis, the Rubisco-limited RuBP
carboxylation rate (V;n.x) and maximal rate of electron
transfer rate (Jn.x) can be used as transfer variables.
Specifically, we can use the dynamic systems model of
photosynthetic metabolism, such as the C; carbon
metabolism model [20] to predict responses of photo-
synthetic CO, uptake rates (4) under different CO, levels,
which can be used to infer V..« and Jo.c. These two
transfer variables can then be used as inputs to the
physiological level models to predict photosynthesis at
the canopy level under different environments. Such an
integration combining canopy photosynthesis model and
metabolism model enables examination of the impacts of
manipulating different enzymes on canopy photosynth-
esis. Similarly, if a kinetic model of gene regulatory
processes controlling photosynthesis development is
available, it can be used to predict the quantity of
different proteins involved in photosynthesis, which can
then be used as transfer variables for metabolic systems
models.

The above discussed model integration process works
well if models working at different scales are described
continuous processes. However, models for continuous
processes and discrete processes can not be integrated
using this method. Under such circumstances, a prob-
abilistic regulation of metabolism algorithm, which has
been developed to link GRNs to a constraint based
genomic scale metabolism model for E. coli [80], can be
used. In all these model integration processes, it is
important to ensure that the known constraints, such as
stoichiometric constraints of the biomass composition and
growth rate [81], are maintained.

Here we emphasize that ePlant will not be one model,
rather it will be a series of continuously evolving models
with gradually increased mechanistic details with time.
The level of mechanistic details needed for any particular

realization of ePlant depends on the question to be
addressed. Therefore, though development of the first
integrative ePlant model is a concrete goal, development
and improvement of ePlant will be a continuously
ongoing work. Considering that modules describing
different plant processes have different levels of mechan-
istic details, therefore, ePlant developed at any particular
time point will inevitably be a mosaic of modules with
different mechanistic details.

A THEORETICAL FRAMEWORK TO SUP-
PORT PREDICTIVE AND QUANTITATIVE
PLANT BIOLOGY RESEARCH IN THE BIG
DATA ERA

ePlant is a mathematical representation or integration of
the current knowledge about a living plant. Each
component or process or action on plants can be
abstracted as a term used to describe the component,
function or application of ePlant (Table 2). In a broad
sense, everyone has his or her model, which is used to
interpret experimental observations, analogous to the
process of fitting model parameters to a mathematical
model, though in a qualitative way. During a typical
research project, we explore the unknown and extend the
boundary of our knowledge by studying a difference that
cannot be explained by current knowledge or “model”.
Push this analogy even further, when experiments are
designed and results are compared between different
groups, we are in some sense studying phenotypic
variations with different models embraced by different
labs. Unfortunately, due to the complex nature of plants,
every “model” is right only to certain degree and no
“model” is absolutely right [82]. The process of pushing
“models” closer and closer to the absolute “truth” can be
seen as the essence of scientific research. This same
process occurs during the development of ePlant and its
component models, i.e., ePlant will become a better and
better representation of the reality with its gradually
improved capacity to predict the distribution of output
variables with the distribution of the input variables
(Figure 3).

Table 2. Mapping between terms describing plants and terms used in ePlant and its component modules.

Terms related to plants

Terms in ePlant and its component modules

Compound or substrate

A process

Plant

Soil and atmospheric conditions surrounding the plants
Physiological parameter

Natural variation

Evolutionary process

Genetic engineering

A variable in a module

A module or sub-model

ePlant: a highly mechanistic plant growth and development model
Boundary conditions of the ePlant model

A predicted parameter from the model

Variations of model structure, variable and output

Evolutionary algorithm

Modification of parameters related to gene or proteins in the model
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Figure 3. Mapping valiations between input and output variables. The relationship between variation in the input variable,
variations of output variables, and the function f (f, f,, and f3) which represents the link between input and output variables. The
variation of the input variables and the functions together determine the variation of the output variables. Mapping the variation of an
input variable and that of an output variable reveals information regarding f. The variation of either input or output variables can be
used together with f to deduce variation about the output or input. If variation of both input and output can be used together with f,

new information about f can be deduced.

When simulations are used to draw conclusions about a
particular process, the reliability of the model prediction
is crucial. Four types of errors can potentially create
“artificial” difference between model predictions and real
plants: 1) errors caused by inaccurate and imprecise
experimental techniques or operations; ii) errors intro-
duced during model parameterization, i.e., parameters
measured in vitro may not represent those in vivo,
and even parameters estimated in vivo may still biased
due to limitation of technologies; iii) errors due to
uncertainty of the model, especially when the model is
used to represent a process for which a complete
mechanistic understanding is unavailable, either due to
unknown variables or unknown relationships among
variables, and hence some empirical equations or
relationships derived from limited data are used; iv)
errors due to the model structure. Simulation of a
particular phenomenon needs a model with appropriate
spatial and temporal scales. If a model’s temporal and
spatial resolution is too high for a question to study, too
many unnecessary assumptions will be introduced and
hence magnifying potential structural errors. If a model’s
temporal or spatial scale is too low for the question to
study, the model will unlikely generate novel insights
regarding the questions under study.

A theoretical framework therefore needs to be devel-
oped to enable studying these different errors and their
impact on model behaviors. Minimally, the framework
needs to address following questions: how much will the
bias in measurable and non-measurable parameters
influence the reliability of our simulations? How much

will the uncertainty of the model itself influence the
reliability of model simulations? How much will the scale
of model influence the reliability of model simulations?
How to unify models developed with different temporal
and spatial resolutions and mechanistic details while
maintain the essential prediction capacity? How to
interpret the potential bias of experimental measure-
ments? How much will this bias influence the comparison
between experiment and simulation, and the reliability of
conclusions? If for a particular phenomenon no mechan-
istic understanding is available, how can information
from experimental data still be effectively used in model
simulations?

On this aspect, mathematical theories such as informa-
tion geometry [83] can potentially be adapted and used to
support studies as discussed above. Theoretically, infor-
mation geometry takes a model as a function/mapping
between experiment measurements (outputs) and model
parameters (inputs), model structure therefore is equiva-
lent to certain shape of a manifold in a hyperspace [83].
Although the relationship between model input para-
meters to measured phenotypic output parameters are
many-for-one, with the variation of the model parameters,
it is possible to estimate the confidence intervals of the
model output variables, i.e., creating an ensemble of input
parameters and using these to predict the distribution of
model outputs and hence deriving the potential con-
fidence intervals of the model outputs. Conversely, if the
variation of a particular physiological parameters (or
model output) is known, it is possible to deduce the
potential variation of certain input model parameters as
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well. The deduced variability of model parameters can
inform us about the level of feasibility and effectiveness
of engineering a particular plant trait for a desired
biological output. If a deduced input variable shows little
variation, it would be less feasible to manipulate this
variable; furthermore, even if a deduced input variable
values show large variation but it has little impacts on
output parameter, it is unlikely that this parameter will be
an effective parameter to modify (Figure 4).

In this sense, the concept of ePlant will include not only
the model itself, it will also include a theoretical
framework to enable predictive and quantitative plant
science research. Finally here we emphasize that though
great amounts of experimental data have been collected
by the plant science research community, however, most
of these data only cover a limited number of variables and
thus have limited value in promoting identification of new
knowledge gap in current plant science using ePlant. To
study the above discussed questions, carefully designed
internally consistent data sets need to be collected
systematically, in particular on those parameters related
to the expanded model components. Here the internally
consistent data sets refer to those data collected on the
same plants grown under the same condition and at the
same developmental stages. Such data will be crucial to

verify each module and the integration of different
modules.

With a validated model available, any further difference
between model simulations and new experimental
observations can help target potential causes, design
specialized experiments, discover unknown factors or
mechanisms related to a particular area [84]. Such a
process will also urge development of new methodology
and technology to measure key parameters limiting the
development of current knowledge/models. Such an
iterative model development, validation, improvement
process, or supervised learning process, has the potential
to become a new paradigm of the future quantitative and
predictive plant science research.

ePlant will become a crucial tool to integrate and use
the diverse data in the big data era. Big data, including
genomes, transcriptomes, proteomes, metabolomes, and
different phenomes, can be regarded as either input or
output for ePlant or its component models. Mapping
between ePlant or its component models with natural
variations in these data poses a tremendous challenge and
offers huge opportunities for development of new
algorithms, tools and frameworks (Figure 3). Only after
these tools and frameworks are fully established, the great
promise offered by ePlant to help guide future crop
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Figure 4. Elements of a new research paradigm supporting quantitative and predictive plant science research. (A) A
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engineering, breeding, and agronomy can be realized.
From this perspective, the creation of ePlant model itself
is only the first step on this New Long March.

FINAL COMMENTS: THE GLOBAL
EFFORTS

Model plant species, such as Arabidopsis, rice and maize,
for which vast amount of genetic resources, background
knowledge and efficient transformation protocols are
available [85-88], are likely to be the first set of plants
that will be used to realize ePlant. Here we highlight a
number of recent advances on development of ePlant or
its equivalents. Chew et al. [62] developed a multi-scale
digital Arabidopsis which can predict organ and whole
organism growth. Zhu et al. [89] proposed the develop-
ment of a collaborative model development platform, i.e.,
Plant in silico, which includes not only the basic modules,
data for model parameterization and validation, but also
the basic algorithmic tools for model application,
visualization, etc. With developing Plant in silico as a
goal, a Crop in silico international consortium was
recently proposed [90]. The Department of Energy of
the United States started an Integrative Plant Air Soil
Systems (iPASS) initiative, aiming at creation of an
integrative plant systems model, which, when combined
with plant ecosystems phenomics, can be used to study
the interaction between plants, microbiome, atmosphere
and soil [91]. It is foreseeable that development of ePlant
and the associated algorithms and resources, both for
models development and their application, will become a
nucleus to integrate research activities spanning diverse
disciplines, including plant biology, computer science,
computer vision, high performance computing, agron-
omy, phenomics, for decades to come, or to put it simply,
function as the nexus of the future predictive and
quantitative plant science research, which has the
potential to transform the future agriculture by harvesting
the power of model guided crop engineering, breeding
and agronomy.
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