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Background: Random Forests is a popular classification and regression method that has proven powerful for various
prediction problems in biological studies. However, its performance often deteriorates when the number of features
increases. To address this limitation, feature elimination Random Forests was proposed that only uses features with
the largest variable importance scores. Yet the performance of this method is not satisfying, possibly due to its rigid
feature selection, and increased correlations between trees of forest.
Methods: We propose variable importance-weighted Random Forests, which instead of sampling features with equal
probability at each node to build up trees, samples features according to their variable importance scores, and then
select the best split from the randomly selected features.
Results: We evaluate the performance of our method through comprehensive simulation and real data analyses, for
both regression and classification. Compared to the standard Random Forests and the feature elimination Random
Forests methods, our proposed method has improved performance in most cases.
Conclusions: By incorporating the variable importance scores into the random feature selection step, our method can
better utilize more informative features without completely ignoring less informative ones, hence has improved
prediction accuracy in the presence of weak signals and large noises. We have implemented an R package
“viRandomForests” based on the original R package “randomForest” and it can be freely downloaded from http://
zhaocenter.org/software.
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INTRODUCTION

With the rapid development of molecular technologies,
huge amount of high-throughput-omics data have been
generated. These data provide rich information on various
biological processes at the molecular level, and insights
learned from these data may lead to new tools for disease
diagnosis, prognosis, and treatment [1]. However, the
large number of features in these data and the existence of
complex interactions among these features pose great
challenges in extracting useful information for accurate
predictions. Random Forests [2], an ensemble method
based on classification and regression trees (CART)
trained on bootstrapped samples and randomly selected
features, has been shown to have superior performance
over many other classification and regression methods [2–
4] and is commonly used in genomic data analyses [5,6].
However, when the number of features is very large and

the signals are relatively weak, its performance tends to
decline (see Results and Ref. [7] for examples).
An intuitive idea to improve the performance of

Random Forests is to evaluate the importance of each
feature first and then only keep the most informative ones
in a second round of analysis. This is the core idea of
several feature elimination Random Forests algorithms
[8–10]. As a by-product of Random Forests, the variable
importance score (increase in classification error rate or
regression MSE when a feature is randomly permutated)
[11] provides an assessment of the informativeness of
each feature. The feature elimination methods utilize this
measurement and iteratively select top-ranked features
accordingly and re-train a Random Forests based only on
selected features. While showing improvement in some
cases [8–10], the main limitation of this feature elimina-
tion approach is that it is too rigid in feature selection,
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sensitive to inaccuracies in feature selection, and may lead
to significant increase in the correlation among trees that
may negatively affect the performance (see Results).
To overcome this limitation, we propose a soft “feature

selection” strategy in this paper. Unlike the feature
elimination approach which keeps only features with the
largest importance scores, we input all the features as well
as their importance scores into a second stage Random
Forests model. However, in the random feature selection
step when splitting a tree node, instead of sampling each
feature with equal probability like Random Forests, our
new method samples features according to their impor-
tance scores. With this weighted sampling strategy, the
final model is able to focus on the most informative
features while not completely ignoring contributions from
others at the same time. We note that a similar method was
proposed specifically for continuous-feature, two-class
classification problems (called “enriched Random For-
ests”) [7]. The authors used marginal t-test (or conditional
t-test [12]) q-values to guide the random feature selection.
Here, we also extended this marginal testing idea to more
general cases by adopting ANOVA for continuous-
feature, multiple-class classification, Chi-squared test for
categorical-feature classification and F-test (linear regres-
sion with only one feature) for regression.
We evaluated the performance of the proposed variable

importance-weighted Random Forests (viRF), the stan-
dard Random Forests, the feature elimination Random
Forests and the marginal screening-based enriched
Random Forests through comprehensive simulation
studies and the analysis of gene expression data sets.
We found that the viRF has better performance in most
cases. These results suggest that viRF is effective in using
high-dimensional genomic data to construct useful
predictive models.

RESULTS

Regression

Simulation models

We consider the following three models in our simula-
tions [13].
1. y=10sinð10πx1Þ þ ε, with xi � Unif ð0,1Þ,   i=1,2,
:::,d and ε � Nð0,1Þ.
2 . y=10sinðπx1x2Þ þ 20ðx3 – 0:05Þ2 þ 10x4 þ 5x5 þ ε,
with xi � Unif ð0,1Þ, i=1, 2, :::,d and ε � Nð0,1Þ.
3. y=fðxÞ þ ε, with xi � Unif ð0,1Þ, i=1, 2, :::, d,
ε � Nð0,1Þ, and fðxÞ follows a tree structure as in
Figure 1.
The total number of features, d, was varied from 5 to

200. For each d, we generated training sets with sample
size, n, ranging from 10 to 500 (Figures 2–4). The
accuracy of each method was evaluated on a testing data
set with 500 samples. We repeated the process 50 times
and report the average MSEs, where smaller value
indicates better performance.
In simulation Model 1, out of d total features only one

(x1) is informative. The variable importance-weighted
Random Forests (viRF) and the feature elimination ones
(feRF), being less influenced by noise features, both
outperformed the standard Random Forests (RF) as
expected (Figure 2). When sample size (n) was large
relative to the dimension (d), viRFs performed better than
feRFs. We also note that although linear regression was
not expected to be effective for the periodic function (sin),
F-test q-value based enriched Random Forests (eRF) still
outperformed the standard RF in most cases (since x1 did
get smaller p-values than x2, :::, xd). However, its
performance was much worse than viRF, indicating an

Figure 1. Tree structure used in regression Model 3.
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advantage of Random Forests’ variable importance score
quantifying the feature informativeness in this scenario.
Simulation Model 2 has five informative features

(x1, :::, x5). For most d and n, all the modified Random
Forests had similar performance, which were better than
that of the standard RF (Figure 3).
For the tree structure in Model 3, with five informative

features (x1, :::, x5), viRF performed the best in almost all
cases (Figure 4).
We also consider three Models that have similar

functional forms as Models 1–3, except with both
continuous and categorical features (Supplementary
Figure S1). In addition, we consider cases where a certain
level of correlation exists between the effective and
nuisance features. The relative performance of all the
methods was similar to what we observed in Models 1–3
(Supplementary Figures S2–S7).
Overall, these simulation results suggest an improved

performance of viRF over standard RF and eRF (with
linear model F-test weights) in regression. In addition, the
feature weighting strategy also performed better than the
feature elimination one in most scenarios except when the
number of informative features and the sample size were
both very small.

Drug sensitivity prediction

We further assessed the performance of these regression
methods using the CCLE drug sensitivity data [14]. The
CCLE data contain gene expression profiles of ~500
cancer cell lines and their sensitivities to 24 anticancer
drugs. For each drug, we constructed a regression model
with the sensitivity measurement (area under dose

response curve) as the response variable for a cell line
and features as the cell line’s expression levels (10,000
genes). The MSEs estimated with 20 rounds of 5-fold
cross-validation are shown in Table 1.
We observed that for all drugs other than “AZD0530”

and “Paclitaxel” the best-performing methods were
always among the weighted Random Forests (viRF or
eRF based on marginal F-test q-values), yet no clear
conclusion could be drawn between these two
approaches. This may suggest that in practice it would
be a good strategy to have features weighted according to
their informativeness, such that the final model will be
more dominated by key features, while at the same time
not completely ignore the less informative ones to stay
robust to inaccuracies occurred in the evaluations of
feature importance and effective dimension.

Classification

Simulation models

We generated three simulated data sets analogous to those
in the regression analyses to evaluate the performances of
the methods in classification. In simulation Model 1, we
consider a continuous-feature, two-class classification
problem with only one informative feature (x1). The
coefficients of the logistic function were selected such that
the two classes would have balanced sample sizes. In
simulation Model 2, the number of informative features
increases to five (x1, :::, x5). In simulation Model 3, we
consider a tree structure with five informative continuous
features (x1, :::, x5) and four classes.

1. y � Bernoulli 1
1þ expð1 – 2x1Þ
� �

, with xi � Unif ð0,1Þ, i=1, 2, :::,d.

2. y � Bernoulli  1

1þexp –
10sinðπx1x2Þ þ 20ðx3 – 0:05Þ2 þ 10x4 þ 5x5 – 20

3

� � !,with xi � Unif ð0,1Þ, i=1, 2, :::, d.

3. y follows a tree structure as in Figure 5, with xi � Unif ð0,1Þ, i=1,2, :::,d.

We plot the classification error rates of all the methods
with a range of training sample sizes in Figures 6–8.
Unlike what was observed in the regression cases, the
feature elimination Random Forests (feRF) almost
consistently performed worse than the other methods.
The variable importance-weighted Random Forests
(viRF) and the enriched Random Forests (eRF, marginal
q-value weighted) both achieved the lowest prediction
error rates in most cases, while viRF was the single best
classifier in the rest. It is worth noting for Models 3 with
tree structures, the standard Random Forests (RF), as an

ensemble of trees, performed very well when the
dimension is low (occasionally even slightly better than
the weighted Random Forests); however, as the number
of uninformative features increased, its performance
declined and the improvement by adding a weight to
the features became clear (Figure 8).
Additionally, we also considered three cases where

both continuous and categorical features exist (Supple-
mentary Figure S8) and three cases where some nuisance
features are correlated with the effective features. The
observations were similar to what we got on Models 1–3
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(Supplementary Figures S9–S14).
In order to get more insights about these different

performances, we investigated the strength of individual
trees and the correlation between trees [2] for each
method (Supplementary Figures S15–S23). Generally,
Random Forests achieves a small correlation between
trees while maintaining individual tree’s strength at the
same time to give accurate classification [2]. We note that
compared to the standard RF, the weighted ones (viRF
and eRF) would have both increased strengths and
correlations; and since their effect in strength improve-
ment was greater than that in correlation deterioration, the
overall performance was boosted. However, for feRF, the
same increment in single-tree strength often brought
much larger sacrifice to the correlation side, which
resulted in worse performance overall.

Cancer (subtype) classification

We then assessed the performance of these methods for
cancer/normal and cancer subtype classification. We
considered three data sets (Table 2) with various sample
sizes and input types.
We performed 5-fold cross validation for 20 rounds and

report the average prediction errors in Table 3. In all these
three data sets, viRF performed the best. ERF (marginal
test q-value weighted) also achieved better performance
than the standard RF. However, similar to what we
observed in the simulations, feRF performed poorly, even
worse than the standard RF.

DISCUSSION

We have proposed a variable importance-weighted
Random Forests (viRF) that utilizes the variable impor-
tance scores obtained from a standard Random Forests to

sample features in a weighted Random Forests. This
enables the final model to rely more on informative
features, hence can better deal with the growing noises as
dimension increases than standard Random Forests.
Unlike the feature elimination Random Forests that

removes features with small importance scores entirely,
our strategy allows features with weaker information to be
considered in the final model, thus it is more flexible and
less prone to the inaccuracies that might occur in feature
evaluation and selection steps. Especially when interac-
tions exist between features (Simulation Model 3 and real
biological data), the weighted feature sampling method is
more able to capture interactions from features that might
be less important marginally, and has superior perfor-
mance. Besides, by avoiding the internal cross-validation
that is required by feature elimination Random Forests to
determine the optimal number of features, the computa-
tional burden for the weighted Random Forests is greatly
reduced.
In addition, we extended a previous idea (enriched

Random Forests) for continuous-feature, two-class clas-
sification problem to more general cases by utilizing the
corresponding marginal test q-values to guide the random
feature selection. Though theoretically such marginal
tests may not provide an ideal evaluation of the features’
informativeness, in our real data analyses sometimes it
presented promising results as well.
In summary, sampling features according to their

informativeness in the random feature selection step
could further enhance Random Forests’ performance, in
both regression and classification. Since variable impor-
tance score estimated by Random Forests as the increased
MSE/error rate when a feature is random permuted,
provides a reliable measurement of the feature’s relevance
to the outcome, we consider it a useful weight to be
assigned for features. In our R implementation of the
weighted Random Forests, we set default weight as the

Figure 5. Tree structure used in classification Model 3. Noises are added by assigning data point in each terminal node the denoted
class with probability 0.9 and any other class with probability 0.1/3.
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variable importance score; we also give users an option to
specify other weights to use.

MATERIALS AND METHODS

Random Forests and variable importance score

Random Forests is an ensemble of classification and
regression trees (CART) [2]. Each tree is grown on a
bootstrapped sample from the original data set. At each
node, m out of p total features are randomly selected
(random feature selection) and the best split is chosen

from them. The constructed trees vote for the most
popular class (classification) or the mean predicted value
(regression). For Random Forests classifier, an upper
bound of its generalization error can be derived in terms
of strength of individual trees and correlation between
them [2]:

PE�£
�ð1 – s2Þ

s2
,

where PE� is the generalization error, � is the average
pairwise correlation between trees and s is the average
single tree strength, defined as follows.

Table 3. Cross validation error rate in cancer (subtype) classification analysis (in parentheses are standard deviations).

Data set

Arcene

Overall [Class 1, Class 2]

Pomeroy

Overall [Class 1, Class 2, Class 3,

Class 4, Class 5]

Singh

Overall [Class 1, Class 2]

viRF, normalized 0.168 (0.025) [0.078 (0.013),

0.089 (0.014)]

0.261 (0.048) [0.021 (0.017),

0.025 (0.005), 0.012 (0.014),

0.063 (0.024), 0.139 (0.030)]

0.057 (0.008) [0.013 (0.005),

0.044 (0.006)]

viRF, unnormalized 0.175 (0.028) [0.082 (0.017),

0.093 (0.015)]

0.255 (0.048) [0.026 (0.019),

0.024 (0.008), 0.014 (0.016),

0.061 (0.025), 0.130 (0.032)]

0.082 (0.011) [0.032 (0.011),

0.05 (0.004)]

eRF, marginal test 0.178 (0.017) [0.080 (0.011),

0.098 (0.013)]

0.276 (0.051) [0.029 (0.021),

0.031 (0.017), 0.013 (0.014),

0.054 (0.024), 0.150 (0.023)]

0.063 (0.011) [0.016 (0.008),

0.047 (0.006)]

feRF, normalized, recursive 0.195 (0.033) [0.100 (0.022),

0.096 (0.017)]

0.345 (0.094) [0.067 (0.035),

0.058 (0.033), 0.038 (0.029),

0.058 (0.024), 0.124 (0.033)]

0.111 (0.024) [0.054 (0.020),

0.057 (0.011)]

feRF,unnormalized, recursive 0.211 (0.027) [0.101 (0.019),

0.110 (0.017)]

0.395 (0.102) [0.073 (0.037),

0.065 (0.046), 0.056 (0.035),

0.064 (0.019), 0.137 (0.037)]

0.106 (0.024) [0.050 (0.018),

0.056 (0.016)]

feRF, normalized, nonrecursive 0.203 (0.026) [0.103 (0.015),

0.101 (0.018)]

0.339 (0.090) [0.054 (0.042),

0.058 (0.036), 0.031 (0.030),

0.064 (0.027), 0.132 (0.037)]

0.114 (0.024) [0.060 (0.014),

0.054 (0.017)]

feRF,unnormalized, nonrecursive 0.213 (0.022) [0.103 (0.016),

0.110 (0.015)]

0.319 (0.075) [0.050 (0.033),

0.044 (0.025), 0.032 (0.032),

0.061 (0.021), 0.132 (0.031)]

0.102 (0.022) [0.046 (0.016),

0.056 (0.015)]

RF 0.180 (0.022) [0.082 (0.010),

0.099 (0.015)]

0.273 (0.043) [0.015 (0.014),

0.026 (0.007), 0.008 (0.012),

0.070 (0.020), 0.152 (0.026)]

0.091 (0.011) [0.027 (0.008),

0.064 (0.006)]

The smallest overall error rates achieved for each data set is highlighted in bold.

Table 2. Classification data sets summary.
Data set Main task Sample size Number of features

Arcene [15] Distinguish ovarian and prostate cancer vs. normal using mass-spectrometric

data

Class 1 (cancer): 112

Class 2 (normal): 88

10,000

Pomeroy [16] Distinguish central neural system embryonal tumor subtypes using gene

expression data

Class 1: 10

Class 2: 10

Class 3: 10

Class 4: 4

Class 5: 8

5,597

Singh [17] Distinguish prostate cancer vs. normal using gene expression data Class 1 (cancer): 52

Class 2 (normal): 50

6,033
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PE�=PX ,Y ðPΘðhðX ,ΘÞ=Y Þ – max
j≠Y

PΘðhðX ,ΘÞ=jÞ<0Þ,

s=EX ,Y ½PΘðhðX ,ΘÞ=Y Þ – max
j≠Y

PΘðhðX ,ΘÞ=jÞ�,

�=EΘ,Θ# ½corðIðhðX ,ΘÞ=Y
�
– IðhðX ,ΘÞ=ĵðX ,Y ÞÞ,

IðhðX ,Θ0Þ=Y Þ – IðhðX ,Θ0Þ=ĵðX ,Y ÞÞÞ�,
where X , Y are the features and true class,Θ and hðX ,ΘÞ
represent a tree and its predicted class of X , and
ĵðX ,Y Þ=argmax

j≠Y
PΘðhðX ,ΘÞ=jÞ.

Random Forests can also generate a variable impor-
tance score for each feature, which is evaluated as the
increased classification error rate or regression MSE
(measured on out-of-bag samples, i.e., samples not used
to grow a tree) when a feature is randomly permuted [11].
Intuitively, permutation of an informative feature will lead
to large increment in classification error rate or regression
MSE while permutation of a non-informative feature will
not influence the model’s performance much. A slightly
modified version of variable importance score takes
uncertainty of the mean increased error rate/ MSE (across
trees) into account by normalizing the value with the
standard deviation. We considered both the unnormalized
and normalized variable importance scores in our
analyses, and the results did not suggest major perfor-
mance difference.

Variable importance-weighted Random Forests

We propose a two-stage variable importance-weighted
Random Forests (viRF) method. For the first stage, we run
a standard Random Forests and obtain a variable
importance score for each feature wi, i=1, 2, :::, d.
Considering that it is possible for some wi to be zero or
negative, we transform these importance scores as
follows:

~wi=

1
d þ wi

max
j

wj
, if max

j
wj > 0

1
d , otherwise

:

8><
>:

In the second stage, we construct another Random
Forests. However, instead of sampling m features with
equal probability for each feature in the random feature
selection step, we sample m features with probability
proportional to ~wi, i=1, 2, :::, d. The best split is
chosen from these m features.

Other methods

Besides Random Forests’ variable importance score, we
also consider a marginal testing approach to assessing the
importance of a feature and perform the weighted feature

sampling using the q-values of t-test (continuous-feature,
two-class classification), ANOVA (continuous-feature,
multiple-class classification), Chi-squared test (categori-
cal-feature classification) or linear regression F-test
(regression), following the idea of Ref. [7].
We compare the weighted Random Forests with feature

elimination Random Forests [8–10]. At each iteration r%
(we used r=30 here) of the features with the least
importance scores are removed and a Random Forests is
constructed using the remaining ones. The number of
features used in the final model is determined by cross
validation. We consider both recursive (variable impor-
tance scores are updated at each iteration) and non-
recursive (variable importance scores are calculated only
once at the first iteration) approaches for feature
elimination, and the results did not suggest an obvious
difference.

Data sets

We downloaded the CCLE data set from https://portals.
broadinstitute.org/ccle/home. To reduce computational
cost we kept 10,000 genes with the largest expression
coefficients of variations in our analyses. We downloaded
the classification data sets from http://archive.ics.uci.edu/
ml/datasets/Arcene, http://stat.ethz.ch/%7Edettling/bag-
boost.html and http://stat.ethz.ch/%7Edettling/bagboost.
html. All features included in the original data sets were
used.

ABBREVIATIONS

RF, Random Forests

viRF, variable importance-weighted Random Forests

eRF, enriched Random Forests

feRF, feature elimiation Random Forests
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The supplementary materials can be found online with this article at DOI
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