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Background: Precision medicine attempts to tailor the right therapy for the right patient. Recent progress in large-
scale collection of patents’ tumor molecular profiles in The Cancer Genome Atlas (TCGA) provides a foundation for
systematic discovery of potential drug targets specific to different types of cancer. However, we still lack powerful
computational methods to effectively integrate multiple omics data and protein-protein interaction network
technology for an optimum target and drug recommendation for an individual patient.

Methods: In this study, a computation method, Precision Medicine Target-Drug Selection (PMTDS) based on genetic
interaction networks is developed to select the optimum targets and associated drugs for precision medicine style
treatment of cancer. The PMTDS system includes three parts: a personalized medicine knowledgebase for each
cancer type, a genetic interaction network-based algorithm and a single patient molecular profiles. The
knowledgebase integrates cancer drugs, drug-target databases and gene biological pathway networks. The molecular
profiles of each tumor consists of DNA copy number alteration, gene mutation, and tumor gene expression variation
compared to its adjacent normal tissue.

Results: The novel integrated PMTDS system is applied to select candidate target-drug pairs for 178 TCGA
pancreatic adenocarcinoma (PDAC) tumors. The experiment results show known drug targets (EGFR, IGF1R,
ERBB2, NR112 and AKR1B1) of PDAC treatment are identified, which provides important evidence of the PMTDS
algorithm’s accuracy. Other potential targets PTK6, ATF, SYK are, also, recommended for PDAC. Further
validation is provided by comparison of selected targets with, both, cell line molecular profiles from the Cancer Cell
Line Encyclopedia (CCLE) and drug response data from the Cancer Therapeutics Response Portal (CTRP). Results
from experimental analysis of forty six individual pancreatic cancer samples show that drugs selected by PMTDS
have more sample-specific efficacy than the current clinical PDAC therapies.

Conclusions: A novelty target and drug priority algorithm PMTDS is developed to identify optimum target-drug
pairs by integrating the knowledgebase base with a single patient’s genomics. The PMTDS system provides an
accurate and reliable source for target and off-label drug selection for precision cancer medicine.
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INTRODUCTION

Identification of drug targets and biomarkers are becom-
ing the key factors for treating cancer patients in clinical
practice [1]. Classical clinical trials yield a handful of
measurements from thousands of people. Factors like
tumor heterogeneity, drug biomarker validation and
the difficulty in combining huge volumes of molecular
and drug data impose challenges in providing persona-
lized cancer medicine [2]. Finding the right drug with the
right dose for the right person harboring a particular
molecular feature is still an unsolved problem. Several
ongoing “one-person trials”, not average, for precision
medicine responses to therapy are under way [3]. They
include the molecularly targeted therapy based on tumor
molecular profiling versus conventional therapy for
advanced cancer (SHIVA) trial [4], the rational therapeu-
tics based on the analysis of matched tumor and normal
biopsies in subjects with advanced malignancies
(WINTHER) trial [5], the personalized medicine for
patients with advanced cancer in the (IMPACT) Phase
I trial [6] and the molecular analysis for therapy
choice (NCI-MATCH) Phase II trial launched by US
National Cancer Institute (NCI) [7]. One important
rationale behind the recent trials is to allow patients
from various cancer types that share the same targets to
receive the same drug therapies. This pan-cancer target
identification is well supported by the strong pan-
cancer mutation [8] and copy number alteration [9]
patterns observed from the data in The Cancer Genomics
Atlas (TCGA, http://cancergenome.nih.gov/) project. In
order to produce interpretable and reproducible results,
several key aspects of these treatment algorithms must
be thoughtfully defined prior to starting the trials. There is
an urgent need to develop more efficiently therapeutic
agents that selectively target particular genetic profiles or
molecular features based on pan-omics data [1,10].
Another critical rationale that drives precision medicine
cancer therapy, either in clinical practice or trials, is the
popularity of off-label drug use [11] especially in
aggressive cancer types which have only limited
therapeutic options. However, proper selection of off-
label drugs in these cancer types suffers from the lack of
knowledge base and computational search strategies [12].
With the availablity of clinical tumor samples from
TCGA data [13] and other large-scale cancer cell line
drug screening data, such as the Cancer Cell Line
Encyclopedia (CCLE) [14] and the Cancer Therapeutics
Response Portal (CTRP) [15], we anticipate that bioinfor-
matics data integration and analysis will make up this
knowledge gap. Advances in high-throughput next-
generation sequencing (NGS) technologies now allow
the identification of actionable molecular alterations (e.g.,
clinically relevant driver mutations) in an individual

patient in clinical practice [16]. Precision medicine is
gradually becoming a reality with the development of the
ability to identify the right drug for the right patient based
on their tumor molecular profiles [17]. Reference [18] has
proposed a single-gene to single drug method for cancer
treatment selection based on a patient’s combined gene
expression, mutation and DNA copy number alteration
profile. Experimental application results for triple nega-
tive breast cancer in cell line drug screening are supported
by the CCLE. However, this approach does not consider
that genes exert their function by signaling pathways and
gene-gene interactions in a systematic biological network.
Gene mutations and copy number alterations typically
cause loss of gene function and pathway inactivity which
result in topology changes of the systematic biological
network. Analysis of the systematic network is helpful to
detect the continuous gene signature transduction from
upstream to downstream and observe a whole gene signal
variation systematically. In this way, the global effects of
a central gene control deficiency due to gene expression
dysregulation, copy number deletion or insertion varia-
tion can be observed simultaneously. Pathway network-
based target-drug selection is promising for drug therapy
selection (i.e., one-person trials) by precision oncology
derived from cancer pan-omics data [19].

In this study, a personalized medicine knowledgebase,
which integrates cancer drugs, drug-target databases and
biological pathway networks, is constructed first. Based
on this knowledgebase, a pathway-based target-drug
discovery algorithm (Precision Medicine Drug-Target
Selection, PMTDS) is developed to identify targets
personalized to individual patients and associated drugs
by multilevel-omics integration, including DNA copy
number alteration, gene mutation, and gene expression
variation compared to adjacent normal tissue. The
PMTDS system takes advantage of gene control network
structure information to seek target genes from top to
bottom in the gene control network while avoiding
selecting genes as targets when they exhibit functional
mutations or are part of inactivated pathways. The
optimum druggable targets and associated drugs are
then recommended.

The integrated system of knowledgebase and PMTDS
algorithm is tested for target and associated drug selection
in 178 pancreatic adenocarcinoma (PDAC) tumors from
TCGA. A total of 110 targets and 22 drugs for 39 PDAC
tumors are recommended. In order to validate the
reliability of target-drug selection by the PMTDS
algorithm for PDAC tumors, molecular profiles from
the CCLE and drug response data from the CTRP datasets
are integrated. Experimental results of 40 targets and 12
associated drugs on 46 pancreatic cancer cell lines show
PMTDS selected drugs have more efficacy than the
current clinical PDAC therapies on the tested PDAC
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tumor lines. The PMTDS system provides an accurate and
reliable source for off-label drug selection for precision
cancer medicine.

SYSTEM PRINCIPLE

Precision Medicine Target-Drug Selection
(PMTDS) system

The personalized Precision Medicine Target-Drug Selec-
tion (PMTDS) system is based on individual patients’
unique molecular profiles integrated with the PMTDS
algorithm and knowledgebase to identify optimal targets
and recommend associated FDA approved cancer drugs
for each patient. Figure 1 describes the schema of the
entire PMTDS system including connections between
subsystems. The patient molecular profiles include raw
counts from RNA sequencing as gene expression (GE),
copy number alteration (CNA) and gene mutation (Mut).
The knowledgebase includes the gene control network of
biological pathways, gene expression profiles of normal
tissue, and druggable targets and drugs datasets. It
provides important prior knowledge for the PMTDS
search algorithm. A pathway-based search algorithm
(Figure 1C) is used to select the possible targets and
associated cancer drugs for an indivadual cancer patient
by connecting the knowledgebase and patient’s GE, CNA
and Mut profiles. It is possible that more than a single
druggable target is selected per patient. Genes with high

connectivivity degree in the biological pathway network,
referred to as control hubs, are given priority as potential
druggable targets. The potential targets and their drugs are
then validated using datasets of large scale drug screening
on cancer cell lines from CCLE and CTRP. The most
effective drug by the cancer cell line screening is
recommended as the optimum therapy for the individual
cancer patient.

In this study, biological pathways are collected from
PathPPI [20] and gene expression profiles of normal
tissue are from Level 3 RNA sequencing Version 2
datasets from TCGA, which are based on the Illumina
HiSeq 2000 platform. MapSplice [21] is used for
sequence alignment and RSEM [22] is used to perform
gene expression quanititation. Cancer drugs are collected
from National Cancer Institute (NCI) Drug Dictionary
(https://www.cancer.gov/publications/dictionaries/can-
cer-drug) and National Comprehensive Cancer Network
(NCCN) Drugs & Biologics Compendium (https:/www.
ncen.org/) before December, 2016. Targets of these
cancer drugs are retrieved from DrugBank (https:/www.
drugbank.ca/). Integration of targets and cancer drugs was
performed as previously described [18].

Optimum target and drug selection for single
patient based on PMTDS pathway-based search
algorithm

The PMTDS pathway-based algorithm is based on five

Precision Medicine Target-Drug Selection (PMTDS) system

(A) Molecular profiles of
single patient

Gene expression (GE), copy number
alteration (CNA) and mutation (Mut)

> profiles of GE, CNA, Mut

(B) Knowledgebase

Biological pathway gene
control network
(PathPPI)

A 4

Gene expression profiles
of normal tissue
(TCGA)

\ 4
Knowledgebase

Targets and drugs
(NCCN, NCI, DrugBank)

(C) Algorithm processing

Input: single patient molecular

Pathway-based search

algorithm for druggable
targets

Ranking targets based on
network connectivity degree

v

Identify target associated drugs
by cancer cell based screening

v

Output: recommend optimum
drugs for single cancer patient

Figure 1. The framework of Precision Medicine Target-Drug Selection (PMTDS) system. PMTDS includes three sections:
(A) molecular profiles of a single patient; (B) knowledgebase; and (C) algorithm processing.
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primary assumptions: (i) The gene interaction network is
shared by all types of tumors and the PathPPI biological
gene control network is regarded as an inherent prior
knowledgebase. (ii)) Gene mutation causes functional
aberration and effects its biological network topology. (iii)
All anti-cancer drugs function as inhibitors, antagonists or
low affinity receptors for their targets. The agonists/
activators are not considered here. Only genes which are
upregulated in tumor versus normal tissue can be usefully
targeted by cancer drugs. (iv) In a biological network,
genes that are highly interconnected are informally
referred to as hub genes. The upregulated hub genes are
more effective as druggable targets and are, thus,
prioritized for recommendation. (v) There is a many-to-
many relationship between targets and drugs, and off-
target phenomena can be disregarded.

The components of the PMTDS system implementa-
tion are described as follows (Figure 2): (i) Patient-
specific gene control network construction: a biological
pathway network from PathPPI is considered the standard
gene control network in all of cancer patients. The
mutated genes of a single patient are mapped to the
standard biological network. The immediately adjacent
upstream genes of these mutated genes of the patient are
removed from the standard network on the assumption

that blockade of signal delivery prevents these genes’
functions. This results in a modified gene interaction
pathway network specific to a single patient. The
connectivity degree of all nodes/genes in the new network
is calculated. (ii) Patient-specific genome variation in the
gene control network: differential gene expression
between the individual patient sample and its correspond-
ing normal tissue group is calculated from raw RNA
sequencing counts obtained from TCGA using the edgeR
software package [23]. The quantile-adjusted conditional
maximum likelihood (qCML) method is used to measure
the differential expression between tumor and normal
tissue of each gene in the patient-specific gene control
network, resulting in per-gene false discovery rate (FDR)
and fold-change (F'C) values. For each gene in the gene
control network from step (i), genome-wide variation for
a single patient’s tumor is analyzed using a combination
of gene expression FDR and FC, copy number alteration
(CNA) and binary mutation status. (iii) Patient-specific
target and drug selection: based on our assumptions, the
genes with upregulated expression in tumor versus
normal tissues, high CNA4 amplification and no mutation
in the new network are selected as candidates for
druggable targets. Default cutoffs for candidate targets
are FDR less than 0.1, FC greater than 1, CNV greater

Gene control network of
single patient

Genome variation of single
patient in gene control network

Target and drug selection for
single patient

Biological pathway gene control

Each gene in the new

network (PathPPl)

!

Gene expression profiles for
normal tissue (TCGA)

Mapping gene mutation of single

!

Removing upstream nodes of these
mutated genes from the network

Comparing gene expression profiles

between single tumor and associated

normal tissue, identify DEG by FDR
g-value and folder-change (FC)

!

!

New gene control network -

1
1
1
1
1
1
1
1
1
1
1
1
1
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1
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1
1
1
1
1
1
1
1
1
1
1
1
1
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Mapping each gene DEG and
CNA and Mut of single tumorto
the new biology gene network

l

Connectivity degree analysis for

DEG: differential expression genes

associated drugs for

all nodes in the network

T each tumors

1
1
‘ri_’ network T
1
| Go to downstream
| gene by direction
1
! DEGg,<0.01 3
] FDR N
: FC>1 0
! CNA> 0.2 and
1 Mut=0
1
1
! Yes
I
|
| Druggable targets No
: (NCCN, NClI,
. Drugbank)
1
! Candidate targets and
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Figure 2. The flowchart of target and drug selection for a single patient based on the genetic network search algorithm in the
Precision Medicine Target-Drug Selection (PMTDS) system. There are three steps in the algorithm, including patient-specific gene
control network construction, patient-specific genome variation of the gene control network and target and drug selection for a single
patient. The rectangles colored with a pale pink background each represent a knowledgebase.
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than 0.4 and no mutation (Mut = 0). All candidate targets
are ranked in decreasing order of connectivity degree in
the patient-specific gene control network. The efficacy of
top target associated drugs is determined using large scale
cancer cell line drug screening data from CTRP. The most
effective drug is recommended for the patient. Supple-
mentary Materials provide all biological network data,
targets and associated cancer drugs list, patient molecular
profiles and drug recommendation results for individual
patients, these datasets are described in detail in materials
and methods. The PMTDS system functions are devel-
oped in the Python programming language environment.

RESULTS

Pancreatic cancer is the third leading cause of cancer
death in the United States. About 85% of pancreatic
cancers are pancreatic ductal adenocarcinomas (PDAC:s:).
Despite decades of effort, PDAC has the shortest survival
time of all major cancers, with a five-year survival rate of
only ~8%, in large part because it is treatment-recalcitrant
[24,25]. Treatment of PDAC remains challenging as only
certain patients benefit from the standard treatment
combinations of gemcitabine and the epidermal growth
factor receptor (EGFR) inhibitor erlotinib or gemcitabine
and nab-paclitaxel [25]. The majority of PDAC tumors

are insensitive to many chemotherapeutic drugs and
target-based drugs [24, 25]. Gene network-based methods
can help reveal PDAC-associated molecular mechan-
isms and key targets through a systematic biology
strategy.

Case study 1: Target-drug selection based on the
PI3K/AKT/MTOR pathway for pancreatic ductal
adenocarcinomas patients in TCGA

We show how the PMTDS system can, for a single PDAC
patient (such as TCGA barcode TCGA-HZ-7289-01A),
select an optimum target and associated drug based on the
PI3BK/AKT/mTOR pathway (Figure 3). In this case the
PMTDS systems proceeds in the following 5 steps. Step
(1): The PI3K/AKT/MTOR pathway is used as the
biological gene control network for running the PMTDS
algorithm. Figure 3 shows the signaling pathway with all
the nodes/genes and their corresponding edges/interac-
tions. The biological pathway is translated into a network
with the help of the NetworkX python module. The node
degrees are calculated to determine hub genes in the
network which will be used later in the drug-selection
process. Step (ii): Using patient TCGA-HZ-7289-01A as
an example, patient-specific mutated genes ATM and
BCL2L1 are mapped to the PI3K/AKT/MTOR pathway

Table 1. Selected targets and their frequencies for 39 PDAC patients by the PMTDS system.
Targeted # of Targeted # of Targeted # of Targeted # of Targeted # of
gene patients gene patients gene patients gene patients gene patients
NRI1I2/PXR 6 CDs5 2 ADCY1 1 CSF3R 1 KLKBI1 1
PTK6 6 CPE 2 ADRB2 1 CTSK 1 LY96 1
CEACAMI1 5 CYTH3 2 AKRI1B1 1 CXCL12 1 MAP3K9 1
F5 5 EGFR 2 ALDH6AI 1 EGLN3 1 MAPT 1
HNFIA 4 FABP4 2 ATF3 1 F12 1 MDM2 1
PCK1 4 FCER1G 2 AURKA 2 FGFR1 1 EPOR 1
PCSK2 4 GHR 2 BAGI 1 FGG 1 MOCOS 1
PLA2G4A 4 GNAII 2 BDNF 1 FLT1 1 NRP1 1
ASNS 3 GNAS 2 CIR 1 FMOI 1 PDGFRB 1
CD4 3 ITGB4 2 C1S 1 GARS 1 PIK3CG 1
DAPP1 3 KLK1 2 C3 1 GLRX 1 PLAU 1
DRDI1 3 NCF2 2 C5 1 GLS2 1 PVR 1
FLT3 3 PDGFRA 2 CAMK2B 1 GPRCS5A 1 SLC2A1 1
GUCY2C 3 PRKCG 2 CAMK4 1 HNF4A 1 SLC2A2 1
LYz 3 PRKCI 2 CCND1 1 HNF4G 1 SLC6A4 1
MMP9 3 PTGS2 2 CD1A 1 HSPAS 1 SLC7A1 1
PRLR 3 SERPINAI 2 CD2 1 ICAM1 1 TGM2 1
SCNNIA 3 SERPINAS 2 CDC25B 1 IGFIR 1 TLR2 1
SNAP25 3 SYK 2 COMP 1 IL6R 1 TNFRSF10B 1
TPI1 3 THBD 2 CRABP2 1 ITK 1 TOP2A 1
ACSS1 2 ACE2 1 CSFIR 1 KIF2C 1 VCP 1
ADA 2 ACSS2 1 CSF2RA 1 KIT 1 VDAC2 1
384 © Higher Education Press and Springer-Verlag GmbH Germany 2017
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TCGA-HZ-7289-01A
Nodes MUT
ABL1 0

AKR1B1 0
AKT1 0
ATM 1.3674

BCL2L1 1.7124
BCR 0
CASP1
CCND1 0
FOX03 0

HSP90B1 0
MDM2 0
MTOR 0
NFKB2 0
NOS3 0

PDK1 0

0
0
0
0
0
0
0
0

PIK3CA
PRKCA
PRKDC
POCK1
RPS6
RPS6KB1
SYK
TP53

TCGA-HZ-7289-01A

Nodes GE CNV
ABL1 1 0.0911
-
0.0403 0.4815
AKTT 0.1351

ATM 0.0234 -0.513
BCL2L1 | 0.9935 0.2983
BCR 03627 | 0.0748
CASP1 | 00174 | -0513
CCND1 | 0.6758 | -0.4984
FOXO3 0.432 -0.5051
HSP90B1 0.3 -0.1664
Mbm2 | 05051 | 0989
MTOR 1 -0.1875
NF} 08108 | 02178
0.0524 0.4676
PDK1 0.78 0.0953
PIK3CA | 06714 [ 0.089
PRKCA | 0683 | -0.1758
PRKDC | 0.8284 0.0187
POCK1 0.874 0.9369
RPS6 | 08512 | -0.1359
RPS6KB1| 0.714 | -0.1758
SYK 0.6651 0.1166
TP53 | 0.8886 | -0.1907

Target gene: AKR1B1/ALDR1/AR in DrugBank

DrugBankl 1 i It Pharmacological I i 18
ID Name Drug group  action? Actions Details

DB00367 |  Levonorgestrel  approved, ("agonist JM Details |

investigational
Spironolactone  approved [:
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(DBosses|  Enzalutamide  approved yes @

Ketoconazole  approved, [:]

investigational

:

Figure 3. A PI3BK/AKT/MTOR pathway-based selection of targeted therapy for a pancreatic cancer patient. In each step, nodes
represent genes and edges are directed interactions between genes. Nodes of interest in each step are highlighted in color.
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network. Step (iii): Immediately adjacent upstream nodes
of the mutated genes ATM and BCL2L1 are removed.
BCL2L1 has BCL2 as its predecessor whereas ATM has
no upstream nodes. Here BCL2 and its interactions with
other genes are removed from the biological network. A
new network is produced after elimination, which will be
used for identifying drug targets for this patient. Step (iv):
All network nodes are inspected to find potential
druggable targets with high gene expression, copy
number amplification and no mutation according to pre-
selected thresholds (default: fold-change>1, FDR
adjusted g-value < 0.1 , CNV > 0.2 and Mut=0). Figure
3 shows that AKR1B1 and NOS3 have high gene
expression and copy number amplification and are not
mutated. Thus, AKR1B1 and NOS3 are selected as
potential targets for the patient’s therapy. Step (v): The
target-drug knowledgebase is then used to select drugs
targeting either AKR1B1 or NOS3, such as by DrugBank
annotation. There are multiple drugs targeting AKR1B1
(aliases ALDR1, AR), but none for the NOS3 protein.
The FDA approved cancer drug Enzalutamide, an AR
inhibitor, is prioritized in recommendation for patient
therapy. Therefore, the targeted therapy for patient
TCGA-HZ-7289-01A is the drug Enzalutamide targeting
AKRI1BI.

Case study 2: Target-drug selection for PDAC
patients in TCGA based on PMTDS system

The PMTDS system is used to identify druggable targets
and corresponding FDA approved cancer drugs for 178
individual PDAC patients from TCGA. The experiment
result shows 39 patients have at least one druggable
target/gene at default thresholds (FC>1, FDR <0.01,
CNA > 0.2, mutation=0) while the remaining 139
patients do not have any targets selected (results see
Tables 1-2, Supplementary File 1 lists all samples
annotation, Supplementary File 2 lists the knowledgebase
of FDA approved cancer drug and associated target).
Selected targets and their frequencies for 39 PDAC
patients by the PMTDS system is reported in Table 1.
NR1I2/PXR, PTK6, CEACAMI, and F5 are the top 5
most frequently targeted proteins. In recent years, the
National Cancer Institute of Canada Clinical Trials Group
(NCIC-CTG) has demonstrated a significant survival
benefit from the addition of the epidermal growth factor
receptor (EGFR) and NRI1I2 inhibitor, erlotinib to
gemcitabine for patients with pancreatic cancer. The
PMTDS system found the target proteins EGFR and
NR1I2 for 10 PDAC patients, completely consistent with
current clinical treatment.

Table 2. Recommended targets and corresponding drugs for 39 PDAC patients by PMTDS system.

Patient_IDs Targets Drugs
TCGA-2J-AAB6-01A PTK6 Vandetanib
TCGA-2J-AAB8-01A PRKCI Tamoxifen

TCGA-2J-AABE-01A F5 Drotrecogin alfa

TCGA-2J-AABH-01A CEACAM1 Arcitumomab
TCGA-2J-AABI-01A EGFR Lapatinib
TCGA-2J-AABP-01A PDGFRA Sunitinib

TCGA-2J-AABU-01A VCP Phosphoaminophosphonic

acid-adenylate, ester

TCGA-2J-AABV-01A NRI1I2/PXR  Erlotinib
TCGA-2L-AAQA-01A TOP2A Doxorubicin
TCGA-3A-A91J-01A EGFR Lapatinib
TCGA-3A-A9IL-01A NRI1I2/PXR  Erlotinib
TCGA-3A-A9IN-01A MAPT Paclitaxel, docetaxel

TCGA-3A-A9IV-01A FLT3
TCGA-3A-A91Z-01A PTGS2
TCGA-FB-A4P6-01A F5

Sunitinib, ponatinib
Etoposide

Drotrecogin alfa

TCGA-FB-ASVM-01A NRI1I2/PXR  Erlotinib
TCGA-FB-AAPP-01A PCSK2 Insulin regular, insulin
porcine
TCGA-FB-AAPU-01A PLA2G4A Aldesleukin, epirubicin
TCGA-FB-AAQO0-01A FCERIG Benzylpenicilloyl, polylysine
TCGA-FB-AAQI-01A NRI1I2/PXR  Erlotinib

Patient_IDs Targets Drugs
TCGA-HV-A5A3-01A  PTK6 Vandetanib
TCGA-HV-A70P-01A  NRI1I2/PXR  Erlotinib
TCGA-HV-AA8X-01A PLA2G4A Aldesleukin, epirubicin
TCGA-HZ-7289-01A AKRI1BI1 Sulindac inhibitor
TCGA-HZ-8005-01A NRII2/PXR  Erlotinib

TCGA-HZ-A8P0-01A CD55 Chloramphenicol

TCGA-HZ-A9TJ-01A  PRKCI Tamoxifen
TCGA-IB-7646-01A NRII2/PXR  Erlotinib
TCGA-IB-7647-01A PCK1 Phosphoenolpyruvate
TCGA-IB-7886-01A CEACAM1  Arcitumomab
TCGA-IB-7887-01A NRII2/PXR  Erlotinib
TCGA-IB-7893-01A NRII2/PXR  Erlotinib
TCGA-IB-8127-01A GUCY2C Linaclotide
TCGA-IB-A7M4-01A  PTK6 Vandetanib
TCGA-L1-A7W4-01A  PTK6 Vandetanib

TCGA-LB-A8F3-01A PLA2G4A Aldesleukin, epirubicin
TCGA-S4-A8RO-01A CCND1 Arsenic trioxide
TCGA-US-A776-01A SCNNI1A Triamterene, amiloride
TCGA-FB-AAQ2-01A  KIF2C Hesperidin
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The PMTDS system selects multiple druggable targets
for each pancreatic cancer patient. However, the single
optimum target and corresponding FDA approved cancer
drugs are our final aim. The CTRP database contains data
on cell line models of cancer and provides an important
source for drug-targetable susceptibilities that specific
genomic alterations impart on human cancers. The area
under the plot of drug concentration at a weighted percent
viability (for treated vs. untreated) in cell (called “area
under the curve” or AUC) gives insight into the extent of
exposure to a drug and its ability to kill cancer cells in
CTRP experiment. The drug with the lowest average
AUC is recommended as the optimum drug for the patient
among several drugs against a target. If some drugs are
not available in CTRP, all drugs are output together. Table
2 lists the final optimum target and associated FDA
approved cancer drugs recommendations for 39 of the
PDAC patients from TCGA. However, the remaining 139
patients do not have any targets recommended. For these
patients, the PMTDS system will recommend the standard
first-line gemcitabine chemotherapy.

Drug-target distribution in PDAC patients without
systems biology approach

According to Ref. [18], the single node gene search
method for precision medicine is an effective way to
select target-drug combinations in the clinic based on
patient GE, CNA and mutation profiles. We applied this
method for 178 pancreatic cancer patients. The frequency
of each target’s selection is presented in Table 3. The
proteins KCN10, CHRNA4, SYT2, KCNB2, and NYP
are the 5 most frequently occurring targets in this cohort.
NR1I2/PXR and EGFR are selected for targeted therapy
in 10 patients. Additionally, we compared the results

between the single node approach and the PMTDS
pathway-based approach (Tables 1 and 3). The target
genes’ distribution by single node search is more
concentrated than in the PMTDS pathway-based meth-
ods, 37 targets verse 110 targets. Only 12 out of 37 target
genes by the single node approach are selected by the
PMTDS system. The reason for this appears to be that the
missing targets are not included in the biological pathway
knowledgebase, with the exception to genes NTF3 and
SLCO1A2. The biological pathway knowledgebase
cannot cover all human genes. There are 3,649 genes
with 7,927 pairs of genes interaction in the biological
network (Supplementary File 3). Moreover, the pre-
viously studied targets NR1I2/PXR and EGFR are less
frequently selected by network-based selection than the
single node selection method. This occurs, because the
downstream genes of NR112 and EGFR are frequently
mutated, causing NR112 or EGFR to be culled from the
potential targets, because they are upstream of mutated
genes. Figure 4 shows the genes directly connected to
these four genes. TP53 is one of the most frequently
mutated genes associated with EGFR in pancreatic
cancer. NTF3 and SLCO1A2 do not keep high con-
nectivity degrees in single patient biological networks and
lose the chance to be selected as targets by PMTDS
algorithm. Hence, a powerful biological pathway knowl-
edgebase is an important issue for target selection and
extension of the pathway knowledgebase will improve the
accuracy of future work. One possible deficiency of the
current method is that nodes with a high degree are likely
to be removed, which may cause such nodes and their
downstream nodes to be less likely targeted. More work is
needed to determine how detrimental this bias is and what
possible solutions may be found. In the future we plan to
consider methods which penalize nodes upstream to

Table 3. Target selection for 178 pancreatic patients based on the single node gene search method.

# of # of # of
Targeted gene patients PMTDS Targeted gene patients PMTDS Targeted gene patients PMTDS
KCNJ10 25 None MGAM 10 None CHRNB4 6 None
CHRNA4 18 None PCK1 10 Yes FCGR3B 6 None
SYT2 17 None KCNK1 9 None KRT12 6 None
KCNB2 16 None TFR2 9 None PCSK2 6 Yes
NYP 14 None KCNH6 8 None PTK6 6 Yes
ATP4A 14 None PRKCG 8 Yes CAMK2B 5 Yes
TUBBI1 13 None ALDH3Al 7 None CEACAM1 5 Yes
GUCY2C 12 Yes CHIT1 7 None DBH 5 None
NR1I2/PXR 12 Yes CRABP1 7 Yes DRD1 5 Yes
NPSR1 11 None F5 7 Yes GPT 5 None
NTEF3 11 None GRIN2C 7 None EGFR 2 Yes
SLCO1A2 11 None CACNAIC 6 None
TNNC2 11 None CACNAIG 6 None
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Figure 4. The upstream and downstream genes of notable targets NTF3, SLCO1A2, NR112 and EGFR of pancreatic cancer in the
biological network knowledgebase. Black arrows represent edges directed towards the gene of interest and red arrow represent edges
directed away. The EGFR-SRC and NR112-FOXO1 connections are duplicated due to reciprocal, and thus cyclic, connections between

these nodes.

mutated genes without entirely removing them from the
network.

Pancreatic cell line validation for off-label drug
selection

By linking drug activity with the functional complexity of
cancer genomes, systematic pharmacogenomic profiling
in cancer cell lines provides a powerful biomarker
discovery platform to guide cancer therapeutic strategies.
Drug screenings including 46 pancreatic cell lines and
481 drugs from CCLE and CTRP are used to validate
potential targets and drugs for pancreatic cancer by the
PMTDS system. By comparing the pancreatic tumor
samples with cancer cells and connecting the target gene
GE, CNV, Mut variation in cancer cells with their drug
response (AUC), we are able to estimate drug efficacy for
the patient. Cancer cells with high gene expression, copy
number amplification and no mutation for a specific target
are likely to be affected by its associated drugs. Figure 5
describes two example targets (TOP2A and VCP) and
their sensitivity to doxorubicin and Acid-Adenylate in 41

388

pancreatic cell lines. The GE, CNV and Mut are compared
with drug response after splitting into two groups, the
strong drug response (low AUC) group and the weak drug
response group (high AUC), in 41 cancer cell lines. The
pancreatic cancer cells with high GE, copy number
amplification and no mutation have a significantly
increased drug response versus the group with low GE,
copy number reduction and mutated genes for both
TOP2A and VCP. This experiment validates the reliability
of target-drug selection by the PMTDS system at the cell
line level.

DISCUSSION

Selection of the optimum target and corresponding drug
for each patient is a critical step toward precision cancer
medicine. The PMTDS algorithm is based on the novel
idea of integrating signaling pathways and biological
networks to observe individual patients’ gene control
network variations and assist in selecting patient-
optimum pairs of targets and drugs. The current literature
shows evidence that the target-drug pairs selected by the

© Higher Education Press and Springer-Verlag GmbH Germany 2017



‘asuodsal a)jejAuape-pioe Yjim Uuoie|allod N Jueoliubis e sey dOA pue ‘asuodsal uioignioxop Yjm Uuone|ailod 35 juediiubls
e sey YZdOl1 "DNV J0 uesw ay} sI pjoysaly} ay} aiaym ‘Isa)-} Aq paledwod ale asuodsal mo| pue asuodsal ybiy s,dnolb omy ul (DNY ‘@AIn) asuodsay Bniq Jepun ealy) asuodsal
Bnup yum pajeioosse (D) uonessye Jaquinu Adoo pue (F9) uoissaidxa auas) ‘'dDA Pue YZdOo1 siob.ie} jsuiebe saulij |39 19oued Jydd 8¢ Ul sisAjeue Ajianisuas Bnig "G ainbi4

389

PMTDS—Precision Medicine Target-Drug Selection

(DNv) esuodsai sjejAuspe-poy (oNv) esuodsal uwIgnioxoq
YNO Sl ol °] 0 YNO Zl ol 8 9 4 4 0
asuodsal asuodsal L I | | asuodsal asuodsal L 1 1 | 1 1 |
MO ybiH asuodsal moT asuodsal ybiy 6niq c0'0L Uy MO ybiH ,mwcoamm_ MO asuodsal ybiy bnig JU—
_ L 0L¥-NNS | 1 [ 2-e0Ed VIN
H [ €180 oued T . 9 i [zg0 oued
\ [ z-e0ed VI 1 i (¢ [ INSq
! &5 [ S9868-NL-Vd i | l St
. [ 18968-N1-vd ! _ [ v
H o ELZ-NNS L © [ 066} MS
i M E o I ¢l 80 g
_ -2 S5t ms L 1-ONvd
o Loy : o i 18868-N1-vd
i 3 ! L, ¢ [ 1-0dsy
i INSd ' | S [ 1984 oH
i e £-0dxg i H [ S8868-NL-Vd
! n SNva i [ €L-dnH
: S <3 | |- f M8
: 1992sH @ - o
G/000=d -ONvd = ggeo=d © [ Hepad =
0p0Sled = [ £0v0oUed =
39 ! 2-dA % 39 [ c-uedeg — 3
[ }-uede) [ €0'z0oued M
asuodsal asuodsal ( lzeooueq & asuodsal asuodsal _ e @
Mo ybiH “ Moyt mo7 Uy | 400
| ) i ; I-4vdH 1 ! o Sein
T L S ( 2068-NL-vd T © VA
T v S f b T S 98'98'NS
! | [ ¢-tedeo r o i
[ [ 1-O¥d40 i G
[ gdd i o~ Z-lins
& ] Bixoo -3
! =] [ Z-ins i S | OLr NS
! S f cL0% o [ 1-0Vd4D
i i - [ £0'20 OUed ! oL [ ZNVd-00L
' | OdVA i I w [i-3VdH
i 1 N B6-Yd ! Lo €1ZNNS
H L S St A H S 2068-NL-vd
S S
geclo=d ©° 0=d
ploysaiyl £0€0°0 = ploysaiyl
susb 19618) dOA g auab jobie} YZdOLl V

© Higher Education Press and Springer-Verlag GmbH Germany 2017



Varshini Vasudevaraja et al.

PMTDS algorithm are feasible and appropriate options
for the treatment of pancreatic cancer. Representative
examples include AKR1B1/AR inhibitors (e.g., Sulindac,
Enzalutamide) [26], GARS inhibitors (e.g., Glycine), and
IGF1R/EGFR inhibitors (e.g., Insulin, Erlotinib, Bevaci-
zumab [27]. Further clinical trials and mouse models will
give better insight into how these new targets can help in
treatment decisions [28,29].

One target-drug pair, CEACAMI1 and its inhibitor
arcitumomab, with external evidence of its importance in
pancreatic cancer is selected by PMTDS in 5 patients.
Carcinoembryonic antigen-related cell adhesion molecule
1 (biliary glycoprotein) (CEACAMI) also known as
cluster of differentiation 66a (CD66a), encodes a member
of the carcinoembryonic antigen (CEA) family. CEA-
CAMI1 is absent on normal pancreatic cell, but it is
expressed widely in pancreatic cancer [30]. It has been
investigated as a novel biomarker for pancreatic cancer
[31]. CEACAMI interacts with TIM-3, a molecule
expressed by Tcl (Cytotoxic T-cells) cells, and partici-
pates in immune regulation in pathological conditions,
exerting a dual role in the regulation of cell migration. The
binding of CEACAMI1 expressed by cancer cells with
TIM-3 expressed on cytotoxic T-cells induces apoptotic
signals in the immune cells. Blockade of CEACAMI
binding restores cytolytic activity by the immune cells
against the cancer cells [32]. Our results hint that
administration of a CEACAMI inhibitor will result in
increased immune cell activation in pancreatic cancer.
Pancreatic cancer has proven difficult to treat with
conventional drugs and similarly resistant to initial
immunotherapy approaches. The therapeutic approach
of combining arcitumomab-based immunotherapy with
chemotherapy, such as gemcitabine, may provide a novel
strategy to improve the clinical efficacy of pancreatic
cancer treatment. Such research is still going on.

Another important gene, activating transcription factor-
3 (ATF3), is selected by PMTDS as a druggable target.
ATF3 regulates the cell cycle and apoptosis, and has
increased expression in pancreatic cancer. Saloman et al.
[33] have reported using ATF3 immunolabeling to
determine if damage to the pancreas of either cerulein-
treated or PDAC animals caused an injury response.
Further studies may identify potential targets for early
detection, prevention, and treatment of pancreatic cancer.

Some important results are found for a target which
shows ambiguous reports in recent literatures. The target
PTK6 with inhibitor vandetanib is identified for 6
pancreatic cancer patients by the PMTDS system. Studies
in Refs. [34,35] have reported that PTK6 is overexpressed
in pancreatic cancer and promotes pancreatic cancer cell
migration and invasion via ERK pathway signaling
activation [35]. PTK6 is a potential target for PDAC

therapy. PTK6 overexpression also increased the S-phase
fraction 48 hours after first line gemcitabine treatment in
PDAC [34]. These phenomena are in accordance with our
findings. However, in recent years, Lancet Oncology
reported adding vandetanib to gemcitabine failed to
significantly prolong overall survival among patients
with advanced pancreatic cancer [36]. There are many
possible reasons for this result. The PMTDS system
selects optimum target-drug pair based on a single therapy
without considering drug synergies or drug-drug interac-
tions. This will be addressed in future research.

However, some targets which have already proven to
be effective in targeted treatment do not appear among the
targets selected by the pathway-based PMTDS algorithm.
These targets include ERBB2, CDK1, CDK4, HDACI1
and HDAC4. While the annotations for all drug-targets in
DrugBank were present in our knowledge base, these
genes frequently failed to meet the criteria for druggable
targets. For some patients there was no significant gene
expression of ERBB2 in the tumor data and for some it
was mutated. Using our algorithm, if a gene is found to be
mutated when selecting it as a target, the algorithm goes to
downstream genes and inspects their gene expression,
copy number alteration and mutation. In this case PTGS2
is downstream gene of ERBB2 and we have selected it as
a target instead of ERBB2. AKR1B1 is downstream of
both CDK1 and HDACT1 and is present in our selected
targeted therapy list. Similarly, TP53’s downstream genes
MDM2 and SCL6A4 were selected as targets in some
patients.

Our treatment algorithm has some limitations that
needs to be considered in future works. First is that we did
not categorize the patient tumor mutation data as
functional or non-functional. We considered only the
frequency of mutation in a patient. Differentiating
mutations into functional and non-functional groups
might improve the accuracy of selecting targets and
their corresponding drugs. Also, copy number alteration
where we consider only in the context of amplifications of
genes. We did not consider deletions, which also plays a
key role for molecular abnormalities within cancer
patients. Secondly, some patients obtained more than
one drug-target based on their genetic profile. We
identified the best by finding the targets that act as hubs
in entire pathway and drugs that are FDA approved or
cancer drugs. A better way of scaling the accurate single
drug-target should be designed in future. Additionally, the
DrugBank database version we used for our algorithm
was version 4.0 which has been superseded by a more
recent version. The updated version contains a larger
number of FDA approved drug-targets and cancer drugs.
The third limitation is that we considered only three
molecular alterations: gene expression, copy number
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alteration and mutation. If we were to include other
abnormalities like methylation, protein expression, or
microRNA expression it would give a better perspective
of the patients’ molecular profile. Finally, the biological
pathway data we used contains only the regulatory
interactions. Large number of non-regulatory genes are
not characterized in our knowledge base. Thus, treatment
selection is carried out only at the transcriptomics level.
More efforts should be made to run the treatment
algorithm at level of protein and molecular interactions.

Our treatment selection algorithm integrates multiple
disparate data sources, including patient gene expression,
copy number alteration, mutation, drug-target data as well
as biological pathway data. We have shown that it selects
drug-targets for most of the PDAC patients in TCGA and
carried out cell line drug response and sensitivity analysis
that support the efficacy of the recommended off-label
drug usage. Thus, this algorithm is able to act as an
accurate and reliable source for off-label drug selection
while providing direction for further experiments on
mouse models and cell lines which may help in providing
improved treatment strategies in precision medicine. On
the other hand, there is still much work to be done in the
future. Discovering the potential novel targets, like tumor
suppressor (lost-of-function) or oncogenes (gain-of-func-
tion) for cancer patient would be an interesting potential
extension of this work. Off-label drug selection based on
pharmacological function, such as activator or inhibitor,
agonist or antagonist, could be performed. The systematic
connectivity structure of biological networks is often
informative with respect to important function genes,
such as, target genes or oncogenes. Finding these patterns
could be used to extract more useful information from the
biological networks. Finally, replacing upstream node
removal with an importance score by integrating node's
degree, downstream mutations, downstream network size
and DEGs may be helpful for observing targets and drugs
selection and would help decrease the current bias
towards the removal of high-degree nodes.

MATERIALS AND METHODS

Genomics datasets and analysis

Pancreatic adenocarcinoma (PDAC) tumors data from
TCGA

Patient molecular profile data, including gene expression
(GE), copy number alteration (CNA) and mutation
(MUT), were downloaded from The Cancer Genome
Atlas (TCGA, https://cancergenome.nih.gov/) data portal
[37] level three data. To gene expression profiles, there
were 183 samples in the PDAC category from TCGA,
among which 178 were tumors and 4 were from adjacent-

tumor normal tissue (Supplementary File 1). Sample data
along with their clinical annotations were downloaded.
The RNA sequencing raw counts which were obtained
were based on the Illumina hiseq rnaseq version 2
platform. mRNA expression profiling for 17,814 genes
was collected. The differential gene expression for each
patient versus the four normal tissue samples was
analyzed by using EdgeR [23] in the R programming
language. An FDR g-value <0.01 was used as the
threshold for significant differentially expressed genes
(DEG). At the same time, the expression folder-change
was used to capture up- or downregulation of each gene
relative to the normal group. The differentially expressed
gene sets were then annotated for each patient and were
arranged in the form of data matrix. For copy number
alteration profiles, TCGA uses the Affymetrix 6.0 single
nucleotide polymorphism array platform. Copy number
alteration analysis was performed by measuring the
strength of probe binding within segments. The number
alteration of chromosomes was inferred and normalized
based upon specific linear calibration curves relative to
the reference sequence hgl9 in TCGA. The circular
binary segmentation (CBS) algorithm was used to
normalize the segmentations (generally, log2(CN/2)) for
further analysis. Positive segmentation values express
CNA amplification and arm-level gains while negative
values represent deletion. Using bedtools, each segments
variations were mapped to the chromosome location to
calculate per-gene CNA. 28,918 genes were then
categorized based on CNA thresholds of 0.4 for high
copy gain, 0.2 for gain, —0.2 for loss and —0.4 for
homozygous loss. For mutation data, DNA sequence
mutation annotation format (.maf) files based on the
[lumina GAIIx platform were downloaded from TCGA.
ANNOVAR (http://annovar.openbioinformatics.org/)
software was used to identify functional genetic variants
detected. ANNOVAR output included detailed mutation
types, such as non-sense, missense, somatic and germline
mutations using the 1000 Genomes Project and dbSNP
database as reference to identify somatic and germline
mutations, from which a binary signal matrix was
generated where no mutation was denoted as 0 and any
somatic mutation as 1.

PDAC cell line data from CCLE and CTRP

Cell lines have become a widespread tool for cancer
research and drug screening. The Cancer Cell Line
Encyclopedia (CCLE, http://www.broadinstitute.org/ccle)
project has conducted a detailed genetic characterization
of a large panel of human cancer 1,096 cancer cell lines
[14]. Gene expression, copy number alterations, and
mutations of forty-one pancreatic cancer cell lines were
downloaded from CCLE. The gene expression profile
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from CCLE is based on the Affymetrix HU133 Plus 2.0
microarray and contains 30,000 genes tested by 54,675
probe sets. Each gene is targeted by several probe sets and
the average value of the probe sets targeting a gene was
used to represent that genes expression. Copy number
alterations in CCLE were interrogated using the same
platform, Affymetrix SNP 6.0, and method as with the
TCGA samples. DNA mutation data from CCLE was
limited to hybrid capture of 1,650 genes. Mutation
analysis on CCLE datasets was performed as described
above for TCGA samples. ANNOVAR gene-based
mutation annotation [38] was performed to identify
somatic and germline mutations. Only somatic mutations
and functional mutations (not germline mutations) were
considered for our data analysis.

Cancer Therapeutics Response Portal (CTRP v2.0,
https://portals.broadinstitute.org/ctrp/) provided screen-
ings of more than 481 small molecules on 664 cancer
cell lines [15]. Drug response (AUC) data for 481
candidate cancer drugs in 41 pancreatic cancer cell lines
were collected from CTRP.

Cancer drugs and their targets

Lists of FDA approved cancer drugs were collected from
the National Cancer Institute (NCI, https://www.cancer.
gov/publications/dictionaries/cancer-drug) and the
National Comprehensive Cancer Network (NCCN,
https://www.ncen.org/). At the time of collection, the
2016 version NCI drug dictionary contained 416 FDA
approved drugs related to 39 cancer subtypes. The 2015
version NCCN contained 239 unique FDA approved
drugs covering 51 cancer subtypes. All drugs were
normalized by brand name and DrugBank ID (http:/
www.drugbank.ca/).

DrugBank version 4.0 includes more than 6,400 drugs.
Over 2,000 drugs are FDA approved biotech or small
molecules and more than 3,200 drugs are in the
experimental stage. Drug-target information is annotated
for more than 14,000 proteins or other targets [39,40].
However, currently the database contains a total of 8,250
chemicals/drugs. 229 peptide drugs and around 2,016
small molecule drugs are FDA approved. After integrat-
ing NCCN and NCI drugs and targets datasets with
DrugBank, 141 cancer drugs and 1,792 FDA approved
drugs were composed into 1,086 pairs of cancer drug/
drug-targets (Supplementary File 2). Detailed information
on this process can be found in previously published work
[18].

Gene-gene interaction data

Gene regulatory interaction data was downloaded from
the PathPPI database [20]. PathPPI is an integrated

database of all biological human pathways and protein
interactions. There are two kinds of protein-protein
interactions (PPI) in the PathPPI database: biological
PPIs and technical PPIs. The biological protein-protein
interactions are regulatory or directed pathways which
includes processes like biochemical reaction regulation
(BRR), transport regulation (TR), transport with bio-
chemical reaction regulation (TBRR), complex assembly
regulation (CAR) and expression regulation (ER) whereas
the technical protein-protein interactions are all undir-
ected pathway interactions which are categorized based
on complex assembly interaction (CAI), genetic interac-
tion (GI) and molecular interaction (MI) [20]. Technical
PPIs, which include computationally predicted PPIs, were
not used in this study since they lack clear in vivo
relevance. For the PMTDS system, only biological
protein-protein interaction data was used to directly find
up- and down-stream genes based on drug-targets and
transcriptomics data. The 7,888 protein complex interac-
tions in the biological PPIs were filtered out, because we
did not consider protein complex based mechanisms in
the PMTDS algorithm (Supplementary File 3).

Gene annotation

The HGNC (HUGO Gene Nomenclature Committee,
http://www.genenames.org/) database provides research-
ers with standard gene names for the human genome to
avoid the complexity of multiple overlapping and
conflicting nomenclature systems. The database currently
consists of around 24,000 genes and their corresponding
approved gene symbols. Each gene has a unique HGNC
ID which makes it easier to identify the gene type. Gene
are also annotated with other information including gene
synonyms, uniprot ids, refseq ids, previous gene symbols
and a functional description about each gene, aids in
translating from the NCBI or other database [41]. For this
work, all raw data was first translated to HGNC gene
names and IDs before analysis. Subsequently, all-omics
data analysis and sample profiling was keyed to HGNC
IDs. This uniform gene annotation acts as the key for
molecular profile data, drug-target data and biological
pathway data analysis.

Programming code

The PMTDS system is developed in Python. The code is
shared as a supplementary code file available by down-
load at: https://github.com/varshivasu7/PMTDS.

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at DOI
10.1007/s40484-017-0126-1.
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