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Background: We aim to address one question: do cancer vs. normal tissue cells execute their transcription regulation
essentially the same or differently, and why?
Methods: We utilized an integrated computational study of cancer epigenomes and transcriptomes of 10 cancer types,
by using penalized linear regression models to evaluate the regulatory effects of DNA methylations on gene
expressions.
Results: Our main discoveries are: (i) 56 genes have their expressions consistently regulated by DNA methylation
specifically in cancer, which enrich pathways associated with micro-environmental stresses and responses,
particularly oxidative stress; (ii) the level of involvement by DNA methylation in transcription regulation increases
as a cancer advances for majority of the cancer types examined; (iii) transcription regulation in cancer vs. control
tissue cells are substantially different, with the former being largely done through direct DNA methylation and the
latter mainly done via transcriptional factors; (iv) the altered DNA methylation landscapes in cancer vs. control are
predominantly accomplished by DNMT1, TET3 and CBX2, which are predicted to be the result of persistent stresses
present in the intracellular and micro-environments of cancer cells, which is consistent with the general
understanding about epigenomic functions.
Conclusions: Our integrative analyses discovered that a large class of genes is regulated via direct DNAmethylation of
the genes in cancer, comparing to TFs in normal cells. Such genes fall into a few stress and response pathways. As a
cancer advances, the level of involvement by direct DNA methylation in transcription regulation increases for
majority of the cancer types examined.
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INTRODUCTION

Epigenetic regulation refers to chemical modifications to
the genomic DNA or its binding histones that can
influence gene expressions, which do not change their
component nucleotides or amino acids [1]. Such
modifications are reversible and some are short-term
heritable across a few generations. The best studied
epigenetic modifications are DNA methylation and
histone modifications such as phosphorylation, acetyla-

tion and ubiquitination. It has been well established in a
few organisms that the dynamics of an epigenome plays a
vitally important role in the evolutionary adaptation of an
organism to its environmental stresses, such as: (i) hypo-
methylation of the NtGPDL gene helps tobacco adapt to
salt and cold stresses [2]; (ii) Drosophila larvae survives
heat-shock and osmotic stresses through inheriting
specific phosphorylation of the dATF-2 protein, which
results in disruption of the heterochromatin [3]; and (iii)
natural and social environments can alter human behavior
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and psychology through epigenetic modification, which
can pass on to the next generation [4,5].
Compared to these research fields, epigenomic research

in cancer is somewhat behind as the published cancer
epigenomic studies are largely at a stage of documenting
which epigenome-related genes are mutated in cancer;
which genes have their epigenetic levels altered in cancer
vs. control tissues, such as DNA hypomethylation at a
genome scale in cancer in general [6] and DNA
hypermethylation in certain tumor suppresser genes [7];
and the possible functional effects of specific epigenetic
changes. While some information has been accumulated
about cancer epigenomes, we are yet to understand, in
general, why the observed epigenomic changes take place
in cancer. Hence, a result has been that the detected
epigenomic changes in cancer remain largely functionally
disconnected from each other without a common under-
flow that naturally links them. To the best of our
knowledge, published studies have yet to link epigenomic
modifications in cancer to intracellular or micro-environ-
mental stresses like in the aforementioned-research areas.
This is possibly due to the reality that our understanding
about what stresses may contribute to cancer initiation,
progression and metastases is quite limited, even though it
has been widely observed that the general stress levels in
cancer tend to be considerably higher than normal and
other chronic disease cells. These general stresses are
reflected by highly up-regulated general stress response
pathways such as heat-shock pathway [8] and endoplas-
mic reticulum (ER) stress responses [9], as well as
oxidative stress and hypoxia-related stress [10]. However,
which stresses may play the defining roles in driving the
disease remains largely unanswered.
Currently, the triggering signals, the responding

mechanisms as well as the cellular functions of DNA
methylation remain largely unknown. For example, the
recent knowledge about the functional roles of DNA
methylation in transcription regulation has challenged the
traditional view of DNA methylation as simply a
“silencing” mechanism of transcription of a gene. Other
than just causing chromatin remodeling, hence resulting
in the formation of heterochromatin [11,12], the functions
of DNA methylation may vary across different genomic
positions. For example, DNA methylation in promoters
generally repress gene expression by preventing tran-
scription factor binding [13], whereas methylation in the
gene body has been found to positively correlate with the
expression of the gene [14]. It was suggested that the
knowledge of the detailed patterns of DNA methylation
associated with genes of specific functions could be a key
to understanding the relationship between DNA methyla-
tion and transcriptional regulation [15].
Here, we present an integrated computational study of

cancer epigenomes and transcriptomes of 10 cancer types,

to address four issues: (i) what genes, in terms of their
functions, tend to have their transcriptions affected by
their associated methylations in cancer? (ii) how do
transcription factors and DNA methylation of a gene
contribute to the transcription of the gene differently in
cancer vs. control tissue cells and why? (iii) what are the
possible causes of DNA methylation changes in cancer?
and (iv) how do DNA methylations in different parts of a
gene affect the gene’s transcription? Through addressing
these questions, we have discovered some general
patterns of how stresses of multiple types contribute to
the observed differences in transcription regulation in
cancer vs. normal tissue cells.

RESULTS

The landscape of DNA methylation in cancer

We have conducted differential methylation analyses of
~400,000 CpG sites distributed across the entire human
genome as well as differential expression analyses of
~14,000 genes, between cancerous and control tissue
samples of 10 cancer types, namely BLCA (bladder
urothelial carcinoma), BRCA (breast invasive carci-
noma), COAD (colon adenocarcinoma), HNSC (head
and neck squamous cell carcinoma), KIRP (kidney renal
papillary cell carcinoma), LIHC (liver hepatocellular
carcinoma), LUAD (lung adenocarcinoma), LUSC (lung
squamous cell carcinoma), PRAD (prostate adenocarci-
noma), and THCA (thyroid carcinoma). The sample size
and the availability of the DNA methylation and gene-
expression data for the 10 cancer types are detailed in the
Section of Data and Methods.
A gene is defined as having cancer specific methyla-

tion-regulated expression (MRE) if (i) the gene is
differentially expressed in cancer vs. control tissues; (ii)
the gene is differentially methylated in at least one of its
proximal CpG sites in cancer vs. control; and (iii) the
differentially methylated (proximal) CpG site(s) have a
significant contribution to the gene’s expression in cancer.
(i) and (ii) are examined by using the t test and Wilcoxon
test, respectively; and the p-values are adjusted for false
discovery rate by Holm corrections [16], and the
significance cutoff is set to be 0.05. To address (iii), a
penalized linear regression model is developed between a
gene’s expression and the methylation levels of all its
proximal CpG sites. The regression model selects a subset
of predictors, namely CpG sites, that achieves the highest
cross-validation accuracy. A CpG site is said to have
significant contribution to its gene’s expression, if the site
is selected by the regression model, with details given in
in the Section of Data and Methods.
Table 1 summarizes the analysis results with the

following note: among those genes that are significantly
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differentially expressed, a majority has at least one of its
CpG sites differentially methylated.
Three genes are common MREs shared by all ten

cancer types: ANK2, SYNPO2, and TGFBR3, which are
all related to cell morphology. We then conducted a
pathway enrichment analysis over those MRE genes
shared by at least 8 cancer types, totaling 56 genes, to
understand the cellular functions of these genes, with
detailed information of the 56 genes given in Supple-
mentary Table S1. 29 pathways are statistically enriched
(with p-value< 0.05) against the union of KEGG,
REACTOME and Gene Ontology in the Msigdb database
[17]. The details of the 29 enriched pathways can be
found in Supplementary Table S2, and the MREs enriched
pathways for each cancer type is listed in Supplementary
Table S3. We noted that the two most significantly
enriched pathways are N-linked glycosylation on proteins
and NFE2L2-regulated genes, where N-linked protein
glycosylation is reported to be induced by ER stress [18],
possibly as a key exit for the substantially increased
uptake of glucose in cancer in general; and NFE2L2 is the
master regulator of oxidative stress [19]. The rest of the
pathways falls into the following categories: (i) cell
morphogenesis and cell-cell adhesion; (ii) extracellular
matrix; (iii) cell migration; (iv) post-translational mod-
ification; (v) nervous system development and signaling
(axon guidance, axonogenesis, neurite development,
neuron development, neuron differentiation, generation
of neurons, and neurogenesis), and (vi) general signaling
(G alpha I signaling events, response to biotic stimulus,
and G protein coupled receptor activity). While these
pathways can be activated by a wide range of conditions,
one thing in common is: they can all be activated by
intracellular stresses, particularly oxidative stress [20–
22], and associated damages. Actually, all these pathways
are strongly associated with responses to Fenton reactions

as noted in our previous study [23]. Hence, we postulate
that these pathways are transcriptionally regulated via
DNA methylation in response to severe intracellular and
micro-environmental oxidative stress.
To investigate if the contribution level by DNA

methylation towards transcription regulation may change
as a cancer advances, we have conducted a similar
analysis to the above on cancer samples grouped based on
their stages for each cancer type, and counted the average
number of the MRE genes for each stage. The stages of
the cancer samples are assigned based on the classifica-
tion of the AJCC (American Joint Committee on Cancer)
pathologic tumor stages. Figure 1 summarizes the result.
Overall, as a cancer advances, the average number of
MRE genes increases, except for the breast and thyroid
cancers. This strongly suggests: as a cancer advances, it
tends to utilize more epigenetic level regulation of the
expressions of genes of certain functions, as way to adapt
to severe oxidative stress and possibly others. We
speculate that breast and thyroid cancers do not follow
the same trend because other factors such as hormones
may also contribute to the transcriptional regulations of
the genes, aside from DNA methylation.

Genes whose transcription is partially regulated by
DNA methylation in cancer vs. controls

We have then conducted an analysis to assess the level of
contribution to the transcription of individual genes by
transcription factors vs. by DNA methylation levels in the
proximal CpG sites of each gene, respectively (see the
Section of Data and Methods). The analysis was
conducted on ~9,000 human genes with ~900 known
and experimentally validated transcription factors (TFs),
using the methylation levels of the gene’s proximal CpG
sites and its TFs’ CpG sites, where these genes are

Table 1. Differentially expressed genes and differentially methylated CpG sites.

Cancer type #diff met CpG #diff met genes #diff expr genes #diff expr & met genes #MRE genes

BLCA 19,599 6,363 2,199 1,140 527

BRCA 81,841 12,337 10,237 8,877 5,355

COAD 33,375 8,006 8,585 4,984 1,627

HNSC 50,866 10,522 4,730 3,612 1,668

KIRP 49,094 10,759 7,458 5,848 1,781

LIHC 27,576 7,445 7,543 4,103 1,066

LUAD 38,544 9,295 9,347 6,117 4,848

LUSC 122,369 13,807 10,204 9,853 6,055

PRAD 50,377 11,333 5,936 4,846 2,585

THCA 25,920 8,313 7,044 4,254 1,577

Columns 1‒6: (1) cancer type; (2) the total number of differentially methylated CpGs; (3) the number of genes with at least one of its CpG sites

differentially methylated; (4) the number of differentially expressed genes; (5) the number of genes that are both differentially expressed and methylated

in at least one of its CpG sites; and (6) the number of MRE genes.
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selected because they have at least one experimentally
validated TF. For each gene, a linear regression model
was built using its expression level as the response
variable, and the methylation levels of the proximal CpGs
of its TFs and of the gene itself as predictors. The
procedure was applied to cancer and control samples,
separately. Knowing that the numbers of the cancer and
control samples differ considerably (a reality of the
TCGA database where our tissue data are collected), we
forced the regression model to select the same number of
predictors, namely 2, 3, 4, 5, on both the cancer and the
control samples to allow for fair comparisons. A goal of
this analysis is to determine the possibly differential roles
in genes transcription played by TFs and DNA methyla-
tion in cancer vs. control tissues. Figure 2 summarizes the
numbers of predictors, which is fixed at 2, selected either

in the proximity of each gene or its TFs, in control and
cancer samples for each of the 10 cancer types. Similar
plots for using 3, 4 or 5 predictors can be found in
Supplementary Figure S1.
We see clearly from the figure that in controls, the

predictors for a gene’s expression are mostly its TFs’
CpGs but in cancer tissues, the predictors are largely the
methylation levels of CpGs of the gene itself, revealing
that for a large subset of human genes, the transcription
regulation is done via different mechanisms in cancer vs.
normal tissue cells, the first such report to the best of our
knowledge. Our interpretation of this observation is:
cancer cells generally live in a more stressful environ-
ment, compared to normal tissue cells. Some of the
stresses may be novel to the cells, making the stress-
responsive system encoded at the genomic level ineffec-

Figure 1. The number (y-axis) of MRE genes for each of the ten cancer types as a cancer advances from stage 1 through
stage 4 along the x-axis. Note: prostate cancer (PRAD) is not included here since there is not enough information to derive the AJCC

stages for the cancer type.

Figure 2. The numbers of selected predictors in control (left bar) and cancer (right bar) for each of the 10 cancer types,

where the selected CpGs in the proximity of the genes are marked in blue and proximity of genes’ TFs in pink. Note: the
number of predictors selected for the linear models are fixed to be two.
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tive or inefficient. It has been well established in the plant
and Drosophila literature that novel stresses can be
responded through epigenomic level activities [24],
which can be passed on to the next few generations. We
postulate: cancer tissue cells have to constantly deal with
(novel) stresses, which may have led to increased
epigenomic level stress-responses, such as DNA methy-
lation as observed here. There is a clear advantage for
doing so in cancer, as the rapidly proliferating cells in
cancer will need to face similar stresses down the road,
and such response mechanisms passed on from one
generation to the next, would be more efficient for cancer
cells to adapt and survive.

Identification of stresses that may have triggered
DNA methylation/demethylation genes in cancer

To further investigate the functional roles of DNA
methylation in transcription regulation of the above
genes and pathways, we have conducted the following
analysis. We compared the activity levels of DNA
methylation (methyltransferases) as well as de-methyla-
tion genes (TETs and TDG) in cancer vs. the matching
controls. We noted: majority of the DNA methylation and
de-methylation genes is up-regulated significantly in
cancer vs. controls (Supplementary Table S4), indicating
that DNA methylation as well as de-methylation enzymes
are more active in cancer than in controls, revealing that
cancer cells utilize more epigenomic level regulations to
cope with the (stressful) conditions in cancer. Interest-
ingly, it has been well established that cancers tend to
have reduced DNA methylation levels at the genome
scale [6]; and our previous work has offered a mechanistic
model to explain why this is the case [25]. Our discovery
here clearly enriched the previous observation, namely,
while the genome-scale DNA methylation is reduced, the
activity levels of DNA methylation and de-methylation

enzymes are more active in vicinity of the protein-
encoding regions.
The DNA methylation enzyme genes used in the study

are the DNA methyltransferase: DNMT1, DNMT3A,
DNMT3B [26]; and the DNA de-methylation enzymes
genes are: TET1-3 and TGD [27,28]. In addition, the
following genes are used to encode the Polycomb
complex, a key regulator of epigenetic activities: EZH2,
EZH1, EED, SUZ12, RBBP4, RBBP7, RING1, RNF2,
CBX2, CBX4, CBX6, CBX7, CBX8, PHC1, PHC2, PHC3,
PCGF1, PCGF2, PCGF3, BMI1, PCGF5, PCGF6,
ZNF134, SCMH1. We started by searching for the
determining factors of the global DNA methylation
levels. We have conducted co-expression analyses
among the genes encoding the DNA methylation
machinery: DNA methylation enzyme, de-methylation
enzymes and the Polycomb complex genes, for this
search. We observed that DNMT1, TET3 and CBX2 tend
to be highly co-expressed with other genes or highly
connected in the co-expression networks across the 10
cancer types, hence suggesting their dominant roles
among all these genes. We then built a linear model
using the expressions of the three genes as the predictors
and the total DNAmethylation level in the relevant cancer
samples as the response variable. We noted: the model can
correctly predict the significantly positive and negative
contributions to the total DNA methylation level by the
expression levels of DNMT1 and TET3 in seven out of the
ten cancer types; and that the expression levels of
DNMT1, TET3 and CBX2 can well represent the overall
methylation activities. Table 2 gives the coefficients and
their statistical significances of the three genes in
predicting the global DNA methylation level using the
linear model across the 10 cancer types.
The intracellular and micro-environments of cancer

cells may have specific stresses of the following types:
persistent hypoxia, severe oxidative stress and stresses

Table 2. The coefficients in the linear models corresponding to the three enzymes for the 10 cancer types, along with the
statistical significance of each predictor inside the parentheses.

Cancer type
Coefficient (Statistical significance)

TET3 DNMT1 CBX2

BLCA – 5.30e-03 (4.24e-02) 1.15e-02 (2.14e-04) 9.38e-04 (5.37e-01)

BRCA – 1.65e-03 (2.65e-01) – 8.06e-04 (6.44e-01) 1.29e-03 (2.87e-02)

COAD – 4.89e-03 (6.73e-02) 1.44e-02 (5.63e-06) 9.38e-05 (9.39e-01)

HNSC – 7.07e-03 (3.98e-05) 7.54e-03 (2.59e-04) – 1.27e-03 (2.94e-01)

KIRP – 5.24e-03 (2.37e-02) 6.05e-03 (3.85e-02) 1.79e-03 (7.20e-02)

LIHC 8.04e-03 (9.17e-02) 8.57e-04 (8.53e-01) – 1.24e-03 (6.29e-01)

LUAD – 7.22e-03 (2.49e-04) 4.53e-03 (1.96e-02) – 3.35e-03 (1.01e-05)

LUSC – 5.77e-03 (5.97e-02) 1.48e-04 (9.65e-01) – 8.88e-04 (5.69e-01)

PRAD 3.68e-03 (1.74e-02) – 4.22e-03 (8.51e-02) 5.70e-04 (4.92e-01)

THCA – 6.29e-03 (2.36e-10) 2.24e-03 (6.09e-02) 2.57e-04 (7.28e-01)
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induced by rising intracellular pH [23,29–31]. We have
previously demonstrated that persistent hypoxia will lead
to a persistent gap in ATP demand and supply [32]. As a
response, the affected cells tend to substantially increase
their glucose uptake and metabolism, which serves as the
basis of PET/CT based cancer diagnosis. Persistent
oxidative stress, particularly that induced by innate
immune cells, can give rise to persistent Fenton reactions
and production of hydroxyl radicals [33], the most
damaging molecules that human cells can generate,
leading to persistent and extensive damages to the host
cells, including proteins, nucleotides and lipids. Another
and less studied consequence of Fenton reactions is the
persistent production of OH–, which will ultimately alter
the intracellular pH [23]. All these represent novel
stresses that tissue cells generally have not encountered
before, at least not in a persistent manner, which could be
key reasons for the increased utilization of epigenomic
level activities. Hence, we hypothesize: it is the
combination of such novel stresses that leads to the
increased epigenomic level activities, which determine
how the transcription of genes of certain functions is
executed, specifically having reduced needs for TFs in
transcription regulation of these genes.
We have conducted co-expression analyses between

TET3, DNMT1, CBX2 and the rest of all the ~14,000
genes except for the DNA (de)methylation and Polycomb
complex, to predict processes that are strongly associated
with DNA methylation activities. Our co-expression
analyses revealed that: immune attack, DNA damage,
and oxidative stress are the three processes that are most
consistently and significantly associated with methylation
activities (see the Section of Data and Methods for more
details). Table 3 shows the significances of these three
pathways. These data, coupled with the results in the

previous section, provide strong evidence in support of
our above hypothesis.

Elucidation of how DNA methylation in different
locations contribute to transcription regulation

Here, we examine how the methylation level in different
CpG sites around each gene, namely 5′ UTR, promoter,
transcription start site (TSS), gene body, and 3′ UTR, may
affect the expression level of the gene. Specifically, we
have selected a subset of the CpG sites in each gene’s
vicinity to predict the gene expression level by using a
penalized linear regression model (see the Section of Data
and Methods). We observed that for those genes whose
expression levels are significantly up-regulated, the
methylation levels in their proximal CpG sites located
in the gene body tend to postively contribute to its
expression, but negatively by those CpGs in their
promoters. For those genes whose expression levels are
significanlty down-regulated, the methylation levels of
their CpG islands in the genes bodies tend to negatively
contribute to their expressions.
This observation indicates that the DNA methyaltion

machineary can (significanlty) up-regulate a gene’s
expression by increasing the DNA methylations in its
body and decreasing the DNA methylation in its
promoter. Similarly, to (significanlty) down-regulate a
gene’s expression, the methylation machinery can
accomplish this through increasing only the DNA
methylation in the gene body. This finding is consistent
with the current understanding that DNA methylaiton
accumulated in gene body regions tend to activate or
enhance the gene’s expression, while those in the
promoter regions inhibit or repress the gene’s expression
[13]. Figure 3 shows a detailed comparison across the 10

Table 3. Statistical significances of enriched pathways by genes having high statistical correlations with TET3, DNMT1
and CBX2, where pathways with p-values < 0.05 are in bold.

Cancer type

Statistical significance

REACTOME_ADAPTIVE_IMMUNE_

SYSTEM

RESPONSE_TO_DNA_DAMAGE_

STIMULUS

MONOOXYGENASE_

ACTIVITY

BLCA 1.99E-04 2.12E-03 1.75E-03

BRCA 7.07E-04 2.23E-02 9.10E-02

COAD 4.67E-03 2.77E-01 1.00E+00

HNSC 1.00E+00 1.00E+00 1.00E+00

KICH 1.42E-07 4.60E-06 3.86E-02

KIRC 2.10E-05 6.11E-04 1.16E-01

KIRP 1.60E-04 1.97E-02 4.84E-03

LIHC 7.20E-05 1.47E-04 3.30E-02

LUAD 9.85E-02 5.98E-01 1.00E+00

PRAD 2.15E-07 1.71E-03 2.05E-02

THCA 2.19E-03 3.95E-02 3.73E-03
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cancer types.

DISCUSSION AND CONCLUSION

Our integrative analyses of gene expression and DNA-
methylation data discovered that the regulation of
expressions of a large class of genes is executed
differently in cancer vs. normal tissue cells, with the
former largely via direct DNA methylation of the genes
and the latter by their TFs. Such genes fall into a few
stress and response pathways. As a cancer advances, the
level of involvement by direct DNA methylation in
transcription regulation increases for majority of the
cancer types examined. This is consistent with the general
understanding of the roles played by epigenomics in
responses to severe and novel stresses.
In the past two decades, substantial information has

been accumulated regarding what stresses cancer cells
may encounter at different stages of the disease, such as
(i) oxidative stress associated with chronic inflammation
that tends to take place in cancer sites; (ii) persistent
hypoxia, which tends to take place with high oxidative
stress due to the O2 consumption by innate immune cells
in support of their production of H2O2 and superoxide
bursts [26]; (iii) the stress resulted by Fenton reactions,
which threatens to increase the intracellular pH in a
persistent manner [28,30,31]; and (iv) various general
stresses such as heat-shock and unfolded protein
responses. However, very little has been published
regarding how these stresses affect the epigenomic level
activities in cancer. Here, we have presented a new
framework for studying the functional roles of epige-
nomic activities, specifically DNA methylation and de-
methylation activities in transcription regulation in cancer
tissue cells. Our analyses revealed the possible roles of
stresses in driving the increased methylation and de-
methylation activities, which give rise to the altered DNA
methylation patterns proximal to genes of certain
functional classes in cancer vs. control tissues. For the

first time, we have clearly demonstrated that DNA
methylation plays more significant roles in transcription
regulation of genes of certain functional classes in cancer
than in normal tissue cells, and offered an explanation to
why this is the case. We postulate that as cancer tissue
cells are constantly under severe stresses in their
intracellular and micro-environment, DNA methylation
represents an effective way in transcription regulation in
cancer as a separate organism inside the human body.

DATA AND METHODS

Data

DNA methylation data measured using HumanMehtyla-
tion450 arrays for 10 cancer types are retrieved from the
TCGA database [34]. We have also used RNA-Seq based
gene expression data for 10 cancer types from the same
database. Details are given in Table 4. Ten cancer types
are selected because: (i) they have both normal and
cancerous tissue samples; and (ii) they have a sufficiently
large number of cancer samples whose gene expression
and methylation data are both available. The gene
expression data are log2-transformed. We have removed
those genes when half of their log2 expression values are
below 1. For methylation data, we have removed those
CpG sites when half of their DNA methylation values are
not observed, or the CpG sites were not in the proximity
of any annotated genes. The procedures were done on
expression and methylation data within cancer and
control samples of each cancer type, respectively. And
we have further discarded those genes either whose gene
expressions or proximal CpG site DNA methylation data
are not available. The remaining number of genes and
CpG sites differ slightly from cancer to cancer, but on
average, expression data of ~14,000 genes and methyla-
tion data of ~400,000 CpG sites are included in our
analyses.
The methylation array data we used cover ~485,000

Table 4. Data used in our study.

Cancer type Met (N) Met (T) Expr (N) Expr (T) Match (N) Match (T)

BLCA 20 207 19 408 16 200

BRCA 96 685 113 1095 83 673

COAD 38 291 41 285 19 254

HNSC 50 426 44 520 20 418

KIRP 45 142 32 290 23 142

LIHC 50 125 50 371 41 122

LUAD 32 452 59 515 21 431

LUSC 42 359 51 501 8 359

PRAD 49 252 52 497 34 247

THCA 56 508 59 505 50 498

The columns are: (1) cancer types; sample sizes for (2) normal and (3) cancer methylation data; gene-expression data for (4) normal and (5) cancer

tissues; and matching methylation data for (6) normal and (7) cancer tissue samples.
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methylation sites that are distributed across the following
genomic locations: TSS1500, TSS200, 5′UTR, first exon,
gene body, and 3′ UTR of the ~14,000 genes. Among
these, ~300,000 sites are located in the near vicinity of
each gene. Note: TSS1500 represents those CpG sites
located between 200 nt to 1500 nt upstream the transcrip-
tion start site (TSS); TSS200 are for those located within
200 nt upstream the TSS. This categorization is based on
the Illumina Human Methylation 450 Platform [35].

Transcription factor and pathway databases

Experimentally validated human transcription factors
(TFs) and their target genes are collected from multiple
databases: TRED [36], Neph2012 [37], ENCODE [38],
Marbach2016 [39] and TRRUST [40]. Overall, 919
transcription factors are retrieved. A TF-target relation-
ship is considered as reliable only when the relationship
appears in at least two of these databases. Overall, 72,407
pairs of such relationships are collected and used in our
analyses.
The pathways and gene sets used in the enrichment

analysis are C2, C5 and C6 collections in Msigdb [17],
which represents curated gene sets, Gene Ontology gene
sets and oncogenic gene sets.

Linear regression

For each response variable, we collected the correspond-
ing predictors as the linear model predictors. We have
built a linear regression model with L1 penalty to select
the most parsimonious subset of predictors that minimizes
the following objective function:

min
β0, β

1

N

XN

i=1

ðyi – β0 – βTxiÞ2 þ lkβk1

where yi, xi are the i-th observed response and predictor,
respectively; β0, β are coefficients; and l is the overall
penalty parameter, which is selected based on cross-
validation performance. In the case when the number of
predictors are fixed, we select l so that the selected
predictors (fixed number) can explain the highest
percentage of deviance.

Enrichment analysis

The enrichment analysis is performed using hypergeo-
metric test, against selected pathways in Msigdb database.
The p-values are FDR corrected.

Co-expression analysis

To identify the biological pathways that are most
consistently and significantly associated with DNA

methylation activities, we calculated correlations between
genes TET3, DNMT1, CBX2, which is the direct and
determining factor of DNA methylation activity, and the
rest of all the ~14,000 genes, excluding the genes
encoding the DNA (de)methylation enzymes and the
Polycomb complex. We ranked all the genes based on
their maximal (absolute) correlations with TET3,
DNMT1, CBX2, and the top 1,000 genes with the highest
(absolute) correlations are selected for enrichment
analyses.
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