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Background: Metagenomic sequencing is a complex sampling procedure from unknown mixtures of many genomes.
Having metagenome data with known genome compositions is essential for both benchmarking bioinformatics
software and for investigating influences of various factors on the data. Compared to data from real microbiome
samples or from defined microbial mock community, simulated data with proper computational models are better for
the purpose as they provide more flexibility for controlling multiple factors.
Methods: We developed a non-uniform metagenomic sequencing simulation system (nuMetaSim) that is capable of
mimicking various factors in real metagenomic sequencing to reflect multiple properties of real data with
customizable parameter settings.
Results: We generated 9 comprehensive metagenomic datasets with different composition complexity from of 203
bacterial genomes and 2 archaeal genomes related with human intestine system.
Conclusion: The data can serve as benchmarks for comparing performance of different methods at different
situations, and the software package allows users to generate simulation data that can better reflect the specific
properties in their scenarios.
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Author summary: nuMetaSim—a non-uniform metagenomic sequencing simulation system is developed as well as a
comprehensive simulated metagenomic dataset is designed in this work. The nuMetaSim software provides flexible
simulation settings for mimicking different real metagenomic data features under distinct scenarios for researchers with
various purposes. The designed simulated dataset can be used as a benchmarking set to verify the performance of
metagenomic data processing software utilized by those needed researchers. Python codes of nuMetaSim are released by the
following GitHub link: https://github.com/dadinghh2/nuMetaSim

INTRODUCTION

Rapidly growing sequencing data produced by the next-
generation sequencing (NGS) technology have revolutio-
nized many biological research fields such as the study of
non-culturable microbial communities. One can apply
sequencing technology on microbial communities to get
metagenomic sequencing data and use bioinformatics
processing and analysis to turn the data into information

about the microbial composition and functions [1–3].
Metagenomic studies have shown that human micro-
biomes are related with many human diseases such as
diabetes [4], obesity [5] and nutrition disorder [6].
However, the conclusion in all such studies heavily relies
on the correctness and accuracy of the adopted bioinfor-
matics software in analyzing the particular data [7]. Due
to the complex nature of metagenomic data, well-
controlled testing and comparison of bioinformatics
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tools is crucial for microbiome studies.
In general, there are three types of metagenomic data

that may be used to test bioinformatics methods: real data
from natural microbial community samples, or data from
mock community samples with designed composition,
and simulated data generated by computational models.
For real data, the true answers to key questions such as the
composition and abundances of microbial species are
unknown a priori. So their utility for testing bioinfor-
matics methods is limited. For mock community data, the
members of the microbial community are manually
selected from sequenced genomes. Hence the community
constituents are under control [8]. But sometimes mock
community data could be unreliable because of contam-
ination of other unknown microbes [9]. Furthermore, due
to difficulties in experiments, a mock community often
contains a small amount of taxa and the degree of
variation in their relative abundances is also limited.
These limits may cause overfitting of methods and
observations on mock data may not be generalizable to
more complicated real data [8].
For simulation data, the obvious advantage is the

possibility of full control on all aspects of data such as the
microbial composition, sequence sampling, sequencing
errors, noises like human contamination and unknown
microbes that are usually present in a real microbial
environment [10–12]. However, these advantages depend
on how well the data simulates complexities and unideal
properties of real data. For example, in the ideal case, the
DNA library building procedure should be a uniform
sampling process from all genomes. But this is rarely true
on real data as the sequencing read distribution on each
genome can be very uneven. Read coverage on different
genomes can also have large variations [1]. Unideal
conditions like these need to be carefully considered and
properly reflected in simulation data.
Simulated metagenomic data have already been used in

many software benchmarking studies [7,10,12–16].
Several simulators have been developed to generate
simulated metagenomic data [17], such as MetaSim [18],
NeSSM [19], BEAR [20], and FASTQSim [21]. How-
ever, most existing simulators and simulated datasets did
not try to capture all possible features of realistic
metagenomic data. The earliest metagenomic simulator
MetaSim only considered a few features in real data, such
as microbial composition, abundance and sequencing
error. Quality score of sequencing data was not included
in MetaSim. Both MetaSim and FASTQSim did not grant
uneven sampling on the reference genomes. Only NeSSM
and BEAR are able to simulate uneven sampling or
coverage bias, which is a salient feature existing in real
data. Coverage bias is mainly attributed to GC-content
when DNA fragments are undergoing PCR amplification
[22,23]. NeSSM maps the empirical data to reference

genomes with fixed-size bins to obtain a read-mapping
profile that represents the coverage bias. However, in
some cases, there might be only a fraction of reads
sampled from the reference genomes, and therefore the
integral distributions over the sampled genomes cannot be
acquired. BEAR tries to find the relationship between
read length of empirical data and GC-content, then uses
this to randomly sample reads from reference genomes.
The nuMetaSim simulator we developed is an effort to

consider all major aspects of real metagenomic sequen-
cing data in the simulation model. Users can set their own
parameters according to the factors they want to study
with the simulation data. Besides the common features
such as microbial composition, sequencing error, quality
score adopted by existing simulators, we incorporated
human contamination and unknown reads generation as a
built-in function. For coverage bias, we adopted a
disparate strategy with existing ones to calculate the
GC-content-based coverage bias profile. We also pro-
vided 9 sets of simulation data for different scenarios with
regard to the number of component genomes and their
relative abundance patterns. These data can be a basic
benchmark set for metagenomic data processing methods.
Users can also design and generate their own data with
special properties using nuMetaSim.

RESULTS

We developed a package nuMetaSim that can generate
simulated metagenome datasets with comprehensive
features existing in real sequencing data, such as GC-
content coverage bias caused by sequencing machine,
human and unknown reads derived from pollution or
improper experimental operation. It is meaningful to
consider these features when benchmarking bioinfor-
matics software since real metagenome sequencing data
contain these features. Then the benchmarking result can
be more reliable using the realistic simulated metagenome
sequencing data.

Overview of nuMetaSim

As shown in Figure 1, the simulation process in
nuMetaSim is composed of four steps. The optional
step 2 is designed for simulating the real data features.
Users can select some of the features or all of them to
produce their specialized simulated dataset. The other
steps are required.

STEP 1–Reference genomes and abundance profile
preparation

nuMetaSim is a reference-based metagenomic simulator,
developed with Python scripts. Complete microbial
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genomes as components of the simulated metagenome
should be provided by the user. The genomes must be in
single FASTA format. If a user has a multi-FASTA format
genome file, he or she should split it into several single
FASTA files, each with a proper prefix and a “.fna” suffix.
The script “microbe_index.py” is used to extract meta
information like genome length, genome name, etc., from

reference genome files. Then the user can define the
microbial abundance profile by inputting genome names
and their corresponding abundance values with a tab
separator. The abundance values represent the relative
proportion of each reference genome in the resulting
simulated data and their sum should be 1. If not,
nuMetaSim will be aborted with error message printing out.

Figure 1. Workflow of nuMetaSim. (A) Step 1: prepare reference genomes and the relative abundance table. (B) Step 2: multiple

optional factors that can promote the verisimilitude of the generated data. (C) Step 3: sequencing parameter setting. (D) Step 4:
generation of simulated reads.
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STEP 2 – Optional simulation settings

(i) Coverage bias: nuMetaSim applies a new strategy to
calculate the GC-content-based coverage bias. Coverage
bias means reads are not uniformly sampled from
microbial genomes. The trend that more reads be sampled
from regions of high GC-content is a major cause of
coverage bias [23]. We attempt to establish a relationship
between GC-content and number of mapped reads using
samples of single-genome sequencing. For the datasets
presented in this paper, we collected 20 distinct single-
genome sequencing samples and mapped them to their
corresponding reference genomes (Table 1). Each refer-
ence genome was segmented into bins of equal length. We
calculated the GC-content and number of mapped reads of
each bin. All the 20 reference genomes did the same
operation. Since the sequencing depth of different
samples may vary largely, the number of mapped reads
to a reference genome need to be normalized by the total
number of mapped reads to that genome. Then we
assembled a “GC-content-normalized read count” profile
of each reference genome to fit a quadratic curve

(Figure 2) to represent the GC-content-based coverage
bias. The fitted quadratic function can be leveraged to
calculate the read distribution table of reference genomes,
which are used for generating simulated data by referring
to the GC-content of every bin of each component
genome. This fitted quadratic function is provided by
nuMetaSim as the default fitted function. Users are also
allowed to provide more single-genome sequencing data
to fit a function that is more appropriate for the data they
want to generate. Additionally, nuMetaSim provides a
way similar with NeSSM, but uses a variable-length bin to
compute read distribution table. A read distribution table
can also be completely homemade as long as its format
conforms to the standardized one.
(ii) Quality score profile: Quality score profiles are

extracted from empirical data, more exactly, the FASTQ
format sequencing data with ASCII-encoded characters.
In nuMetaSim, a tool script “extract_quality_score_dis-
tribution.py” is applied for extracting quality score
distribution given a sample in the FASTQ format. It
supports Illumina 1.3+ (Phred+ 64) and Illumina 1.8+
(Phred+ 33) encoding schemes [24] and automatically

Table 1 Single-genome sequencing samples and their corresponding reference genomes used to calculate GC-content-
based coverage bias
Organism # of bases

(bp)

NCBI SRR ID Reference genome NCBI

GenBank accession ID

Acetohalobium arabaticum DSM 5501 (firmicutes) 483.8 M SRR3924031 GCA_000144695.1

Acidaminococcus fermentans DSM 20731 (firmicutes) 485.7 M SRR4240070 GCA_000025305.1

Acidovorax avenae subsp. avenae ATCC 19860

(b-proteobacteria)

304.7 M SRR3925720 GCA_000176855.2

Actinobacillus succinogenes 130Z (g-proteobacteria) 676.7 M SRR3923544 GCA_000017245.1

Aequorivita sublithincola DSM 14238 (CFB

group bacteria)

506.9 M SRR402806 GCA_000265385.1

Aerococcus sanguinicola (firmicutes) 444.6 M SRR3118589 GCA_001543145.1

Aerococcus urinaehominis (firmicutes) 210 M SRR3139722 GCA_001543245.1

Aerococcus viridans (firmicutes) 561.8 M SRR3118633 GCA_001543285.1

Alistipes finegoldii DSM 17242 (CFB group bacteria) 467.7 M SRR3924066 GCA_000265365.1

Aminobacterium colombiense DSM 12261 (bacteria) 504.6 M SRR3924067 GCA_000025885.1

Aminomonas paucivorans DSM 12260 (bacteria) 460.4 M SRR3924075 GCA_000165795.1

Anabaena cylindrica PCC 7122 (cyanobacteria) 539.5 M SRR3926593 GCA_000317695.1

Anaerococcus prevotii DSM 20548 (firmicutes) 622 M SRR3924070 GCA_000024105.1

Archangium gephyra (d-proteobacteria) 1.2 G SRR4156095 GCA_001027285.1

Arcobacter nitrofigilis DSM 7299 (e-proteobacteria) 530.5 M SRR4240290 GCA_000092245.1

Bacillus cellulosilyticus DSM 2522 (firmicutes) 495.8 M SRR3926454 GCA_000177235.2

Bacteroides coprosuis DSM 18011 (CFB group bacteria) 534.1 M SRR3926627 GCA_000212915.1

Bacteroides helcogenes P 36-108 (CFB group bacteria) 780.9 M SRR3926630 GCA_000186225.1

Beijerinckia indica subsp. indica ATCC 9039

(a-proteobacteria)

257.9 M SRR4239896 GCA_000019845.1

Belliella baltica DSM 15883 (CFB group bacteria) 540.8 M SRR3926633 GCA_000265405.1
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examines the encoding scheme of the input FASTQ file.
The script counts the frequency of occurrence of each
valid quality score at each base so that every base has a
quality score distribution (Figure 1B(b)). The total
number of quality score distribution equals to the length
of the longest read of the input FASTQ file.
(iii) Human reference genome preparation: Reads

from the human genome are a main contamination source
in metagenomic sequencing data of human microbiome
projects [25–27]. In order to make the simulated
metagenomic data more real, nuMetaSim incorporates
human reads generation as a built-in function to simulate
the contamination. We used the multi-FASTA format
hg19 reference genome [28] from UCSC genome browser
[29] and organized it into a separate folder. This reference
genome was divided into 24 single FASTA format
chromosomal files, including chromosome 1 to chromo-
some 22, chromosome X and chromosome Y. Users can
also provide human reference genome in single FASTA
format by themselves if they want to use a different
version.
(iv) Unknown reference genomes in the simulation:

In most microbiome studies, many reads in the metagen-
ome data are from unknown microbes which cannot be
mapped to existing reference genomes [1]. Producing
“unknown reads” to mimic those unmapped reads is also
included in nuMetaSim as a built-in function. Similar to
human reads generation, users can provide reference
genomes to mimic unknown genomes in a separate folder.
We suggest three ways to prepare unknown reference
genomes. The first is to get newly sequenced microbial
genomes since newly sequenced microbes usually have

not yet been incorporated in the reference databases for
the software to be tested. The other way is rearranging the
known reference genome to obtain a shuffled genome,
similar to the method adopted by Lindgreen et al. [7].
Additionally, we can mutate a known reference genome
through substitution, insertion and deletion at certain
given mutation rate. nuMetaSim offers tool scripts for the
latter two methods.

STEP 3 – Simulation sequencing parameter setting

(i) File path and file name: Index files produced by
“microbe_index.py” and microbial relative abundance
table are required. If a user chooses the optional functions
described in STEP 2, the read distribution table, quality
score profile, human reference genome and unknown
reference genomes will be needed. A user should specify
the prefix of the file name for the simulated sample. The
suffix will be “.fa” if the user chooses to generate FASTA
format simulated data and be “.fq” otherwise.
(ii) Read number and length: The total number of

reads to be generated and the read length is set by the user.
nuMetaSim then assigns respective the number of reads
for each component genome according to the relative
abundance table.
(iii) Gap length for simulating pair-end data:

nuMetaSim can generate either single-end (SE) sequen-
cing reads or pair-end (PE) sequencing reads according to
users’ choice. The gap length is expected insertion length
between the reads in a pair in the PE sequencing data. The
default gap length is set to 200 nt.
(iv) Bin size: A bin defined in nuMetaSim is a sliding

widow scanning the input reference genomes without
overlap. It is the basic local genomic unit used to generate
reads. A larger bin size means a lower resolution of read
distribution over the reference genome. The bin size will
be automatically determined if the user has chosen to
produce the read distribution profile with tool scripts
provided by nuMetaSim or if the user provides a
customized read distribution table.
(v) Random seed: Setting a random seed is to make

the simulated data repeatable and controllable. Users can
use different seeds to generate different simulated samples
for each running, or let nuMetaSim use its default seed if
there is no need to reproduce the same result in the future.
(vi) Flags and ratios: There are several flags and ratios

users can set to define the way they want the simulation
runs. The variable-random-seed flag (0 or 1) is to control
whether nuMetaSim varies the random seed for each new
simulation job. The FASTA-or-FASTQ flag controls the
output format. Users can also define the sequencing error
ratio, human reads ratio and unknown reads ratio. The
sequencing error ratio controls the total proportion of
substitution and insertion/deletion (indel) of bases in the

Figure 2. GC-content-normalized read count fitting curve.
The x-axis is the percentage of GC-content, y-axis is the

normalized read count, which will be used as the generated
read proportion given a specific GC-content in the simulation.
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generated data (note that only FASTQ format output
allows sequencing error). If the flag for error ratio is set to
0, no error will be added in the simulation data. If not,
there is another flag that controls whether the error will be
adjusted according to the quality score in the following
way [30]:

base–error–probablity=10 – 0:1�quality–score

If errors are to be generated, nuMetaSim uses an
empirical relative proportion of the three types of errors
(substitution, insertion or deletion) according to the
literature about sequencing error properties of the
Illumina sequencing platform [31].

STEP 4 – Simulated data generation

In the data generation procedure, the relative abundance
of each input reference genome is adjusted first to acquire
the relative proportion of read number contributed by
each component genome in the resulting simulated
sample. Suppose the total number of component genomes
is N, the relative abundance and length of the i-th
reference genome is ai and Li, respectively, then the
relative proportion ri of read number contributed by the
i-th reference genome is:

ri=
ai � Li

ΣN
i=1ai � Li

:

Suppose the total number of reads to be generated is tot,
the read number ni to be generated by the i-th reference
genome is:

ni=tot � ri=tot � ai � Li
ΣN
i – 1ai � Li

:

In practice, the generated read number may have slight
discrepancy with the set read number due to rounding off,
especially on component genomes with extremely low
relative abundances.
Next, nuMetaSim checks whether there exists a user-

defined read distribution table. If so, nuMetaSim will load
this distribution table and automatically determine the bin
size as mentioned before. If not, the user should select a
built-in distribution. The default is uniform distribution.
Normal and exponential distributions are supported as
well. Then the user-defined distribution table or selected
built-in distribution is utilized to generate random
numbers to calculate sampling points from the reference
genome. The sampling points are the origins where the
simulated reads are sequenced. If the user has chosen to
produce simulated data with sequencing error, errors will
be added to the original simulated reads by modifying the
bases by substitution and/or indel operations.

Simulated datasets with comprehensive real
sequencing data features

Along with the software package, we also generated a few
sets of simulation data with different typical settings,
based on known genomes and observations from real
data.

(i) Source of reference genomes

Reference genomes were selected from a published
literature [26]. They are all microbes related with the
human intestinal system, including 6 phyla and 205
strain-level genomes (203 bacteria and 2 archaea)
(Supplementary Table S1). These microbes all have
their complete reference genomes and are well annotated
in the supplementary table of Li et al’s work [26].

(ii) Design of the simulated dataset

We designed 3 groups of simulated data with 10, 50 and
200 known reference genomes as components, respec-
tively. These datasets mimic microbial communities with
distinct compositions [32–35]. Following earlier metage-
nomic data simulation work [10], we simulated microbial
communities with low, medium and high complexity (LC,
MC and HC). LC means there is only one dominant
microbe with high relative abundance in the community.
MC means that two or more microbes are dominant. HC
refers to the situation that no microbe is dominant in a HC
community [10]. We generated one data set at each level
of complexity for each group of simulation. This gave us
9 simulated datasets.
(a) Relative abundance table: The relative abundance

table was made based on the different levels of complex-
ity and the empirical relative abundance distribution
observed in many real data [35–38]. We selected 9
samples of the HMP dataset [34] (Table 2, Figure 3) and
used their species abundances as templates of relative
abundance tables in our simulated data. For example, the
relative abundance of our designed 10-genome LC dataset
(10_strain_LC) was derived from SRS064493 of the
HMP dataset. The abundance values were ranked in
descending order. We picked the top ten abundance values
and renormalized them to make the sum equals to one.
(b) Simulation parameter: Choosing appropriate

parameters is important for improving the verisimilitude
of simulated data, especially for factors like sequencing
errors caused by the sequencing protocol, and the mixture
with human reads and reads from unknown microbes. We
designed two levels for each factor to simulate different
situations. For sequencing error, we set it as 0.1% and 1%
according to observations on error profiles of the Illumina
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sequencing platform [31]. We set human reads ratio as 1%
and 65%, and unknown reads ratio as 20% and 40%,
according to observations on HMP data [24]. We selected
some newly sequenced microbial genomes as the
unknown reference genomes (Supplementary Table S2).
Then the combination of the three parameters resulted in
eight samples for each dataset.
As mentioned in the background section, a salient

feature observed in real sequencing data is the coverage
bias induced by the GC-content. We leveraged the fitted
quadratic function calculated from the collected 20 single-
genome sequencing samples to compute the GC-content-
based coverage bias to be used in the simulation. In
addition, we also adopted uniform distribution (no
coverage bias) to generate simulated samples as a
comparison. Therefore, for each dataset in Table 2,
there are 16 simulated samples, resulting in 144 simulated
samples in total.

Application example of the simulated dataset

Here we present an example for the application of our
simulated data, using the samples in “10_strain” and
“50_strain” data sets.
We compared six metagenomic software tools devel-

oped for taxonomic profiling on these data. They are
FOCUS [39], GOTTCHA [40], MEGAN [41], MetaPhl-
An2 [42], MetaPhyler [43] and Taxy [44]. Firstly all the
samples were filtered to trim “low quality” bases by
VSEARCH [45] (command used: vesearch fastq_filter
sample.fq fastqout sample_filtered.fq fastq_minlen 30
fastq_qmax 42 fastq_truncqual 20 fastq_maxns 10) and
screened to cleanout human reads via a Perl script [46]
(command used: run_contaminant_filter.pl -d hg19_bow-
tie_index -o output_dir sample_filtered.fq). This step was
to mimic the standard procedure of metagenomic data
preprocessing. The preprocessed reads are called clean
reads. Then we conducted experiments on these clean
reads.
We intended to use the same reference database for all

the seven software so that the comparison can be
equitable. Unfortunately, it is not practical because the
reference databases of some of these software are not
customizable, such as MetaPhlAn2 and MetaPhyler
whose taxonomic profiling strategies are based on marker
genes. Users are only allowed to utilize the pre-built
maker gene database. Furthermore, establishing a specific
database is part of a software’s strategy. Therefore, we
only used the same customized reference database for
FOCUS and MEGAN that allow database customization.
This database contained 2,823 bacteria and archaea
genomes downloaded from NCBI.
The results of most of these 6 software are the names

and relative abundances of the detected microbes, but the
output of Megan is count of mapped reads instead of read
relative abundances. Using the metrics precision and
recall, we found that GOTTCHA performed the best
among the six software on both the “10_strain” and
“50_strain” datasets. This is only an illustration of one
potential use of the simulated data. More systematic
experiments with fine-tuning of each software are needed
to conduct a benchmarking comparison of the software.

CONLUSION AND DISCUSSION

We presented the detailed simulation process of the
software nuMetaSim we developed as well as the design
method of a simulated metagenome dataset with compre-
hensive real data features. For the current stage, there do
not exists a standard for comparing the simulated data and
real data directly, because the true answer like microbial
abundance or gene abundance is unknown. Also, the
results obtained by bioinformatics software can only be
treated as an approximation of the real data. As a
consequence, we do not have a direct approach to certify
whether a simulated dataset is close to a real dataset.
However, we can make the simulated data realistic by
adopting real data features as many as possible. This is the
strategy we used for designing the simulated dataset. We
provided a set of comprehensive simulated metagenomic

Table 2 Basic information of the simulated data sets
Name of Datasets Number of dominant microbes Proportion of dominant microbes

in a sample

Referred HMP sample

accession number

10_strain_LC 1 66.75% SRS064493

10_strain_MC 2 83.24% SRS020386

10_strain_HC None N/A SRS047113

50_strain_LC 1 54.97% SRS011529

50_strain_MC 2 71.47% SRS022079

50_strain_HC None N/A SRS064449

200_strain_LC 1 54.69% SRS023958

200_strain_MC 2 71.62% SRS017209

200_strain_HC None N/A SRS057539
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data with 205 human intestinal microbes. The data
represent multiple levels of complexity to reflect different
microbiome conditions. Many important features in real
human metagenomic samples were considered, such as
GC-content-based coverage bias, sequencing errors,
human reads and unknown reads. We also provided the
nuMetaSim simulator along with the data for free
academic use. It can be used to generate customized
metagenomic simulation data that have almost all
properties of real data but with key factors under the
full control of the users.
Very recently, a group of method developers published

a consortium work on the critical assessment of
metagenome interpretation (CAMI) [16]. It was the
summary of a challenge for benchmarking many
programs for metagenomic data using a data set generated
from about 700 microorganisms and 600 viruses and
plasmids. Useful observations and insights have been
achieved on the compared metagenomics methods. The
focus of that work was on the comparison of methods
using the carefully generated benchmark data sets. The
work showed the importance of using simulation data for
benchmarking methods. Our work presents a software for
generating simulated metagenomics data. The software
allows users to have more controls on the characteristics
of the data they would generate, and thus provides the
flexibility for readers to study certain particular aspects of
methods. We also generated a few simulation data sets as
examples to show how the data mimicking different types
of real microbiomes can be simulated. This flexibility
enables method developers to design simulation data with
special characteristic settings to support the systematical
study and comparison of metagenomic data analysis
methods from multiple angles.

METHODS

Software availability and usage notes

Code availability

The nuMetaSim is available on GitHub (https://github.
com/dadinghh2/nuMetaSim). The main scripts are
“nuMetaSim.py” and “nuMetaSim_pe.py”. The former
is for single-end data simulation, while the latter is for
pair-end data simulation. Other tool scripts and their
usages are introduced in the “Usage notes” section.

Data records

All the simulated samples generated by nuMetaSim in this
project are curated through BIG Data Center, Genome
Sequence Archive, Beijing Institute of Genomics (BIGD-
GSA). The accession number is GSA PRJCA000415.

Usage notes

(i) GC-content-based coverage bias: The GC-content-
based coverage bias profile is derived from “cal_
genome_distribution_by_GC.py” using two inputs: fit-
ting function and reference genomes. The output are
genome names and their corresponding read distributions
separated by tabs.
(ii) Fitting function calculation: The default fitting

function is in the software package. Users are also
allowed to obtain a customized fitting function. The
samples of single-genome sequencing and their respective
corresponding reference genomes should be prepared
first. Suppose a sample of single-genome sequencing is
called “sample.fq” and its corresponding reference
genome is “microbe.fna”, then the “sample.fq” should
be modified as “microbe.fq”. All the samples of single-
genome sequencing and reference genomes should do the
same operation. Users should use “cal_GC_coverage_
relation.py” first to get “GC-content-normalized read
count” profile, and then use “polyfit_GC_coverage.py” to
compute a fitting function.
(iii) Generating unknown reference “genomes”: As

mentioned before, nuMetaSim provides tool scripts for
obtaining unknown reference genomes apart from using
newly sequenced microbes. One of the simpler ways is to
use “genome_shuffle.py” to generate shuffled genomes
by inputting known reference genomes. Nevertheless,
shuffled genomes amount to random sequences that may
lose biological meaning. For making more biologically
reasonable unknown microbial genomes, another tool
script “gen_genome_strain.py” was written for this
purpose. It takes a genome to be mutated and a
substitution/indel profile produced by “cal_genome_var-
iation.py” as inputs. Mutation rate is set by the user.
Please visit GitHub to learn more information.
(iv) Human and unknown reference sequences

preparation: Users should provide the index files
generated by “humanOrUnknown_index.py” and the
relative abundance tables for the human and unknown
reference sequences. If these files are not given, each
human or unknown reference sequence will be assigned
an equal relative abundance.
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