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Background: Most eukaryotic protein-coding genes exhibit alternative cleavage and polyadenylation (APA), resulting
in mRNA isoforms with different 3’ untranslated regions (3’ UTRs). Studies have shown that brain cells tend to
express long 3’ UTR isoforms using distal cleavage and polyadenylation sites (PASs).

Methods: Using our recently developed, comprehensive PAS database PolyA_DB, we developed an efficient method to
examine APA, named Significance Analysis of Alternative Polyadenylation using RNA-seq (SAAP-RS). We applied
this method to study APA in brain cells and neurogenesis.

Results: We found that neurons globally express longer 3’ UTRs than other cell types in brain, and microglia and
endothelial cells express substantially shorter 3’ UTRs. We show that the 3' UTR diversity across brain cells can be
corroborated with single cell sequencing data. Further analysis of APA regulation of 3' UTRs during differentiation of
embryonic stem cells into neurons indicates that a large fraction of the APA events regulated in neurogenesis are
similarly modulated in myogenesis, but to a much greater extent.

Conclusion: Together, our data delineate APA profiles in different brain cells and indicate that APA regulation in
neurogenesis is largely an augmented process taking place in other types of cell differentiation.
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Author summary: Most eukaryotic protein-coding genes express isoforms with different 3' UTR lengths. Studies have
shown that transcripts expressed in brain tend to have longer 3' UTRs compared to other tissues. We have developed an
efficient computational method to analyze 3’ UTR isoforms using RNA-seq data. We show that neurons have the longest 3’
UTRs among all brain cell types and 3' UTRs are the shortest in microglia and endothelial cells. This finding is also supported
by single cell sequencing data. We further show that 3" UTRs lengthen in neurogenesis, similar to that in myogenesis.
However, 3’ UTR lengthening is much potent in differentiating neurons.

INTRODUCTION

Cleavage and polyadenylation (C/P) is an essential step
for 3’ end maturation of almost all eukaryotic mRNAs [1].
The C/P site, also known as the polyA site or PAS, is
defined by surrounding sequence motifs [2], which are
recognized by the C/P machinery [3]. Over 70% of
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mammalian genes display alternative cleavage and
polyadenylation (APA), resulting in mRNA isoforms
with different 3’ ends [4,5]. Most APA sites are located in
the 3’ untranslated region (3' UTR) of mRNAs, leading to
isoforms with different 3’ UTR lengths [4]. Differential
expression of APA isoforms has been shown in different
cells and tissue types [6,7]. For example, genes in brain
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express longer 3' UTRs as compared to other tissues [7,8],
whereas transcripts in testis have short 3" UTRs [9]. In
addition, APA is dynamically and globally regulated in a
number of biological conditions, such as cell proliferation
and differentiation, development, cancer, and neuronal
activation [10-14].

Because 3’ UTRs harbor regulatory elements for
aspects of mRNA metabolism, such as nuclear export,
stability, translational efficiency, and subcellular localiza-
tion [1,15,16], APA is believed to play an important role
in post-transcriptional control of gene expression in brain.
Isoforms with long 3" UTRs in brain have been shown to
have functional impacts on the nervous system. For
example, dysregulation of APA of MeCP2 has been
implicated in intellectual disability and neuropsychiatric
diseases [17,18]. Another example is the gene encoding
brain derived neuropathic factor (BDNF), which has two
3" UTR isoforms. While the short 3" UTR isoform is
restricted to soma, the long isoform is enriched in
dendrites [19,20]. Despite some conflicting data [21], it
is generally believed that long 3’ UTR isoforms in brain
cells are localized differently than short 3' UTR isoforms
[22,23].

A number of 3’ end sequencing methods have been
developed in recent years, allowing specific interrogation
of APA isoforms [4,5,24-27]. However, the vast amount
of RNA-seq data available in the public domain offers a
treasure trove for mining APA profiles. Several bioinfor-
matic methods have been developed to examine APA
using RNA-seq data, falling into two categories. One
group of methods examines APA using annotated PASs
[28,29]; and other group predicts PASs based on
difference in RNA-seq read coverage before and after a
PAS [30-33].

Here, using RNA-seq data and our recently created
database PolyA DB 3 with comprehensive PAS annota-
tions, we examine APA in different cell types of mouse
brain. We use RNA-seq data from bulk samples as well as
from single cells. Comparison of APA regulation in
neurogenesis with that in myogenesis indicates general
similarities but different extents of 3' UTR APA.

RESULTS

Analysis of APA using RNA-seq data and annotated
PASs

We recently comprehensively cataloged PASs in human,
mouse, and rat genomes using a large number of samples
from diverse biological conditions [34]. We reasoned that
combining well annotated PASs with RNA-seq data could
offer an efficient approach to study APA. To this end, we
developed a method, named Significance Analysis of

Alternative Polyadenylation using RNA-seq (SAAP-RS).
As illustrated in Figure 1A, for each interrogated PAS in a
3" UTR, we calculated RNA-seq read counts in its
upstream (UP) and downstream (DN) sequences in the 3’
UTR, followed by a statistical test to derive a P-value for
significance of difference in relative isoform expression
between samples (see Methods for detail). For the
statistical test, we used either the Fisher’s exact test
when there was no replicate or the DEXSeq method [35]
when there were replicates to obtain data dispersion.

To test SAAP-RS, we selected an RNA-seq dataset for
mouse brain and testis, which our lab previously
generated [4]. Because we also processed the same
RNA samples by 3’ region extraction and deep sequen-
cing (3' READS), a specialized method which generates
reads at the 3’ ends of poly(A)™ transcripts [4], we could
directly compare results from the two sequencing
methods.

As we previously reported [4], a substantial global APA
bias was detected between brain and testis with the 3’
READS data, based on comparison of top two most
abundant 3’ UTR isoforms of each gene. The number of
genes expressing the long 3" UTR isoform to a higher
level in brain than in testis was significantly greater than
those with the opposite trend by 14-fold (1,291 vs. 91,
Figure 1B). To examine the extent of 3’ UTR size
difference for each gene between samples, we calculated a
relative expression difference (RED) value, reflecting
difference in log,(distal PAS/proximal PAS) between two
samples. Log,(distal PAS/proximal PAS) was based on
expression levels (reads per million, RPM) of distal and
proximal PAS isoforms. The median RED between brain
and testis was 1.75 using the 3' READS data (Figure 1C).

To examine APA with RNA-seq data, we considered
several options in choosing a reference PAS to gauge 3’
UTR length changes, including the first conserved PAS,
the PAS with the highest expression levels (highest RPM)
based on all samples used in PolyA DB [34], the PAS
with the widest expression breadth based on the percent of
samples with expression (PSE) value in PolyA DB [34],
and the most significantly regulated PAS based on SAAP-
RS P-values (see Methods for detail). As shown in Figure
1C, all four methods gave rise to a positive median RED
value for brain vs. testis, consistent with the 3’ READS
result. None of the RED values, however, were as high as
that from the 3’ READS analysis, indicating lower
sensitivity to detect 3" UTR length changes using RNA-
seq data as compared to 3’ end sequencing. However, this
is expected, because RNA-seq data could not resolve
individual PAS isoforms and, hence, reads in upstream
and downstream regions of a reference PAS could come
from multiple APA isoforms. By contrast, 3’ READS data
are specific for individual PASs, providing sharper
differences between isoforms. We found that using the
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Figure 1. APA analysis using RNA-seq data. (A) Schematic of the SAAP-RS strategy. RNA-seq reads are divided into upstream
(UP) and downstream (DN) region groups relative to the reference PAS obtained from the PolyA_DB database. A statistical test, such
as the Fisher’s exact test or DEXSeq, is used to compare the read distribution in UP and DN regions between two sample groups. As
indicated, the relative expression difference (RED) value for each reference PAS is the difference in log,(DN/UP) between two sample
groups (test vs. reference). (B) 3' UTR APA analysis of 3' READS data from brain and testis. Each dot represents a gene with two 3’
UTR isoforms, named proximal PAS (x-axis) and distal PAS (y-axis). Blue (91) and red (1,291) dots represent genes with significantly
shortened and lengthened 3' UTRs in brain vs. testis, respectively (P <0.05, DEXSeq, n = 2). Ratio of number of red dots to blue dots
is indicated. (C) Box plots showing RED values based on different methods to choose a reference PAS for APA analysis. Median RED
values are indicated. Highest RPM and Highest PSE PASs are those with the highest expression levels of all samples in the
PolyA_DB database and with the highest percent of samples with expression across samples, respectively. (D) An example gene
Hspa4l shown in USCS genome browser. Conserved and non-conserved PASs annotated in the PolyA_DB are shown in different
colors as indicated. Selected PASs for different PAS selection methods are highlighted in red. (E) Scatter plots comparing RED values
from 3' READS and those from RNA-seq data. Different reference PAS selection methods are shown. Pearson correlation coefficient
(r) is shown.

most significant PAS as a reference gave a higher RED
value (1.07) than other methods (0.78-0.79) (Figure 1C).
An example gene, Hspa4l, is shown in Figure 1D, with
reference PASs used by the four methods indicated.

We next directly compared RED values obtained from
3’ READS with those from RNA-seq data for individual
genes (Figure 1E). The method using the first conserved
PAS as a reference showed a better correlation (» = 0.33,
Pearson correlation, Figure 1E) than other methods (» =
0.28-0.29, Figure 1E). Therefore, we conclude that RNA-
seq data coupled with annotated PASs can be effectively
used to examine APA changes despite lower sensitivity
than data from 3’ end sequencing.
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Neurons globally express longer 3’ UTRs than other
cell types in mouse brain

Previous studies indicated longer 3’ UTRs in brain than
other tissues [7,8]. However, how different cell types in
brain differ in APA is unclear. With SAAP-RS, we next
set out to examine APA profiles in different cell types of
brain using an RNA-seq dataset generated by Zhang et al.
[36]. With this data, different types of cells in mouse
cerebral cortex were isolated through immunopanning
and fluorescence-activated cell sorting (FACS) [36]. The
cell types include astrocytes, neurons, oligodendrocytes,
endothelial cells, and microglia. To compare APA profiles
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across these cell types, we first calculated a normalized
RED value for each gene using the first conserved 3' UTR
APA site as a reference. Only genes with expression in all
cell types were used (see Methods for detail). Heatmap
and clustering analyses indicate that the APA profile is
distinct among different brain cells (Figure 2A). Neurons
displayed the longest 3’ UTRs overall (median RED =
0.77, Figure 2B), followed by astrocytes (median RED =
0.2) and oligodendrocytes (median RED=-0.1).
Endothelial cells and microglia had shorter 3" UTRs
globally, with median RED =— 0.30 and —0.54, respec-
tively.

We next identified top 50 APA events that were most
distinct in each cell type as compared to other types, using
gene RED values (see Methods for detail). Consistent
with the global analysis result, all distinct APA events in
neurons showed longer 3’ UTRs than other cell types
(Figure 2C). Astrocytes also showed longer 3’ UTRs in
most of the events. By contrast, distinct APA events in
endothelial cells, microglia and oligodendrocytes corre-
sponded largely to shorter 3" UTRs (Figure 2C). An
example gene, Nedd4l, is shown in Figure 2D, which
encodes an E3 ubiquitin-protein ligase involved in
regulation of several molecules and pathways, such as
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Figure 2. APA differences among brain cells. (A) Heat map of APA profiles of different brain cells. Normalized RED values by
standardization across samples are shown in the heat map. RED is based on comparison of each sample with the mean of all
samples. The first conserved PAS was used as the reference PAS for RED calculation. A total of 2,068 genes are shown. Samples are
clustered using Pearson correlation as a metric and genes are sorted by the mean RED values of neurons. (B) Median normalized
RED values of each cell type. Two replicates for each cell type were averaged for plotting. Error bars are standard deviation of two
replicates. (C) Heatmap of top distinct APA events of different cell types. Distinct APA events were selected by Wilcoxon test
comparing RED values of one cell type with those of other cell types (see Methods for detail). (D) An example gene Nedd4/ shown in
UCSC genome browser, which showed longest 3' UTRs in neurons. The reference PAS is indicated by a red line. Other conserved
(black) and non-conserved (gray) PASs also indicated. The conservation track is based on seven mammalian species (rat, human,
orangutan, horse, dog, chicken, and opossum). (E) Bar graph showing the number of genes with significantly shortened (blue) or
lengthened (red) 3' UTRs (P<0.05, DEXSeq) in neurons vs. another cell type. The most significant 3' UTR PAS was used as the
reference for analysis. The ratio of number of 3' UTR lengthened genes to number of 3' UTR shortened genes for each cell type is
indicated. Error bars are standard deviation obtained by bootstrapping (see Methods for detail).
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EGFR, WNT signaling pathway and ion channels [37,38].
While neurons had abundant RNA-seq reads in the
downstream region of the reference PAS, other cells had
much fewer reads in the region (Figure 2D). Some
example marker genes for other cell types are shown in
Supplementary Figure S1A.

To further corroborate the first conserved PAS-based
result, we next carried out pair-wise comparisons between
neurons and cells of another type (Figure 2E), requiring
expression of gene only in the two comparing cell types.
We used the most significant PAS out of all possible PASs
as a reference to gauge 3’ UTR length differences.
Consistent with the all cell comparison result using the
first conserved PAS, neurons showed longer 3’ UTRs than
other cell types (Figure 2E). The ratio of genes with
longer 3°’'UTRs in neurons to genes with the opposite
trend was greater than three in all comparisons (Figure
2E). Taken together, our data indicate that neurons
globally express longer 3" UTRs than other cell types in
brain.

Some neuron-enriched genes appear to express
longer 3’ UTRs in non-neuronal cells

We also noticed from all sample comparisons (Figure 2A)
and pair-wise comparisons (Figure 2E) that some genes
showed shorter 3' UTRs in neurons than in other cells
(blue genes in Figure 2A and 2E). An example gene
Taf13, encoding transcription initiation factor TFIID
subunit 13, is shown in Figure 3A, which had a lower
RED value in neurons than in other cell types. Venn
diagram analysis indicated that genes with longer 3’ UTRs
in non-neuronal cells were more likely to have restricted
expression in certain cell types. For example, whereas 637
genes showed longer 3’ UTRs in neurons than all other
cell types (Supplementary Figure S1B), only 12 genes had
shorter 3" UTRs in neurons than all other cell types
(Supplementary Figure S1C).

We next carried out Gene Ontology (GO) analysis of
the genes with different 3" UTR lengths in neurons vs.
other cell types (Figure 3B). Interestingly, the top GO
terms for genes with longer 3' UTRs in neurons were
related to basic cellular functions, such as “cellular
macromolecular metabolic process” and “intracellular
transport”, as well as RNA metabolism processes, such as
“RNA processing”. A few GO terms related to protein
degradation and modification, such as “protein catabolic
process”, “protein modification by small protein conjuga-
tion or removal” and “cellular protein catabolic process”
were also enriched. By contrast, GO terms enriched for
genes with longer 3" UTRs in other cell types varied
between different comparisons and some were related to
neuronal features (Figure 3B). The most significant GO
terms were those associated with longer 3’ UTRs in

microglia, including “vesicle fusion”, “exocytosis”,
“organelle localization”, “dendritic spine development”,
etc.

Next, we specifically examined neuron-enriched genes.
Using the same RNA-seq data, we identified a total of
1,178 genes that had significantly higher expression
levels in neurons as compared to other cell types
(FDR < 0.05, DESeq analysis, fold change>2, Figure
3C). Interestingly, these genes, named “neuron-enriched
genes”, displayed lesser lengthened 3’ UTRs in neurons as
compared to other cell types (Figure 3D). Some examples
are shown in Supplementary Figure S1D. Taken together,
our results indicate that some neuron-enriched genes tend
to show longer 3’ UTRs in non-neuronal cells where their
expression levels are low.

Single cell RNA-seq data corroborate bulk RNA
sample results

To corroborate our findings based on RNA-seq data with
RNA from bulk samples, we resorted to single cell RNA-
seq (scRNA-seq) data generated by Zeisel et al. [39],
where single cells from mouse cerebral cortex and
hippocampus were analyzed. For cerebral cortex, which
is the same region used by Zhang et al. [36], the authors
identified 113 astrocytes/ependymal cells, 133 endothe-
lial/mural cells, 149 interneurons, 62 microglial cells, 540
oligodendrocytes and 305 pyramidal neurons (Figure
4A). We first identified genes that had reads in 3’ UTRs
and then calculated log,(DN/UP) using the first conserved
PAS as the reference for APA analysis (see Methods for
detail). Because of the shallow sequencing depth of
scRNA-seq, we were able to examine only 100-300
genes in each cell (Figure 4B). As shown in Figure 4C,
interneurons and pyramidal neurons had the longest 3’
UTRs (median RED=1.84 and 1.62, respectively)
compared to other cell types (median RED=1.32 or
lower, Figure 4C). Again, microglia showed the shortest
3’ UTRs among all cell types (Figure 4C).

We next applied the same method to examine APA in
hippocampal samples, which included 81 astrocytes/
ependymal cells, 33 endothelial/mural cells, 126 inter-
neurons, 14 microglial cells, 121 oligodendrocytes and
936 pyramidal neurons (Supplementary Figure S2A and
S2B). Again, we observed longer 3' UTRs in interneurons
and pyramidal neurons than in other cell types (Supple-
mentary Figure S2C). Note the data of microglial cells
were not conclusive due to their small sample size (only
14 cells) and, hence, high data variation (Figure S2C).

We next wanted to compare bulk RNA-seq results with
scRNA-seq results. To this end, we selected top and
bottom 25% of genes with respect to RED values in
neurons (heatmap in Figure 2A), and examined their
respective log,(DN/UP) values in the scRNA-seq data. As
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(B) Top biological processes GO terms enriched for genes with different 3' UTR lengths in neurons vs. another cell type. Top five GO
terms were selected for each comparison shown in Figure 2E. Significance score (SS) was calculated by (—log4oP)-s, where P is
based on the Fisher’s exact test indicating the significance of association between a GO term and genes with longer or shorter 3'
UTRs. s = 1 for association with genes with longer 3' UTRs in neurons and s = —1 for association with genes with shorter 3' UTRs in
neurons. GO terms are sorted based on the most significant term across all comparisons. SS values are shown in a heatmap. (C)
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shown in Figure 4D, genes with high RED values in
neurons with bulk RNA samples also showed signifi-
cantly higher log,(DN/UP) values in neurons based on the
scRNA-seq data, as compared to genes with low RED
values (P = 0.01, Kolmogorov-Smirnov (K-S) test). In
summary, our scCRNA-seq analysis supports the conclu-
sion that neurons in general have longer 3' UTRs than
other brain cells, and different genes vary their 3' UTR
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lengths to different degrees between neurons and other
cell types.

3’ UTR lengthening in neurogenesis
Genes display 3’ UTR lengthening during cell differentia-

tion and development [4,10]. We next wanted to address
to what extent the 3'UTR length differences between
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groups is shown.

neurons and other cell types are attributable to APA
regulation during neurogenesis. To this end, we analyzed
RNA-seq datasets from two studies that involved
differentiation of mouse embryonic stem cells (mESCs)
into terminally differentiated neurons [40,41].

Using SAAP-RS, we observed overall 3’ UTR
lengthening during neurogenesis with both data sets
(median RED = 0.56 and 0.44 for Ref. [41] and Ref.
[40], respectively) and a high correlation between these
two data sets (» = 0.74 for all genes and » = 0.86 for
significantly regulated genes in both studies, Figure 5A).

To address whether long 3’ UTRs in mature neurons are
established in neurogenesis, we compared RED values in
neurogenesis with that in neuron vs. other brain cells
(Figure 5B and 5C). We observed overall high correla-
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tions between neurogenesis and neuron vs. microglia cells
(r = 0.52, Pearson correlation) or neurons vs. endothelial
cells (r = 0.62, Pearson correlation).

GO analysis indicated that the genes with lengthened
3" UTRs during neurogenesis tended to be enriched for
several biological processes, such as “peptide metabolic
process”, “RNA processing” and “cellular macromole-
cular complex assembly”, and some cellular components,
such as “intracellular part”, “intracellular ribonucleopro-
tein complex”, “mitochondrial part” (Supplementary
Figure S3A). Interestingly, similar GO terms were also
enriched for genes with longer 3' UTRs in neurons as
compared to other brain cells (Supplementary Figure 3B).

To examine how 3" UTR lengthening in neurogenesis is
conserved between mouse and human, we analyzed
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for each gene group is indicated. (B and C) Comparison of APA events in neurogenesis with those in neurons vs. microglia (B) or in
neurons vs. endothelial cells (C). Neurogenesis RED values are based on averaged REDs from two different studies. Significantly
regulated genes in only one of the comparisons are shown in black and those significant in both are in red (P<0.01, Fisher’'s Exact
Test). Pearson correlation coefficient (r) is indicated. (D) Comparison of APA regulation in mouse neurogenesis vs. human
neurogenesis. Gene groups (indicated by colors) are those from (A). Median values and P-values for differences between groups (K-S

test) are indicated ( *** P<1 x 107).

RNA-seq data from Ref. [42], in which induced
pluripotent stem cells (IPSCs) were differentiated into
mature neurons [42], and from Blair et al., in which
human ESCs (hESCs) were differentiated into mature
neurons [43]. Both data sets showed significant 3" UTR
lengthening (Figure S3B) and were well correlated (r =
0.49 for all genes, and 0.70 for significantly regulated
genes in both studies). In addition, using orthologous
genes, we found that the gene set with the most significant
3" UTR lengthening in murine neurogenesis also
displayed the greatest 3' UTR lengthening in human
neurogenesis (Figure 5D), supporting conservation of 3’
UTR lengthening in neurogenesis between the two
species.

Similarity in APA regulation between neurogenesis
and myogenesis

We previously showed that 3’ UTRs generally lengthen in
myogenesis, which recapitulates APA regulation in
embryonic development [4]. We next wanted to examine
how 3" UTR lengthening in neurogenesis is related to that
in myogenesis. To this end, we first analyzed APA of
C2C12 differentiation data sets from two different studies
(Supplementary Figure S4A) [44,45]. Overall, myogen-
esis displayed 3" UTR lengthening to a lesser extent than
neurogenesis (median RED = 0.13 vs. 0.47). However, a
modest positive correlation between these two processes
could be discerned (r = 0.40 for all genes and r = 0.44 for
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Table 1 Top biological process and cellular component GO terms enriched for genes with lengthened 3’ UTRs in both

neurogenesis and myogenesis

Category GO term P

Biological process RNA processing 6.2E-06
Ribosome biogenesis 6.2E-05
Regulation of ubiquitin-protein transferase activity 2.6E-04
Translation 1.2E-03
Inner mitochondrial membrane organization 1.9E-03
Negative regulation of organelle assembly 2.0E-03
Viral budding 4.4E-03
Establishment of protein localization to mitochondrial membrane 4.4E-03
Outer mitochondrial membrane organization 5.2E-03
Ribonucleoprotein complex subunit organization 7.0E-03

Cellular component Macromolecular complex 1.5E-05
Mitochondrial ribosome 7.1E-04
Nucleolus 1.4E-03
Membrane protein complex 3.3E-03
Catalytic step 2 spliceosome 4.3E-03

Genes (347 in total) correspond those red dots in Figure 6B. P-values are based on the Fisher’s exact test.

significantly regulated genes in both, Figure 6B),
indicating APA regulation in myogenesis is related to
that in neurogenesis. We identified 347 genes that were
commonly lengthened in both neurogenesis and myogen-
esis. Interestingly, GO analysis showed that these
consistently regulated genes were enriched for several
GO terms, including “RNA processing”, “translation” and
“mitochondrial ribosome” (Table 1). An example gene
Pdkl encoding pyruvate dehydrogenase kinase 1 is
shown in Figure 6C, which displayed 3’ UTR lengthening
in both neurogenesis and myogenesis (Figure 6C). This
gene is involved in many biological events from cancer to
Alzheimer’s disease [46—48]. A previous study showed
that Pdkl deficiency in mouse brain caused abnormalities
such as microcephaly and neuronal hypertrophy [49].

Consistent with our previous study [50,51], we found
that the extent of 3" UTR lengthening in myogenesis
correlates with aUTR size (Figure 6D). Interestingly, a
similar trend could be discerned with neurogenesis
(Figure 6D), but with a much greater extent of 3" UTR
lengthening.

Previous studies indicated that downregulation of C/P
factors leads to 3’ UTR lengthening in cell differentiation
[10,50]. We thus wanted to know how C/P factor
expression was regulated in neurogenesis. Interestingly,
we observed marked downregulation of C/P factor
transcripts during neurogenesis, the extent of which was
greater than that during myogenesis (median log, fold
change: —0.7 and —0.38 for neurogenesis and myogen-
esis, respectively; P=4.4 x 1073, Wilconxon test, Figure
6E). We also observed a moderate correlation of C/P
factor expression changes between neurogenesis and
myogenesis (» = 0.36 and = 0.51 for all C/P factors and

core C/P factors, respectively, Supplementary Figure
S4B). Taken together, our data indicate that a common set
of APA events are regulated in both myogenesis and
neurogenesis. The latter shows augmented 3’ UTR
lengthening compared to the former, plausibly due to
lower C/P activities in neurons.

DISCUSSION

In this study we developed a method, named SAAP-RS,
to examine APA using RNA-seq data combined with
comprehensively annotated PAS database, PolyA DB.
We show that using the first conserved PAS as a reference
offers an efficient approach to examine global APA
profiles across multiple samples, whereas each PAS can
be individually examined when only two samples are
compared. When replicates are available, the DEXSeq
method can be readily used to obtain data dispersion and
false discovery rate. Because no de novo prediction of
PAS is needed, our method is computationally lightweight
and is well suited for large scale mining of APA profiles.
While we focused on 3' UTR APA sites in this study, APA
events in introns [52] could also be analyzed with minor
changes.

We applied SAAP-RS to studying APA in brain cells
and neurogenesis. Using the widely used brain cell RNA-
seq data from Ref. [36], we defined 3' UTR APA profiles
in different brain cell types. We show that the APA profile
can be used to distinguish brain cell types, similar to using
gene expression levels, and neurons express longest 3’
UTRs among all brain cells. However, intriguingly, genes
with basic cellular functions appear to express long 3’
UTR isoforms to a greater extent than other genes in
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Figure 6. APA regulation in neurogenesis vs. myogenesis. (A) CDF curves showing RED values for myogenesis (black) and
neurogenesis (red). RED values are based on the first conserved 3'UTR PAS as the reference for APA analysis. Each curve was based
on two different studies. (B) Scatter plot comparing 3'UTR APA in neurogenesis vs. myogenesis. Neurogenesis and myogenesis RED
values are based on two different studies each. Significantly regulated genes in only one process are shown in black and those
significant in both are shown in red (P < 0.01, Fisher’s Exact Test). Pearson correlation coefficient (r) is indicated. (C) An example gene,
Pdk1, with lengthened 3' UTRs in both neurogenesis and myogenesis. The reference PAS used for analysis is indicated by a red arrow.
RPM ranges (in brackets) are indicated. RED and P-values (Fisher’s Exact Test) for both comparisons are indicated. (D) Relationship
between aUTR size and APA regulation. Gene are divided into 5 bins based on distance between reference PAS and last PAS (aUTR
size). Median RED for each bin is shown in the plot. (E) Violin plot showing log, fold change of 87 C/P factor genes expressed during
both neurogenesis and myogenesis. Median values and P-value indicating difference in gene expression changes between

neurogenesis and myogenesis (Wilcoxon test) are indicated.
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neurons, including “RNA processing”, “macromolecular
complex”, “translation”, etc. By contrast, some neuron-
enriched genes were found to express long 3’ UTR
isoforms to a greater extent in non-neuronal cells. It
remains a possibility that RNA stability may be involved
in shaping the APA pattern for neuron-specific genes. For
example, long 3" UTR isoforms are more rapidly
degraded in neurons where the gene expression level is
high and are more stable in non-neuronal cells where the
gene expression level is low. However, a more parsimo-
nious explanation is that APA site choice is coupled with
transcriptional gene regulation for neuron-specific genes.
That is proximal PASs are preferred when genes are
expressed at high levels whereas distal PASs are
preferentially used when gene expression levels are low.
This coupling mechanism was previously suggested to
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entail more efficient recruitment of the 3’ end processing
machinery when transcription is activated [53,54]. Future
studies will need to address why the coupling seems
obvious in the neuronal system but not so in other systems
[25].

Recent studies of 3' UTR isoforms in hESC-derived
neurons and in the Drosophila nervous system indicate
that long 3" UTR isoforms in general have repressed
translation [43,55]. Our data indicate that neuron-specific
genes in fact do not show the greatest 3' UTR lengthening
in neurons. Therefore, these genes, through expression of
short 3" UTR isoforms, can avoid translational repression,
leading to enhanced protein production in neurons. This
needs to be examined in the future.

We found that while neurogenesis exhibits much
stronger 3" UTR lengthening than myogenesis, 3’ UTR
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APA regulations in these two processes are generally
correlated. Therefore, with respective to 3’ UTR length
control, neurogenesis appears to be an augmented
differentiation process that takes place in other cell
types. Future studies need to address whether this
augmentation is due to greater PAS usage control in
neurons, for example, through transcriptional pausing
[56], or to long 3" UTR stabilization, for example, through
repressed mRNA decay [57].

In this study, we used scRNA-seq data to corroborate
our findings based on bulk RNA samples. While the low
read coverage of scRNA-seq data made it infeasible to
examine APA of individual genes, the cell-based global
patterns were consistent with those of regular RNA-seq.
As expected, our analysis indicated that a small number of
cells would result in high data variability. Therefore,
future studies using a large number of cells would be
critical to further unravel APA dynamics in single cells.

METHODS
Datasets and data processing

Bulk RNA-seq data for different cell types in cerebral
cortex of mouse brain [36] and single cell RNA-seq data
generated by Zeisel et al. [39] were downloaded from
European Nucleotide Archive (ENA). 3' READS and
RNA-seq datasets for brain and testis samples were
previously generated in our lab [4]. Neurogenesis RNA-
seq data [40,41] and myogenesis data [44,45] were
downloaded from the gene omnibus expression (GEO)
database. 3' READS data were analyzed as previously
described [4]. Briefly, reads were mapped to the mouse
genome (mm9) using bowtie2 [58] and reads with more
than two unaligned 5" Ts were considered as PAS reads.
PASs within 24 nucleotides from one another were
clustered together. RNA-seq data were aligned to the
mouse genome with STAR [59] using default settings.
Raw bam files were further processed using R packages:
RSamtools for processing bam files, GenomicAlignments
for counting reads, and GenomicFeatures for defining
genomic regions.

APA analysis using RNA-seq data

Mouse PAS locations were downloaded from PolyA DB
3 (http://polya-db.org/v3/). Information about conserva-
tion, percent of samples with expression (PSE) and mean
reads per million (RPM) for each PAS was obtained from
the database. For each reference PAS, upstream RNA-seq
reads until the stop codon were used as upstream reads
(UP) and those to the last PAS were used as downstream
reads (DN). We used DEXSeq [35] to examine APA

difference when there were replicates. The Fisher’s exact
test was used when there were no replicates. Significant
events were defined as P < 0.05. Standard deviation was
obtained by sampling data with a bootstrapping method
for 20 times, as described previously [51]. Relative
expression difference (RED) was calculated as difference
in log,(DN/UP) between two samples, where DN and UP
are reads in DN and UP regions, respectively. We required
that the read density (read number/length) of the DN
region to be lower than that of the UP region. For RNA-
seq data without strand information, we filtered out genes
that overlapped with downstream antisense genes using
our strand-specific RNA-seq data from brain and testis. A
sense/antisense ratio was calculated for the aUTR region
of each gene using reads on sense and antisense strands.
Genes with a sense/antisense ratio greater than 10 were
selected for further analysis. Sample clustering was
performed with the R heatmap package using Pearson
correlation. Each row was normalized by standardization
(minus mean and divided by standard deviation). Marker
genes were selected by comparing normalized RED
values of each gene with those of other cell types by the
Wilcoxon test.

Gene expression analysis

Differential gene expression analysis was performed with
DESeq [60]. Significant events were defined as
FDR < 0.05 and fold change > 2. Only CDS reads were
used for gene expression analysis to avoid confounding
issues with APA analysis.

Single cell RNA-seq (scRNA-seq) analysis

scRNA-seq reads were mapped to genes similar to bulk
RNA-seq data. We required DN or UP regions to have at
least 1 read. We calculated log,(DN/UP) for each gene. A
pseudo count of 1 was used to avoid infinity values.
Log,(DN/UP) was averaged for each cell. For gene set-
based analysis, we required both DN and UP regions of
each gene to have at least 1 read. Log,(DN/UP) values of
a gene from different cells were normalized.

Data access

All data are accessible through the Gene Expression
Omnibus (GEO) database, including brain cell bulk
RNA-seq data (GSE52564); single cell RNA-seq data
(GSE60361); neurogenesis data from Ref. [41]
(GSE25533), Ref. [40] (GSE33252), Ref. [42].
(GSE60548) and Ref. [43] (GSE100007); and C2C12
differentiation data from Ref. [45] (GSE94560) and
Ref. [44] (GSE84279).
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