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Background: Next-generation sequencing (NGS) technologies have fostered an unprecedented proliferation of high-
throughput sequencing projects and a concomitant development of novel algorithms for the assembly of short reads.
However, numerous technical or computational challenges in de novo assembly still remain, although many new ideas
and solutions have been suggested to tackle the challenges in both experimental and computational settings.
Results: In this review, we first briefly introduce some of the major challenges faced by NGS sequence assembly. Then,
we analyze the characteristics of various sequencing platforms and their impact on assembly results. After that, we
classify de novo assemblers according to their frameworks (overlap graph-based, de Bruijn graph-based and string
graph-based), and introduce the characteristics of each assembly tool and their adaptation scene. Next, we introduce
in detail the solutions to the main challenges of de novo assembly of next generation sequencing data, single-cell
sequencing data and single molecule sequencing data. At last, we discuss the application of SMS long reads in solving
problems encountered in NGS assembly.
Conclusions: This review not only gives an overview of the latest methods and developments in assembly algorithms,
but also provides guidelines to determine the optimal assembly algorithm for a given input sequencing data type.

Author summary: In this review, we focus on the main challenges facing de novo assembly and its solusions. Firstly, we
introduce some of the major challenges faced by de novo assembly. Secondly, we analyze the characteristics of various
sequencing platforms and their impact on assembly results, and introduce the characteristics of each assemblers and their
adaptation scene. Thirdly, we introduce in detail the solutions to the main challenges of de novo assembly. Finally, we discuss
the latest methods and developments in de novo assembly.
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INTRODUCTION

De novo genome sequence assembly is the process of
reconstructing a genome from a collection of short
sequencing reads and is an integral step in any genome
project [1,2]. Unlike resequencing projects, de novo
assembly is performed without the aid of a reference
genome; conversely, the genome is reconstructed from
scratch. An accurate reconstruction is crucial, as both the
continuity and base accuracy of an assembly can affect the
results of all downstream analyses [3]. With the

increasing efforts to sequence and assemble the genomes
of more organisms, the assembly problem becomes more
complicated and computationally intensive, especially
with short inaccurate sequence reads and genomic repeats
[4].
The sequencing errors occur more frequently in regions

with an extremely high GC or AT content, such as
constant heterochromatin regions, including centromeres,
telomere or highly repetitive sequences, all of which may
generate a complex assembly graph. In the process of
sequence assembly, the complex assembly graph is
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difficult to deal with and also the final results are often not
satisfactory. The sequencing errors include substitutions,
insertions and deletions. The sequencers may output N to
indicate the confirmed presence of a nucleotide that
cannot be called accurately. The probability of these three
types of errors occurring is different with sequencing
platforms. Substitution errors are dominant in some
platforms such as Illumina, while in others such as 454
and Ion Torrent, homopolymer and carry-forward errors
are manifested as plenty of insertions and deletions [5].
The rates and types of sequencing errors vary according to
the next-generation platforms and library preparation
methods. DNA sequence reads from Illumina sequencing
technologies have errors at the rate of 0.02–0.05% [6].
With the diminishing costs, high throughput DNA
sequencing has become a commonplace technology in
biological research. Whereas the second generation
sequencers produces short but quite accurate reads, new
technologies such as Pacific Biosciences and Oxford
NanoPore produce reads up to 50,000 bp long but with an
error rate of at least 15%. Although the long reads have
proven to be very helpful in applications like genome
assembly [7,8], the error rate poses a challenge for the
utilisation of these data.
The sequencing biases occur more frequently in

favoring GC-balanced regions and have fewer reads in
GC poor regions. For example, Illumina sequencing
platform has base composition bias, which usually results
in uneven sequencing depth across genome [9]. The base
composition bias is usually arisen from different
processing steps of Illumina sequencing, such as PCR
amplification of library, or sequencing step. Although
new experimental technologies, such as optimized PCR
protocols, are developed to reduce base bias, the base bias
cannot be removed completely in next-generation sequen-
cing (NGS) reads. Since most of de Bruijn graph based
assemblers use the read depth information for construct-
ing contigs and scaffolds, the uneven sequencing depth
impedes the genome assembly [10]. Recent studies have
continued to improve assemblies from single cells, but the
full potential of single cell sequencing has not yet been
realized. The main challenge for single cell assembly is
sequencing bias. The challenges faced by single cell
genomics are increasing in computation rather than
experiment [11]. All previous single cell studies use
standard fragment-assembly tools [12,13], developed for
data models with characteristics of standard (rather than
single cell) sequencing. Sequencing bias poses a serious
problem for existing de novo assembly algorithms. De
Bruijn-based assemblers use an average coverage cutoff
threshold for contigs to prune out low coverage regions,
which tend to include more errors. This pruning step not
only reduces the complexity of the underlying de Bruijn
graph substantially and makes the algorithms practical,

but also seriously affect the effective length and genome
fraction of the final assembly.
Most genomes contain a certain proportion of repeats,

particularly mammalian in which repeats account for
25%–50% of its entire genome [14]. Approximately 50%
of the human genome comprises nonrandom repeat
elements, such as long interspersed nuclear elements
(LINEs), short interspersed nuclear elements (SINEs),
long terminal repeats (LTRs) and simple tandem repeats
(STRs) [15], which often cause misarrangements or gaps
in the assembly. These repeat sequences also cause a
nonuniform read depth, thus resulting in copy loss or gain
in the assembly. To address the problem of repetitive
regions, researchers have proposed some solutions. Most
recent assemblers make use of pairedend reads which can
be produced by NGS technologies for resolving repetitive
region problems. Although paired-end reads are widely
applied to resolve problems caused by repetitive regions
in genome assembly, the performance of most assemblers
is not satisfactory yet because of the existence of
sequencing errors and uneven sequencing depths. In
contrast, single-molecule sequencing (SMS) long reads
that cover the repeats could easily address the problem.
Because the SMS long reads are generated by a PCR-free
method and are less biased to regions with GC or AT
contents [16,17], they are greatly beneficial in over-
coming the uneven sequencing depth and gap problems.
Alternatively the use of SMS long reads as offered by the
PacBio RS methodology can potentially solve complex
genomic situations, yet the algorithmic implementation
still suffers from a relatively high error rate.
De novo assemblers are often based on the graph

structure (such as de Bruijn graph or overlap graph)
implementation, which require substantial random access
memory (RAM), storage and long computation times. For
example, several short-read assembly packages (such as
Abyss [18], ALLPATHS-LG [19], SGA [20] and
SOAPdenovo [21]) have been proven for mammalian-
size genomes up to the 3 Gbp human genome, they
generally take several days to weeks and require servers
or clusters with 512 gigabytes (GB) of RAM and many
terabytes (TB) of disk space available for a gigabase-sized
genome [22].
Algorithms for de novo assembly have evolved in

concert with these technology improvements. The main
algorithmic approaches to de novo assembly are based on
a separate theoretical graph framework. There are three
basic graph frameworks for efficiently completing their
task, namely, overlap layout consensus (OLC) graph, de
Bruijn graph and string graph. In an OLC graph, overlaps
between all reads are first detected, then contigs are
formed by iteratively merging overlapping reads until a
read is heuristically determined to be at the boundary of a
repeat [23]. In a de Bruijn graph, nodes are the set of
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distinct k-mers (substrings of length k) extracted from
reads and the edges are the (k–1) overlap among them.
The string graph is a simplified version of a classical
overlap graph, where nodes are the sequenced reads and
the non-transitive edges encode their suffix-to-prefix
overlaps [24–27]. The overlap-based approach is a
straight forward approach for long read assembly because
it assembles the long reads themselves without converting
to k-mers [28].

SEQUENCING DATA ANALYSIS

High-throughput sequencing has begun to revolutionize
science and healthcare by allowing users to acquire
genome wide data by using massively parallel sequencing
approaches. The different sequence platform vendors
have devised different strategies to prepare the sequence
libraries according to suitable templates as well as to
detect the signal and ultimately read the DNA sequence.
For the Illumina, Solid, PGM and 454 systems, a local
clonal amplification of the initial template molecules into
polonies [29] is required to increase the signal-to-noise
ratio because the systems are not sensitive enough to
detect the extension of one base at the individual DNA
template molecule level.
On the other hand, the Heliscope and PacBio SMRT

systems do not need any pre-amplification steps as these
systems are sensitive enough to detect individual single
molecule template extensions [30]. The different strate-
gies to generate the sequence reads also lead to
differences in the output capacity for the different
platforms. The performance comparison between high-
throughput sequencing platforms is shown in Table 1.
NGS technologies, also known as massively parallel
sequencing or deep sequencing [31], include the second
generation and third generation sequencing technology.
At present, representative second-generation sequencing
platforms are Roches 454 in Switzerland, genome
analyzer (GA), HiSeq 2500 and MiSeq from Illumina in
the United States, sequencing of oligomer connection
detection in American ABI company (sequencing by
oligo ligation detection, SOLiD) 5500xl, Ion Torrent
personal genome machine (PGM) from Life Technolo-
gies, USA. The third generation sequencing platforms

include the SMRT sequencing technology from Pacific
Biosciences and the Nanopore sequencing technology
from Oxford Nanopore Technologies, UK. Below we
focus on the newer sequencing platforms, such as the
Illumina, Life Technologies Semiconductor sequencing,
PacBio and Nanopore.

The second generation sequencing technology

The second generation sequencing technologies are
characterized by higher parallelism of operations, higher
yield, simpler operation, much lower cost per read, and
unfortunately shorter reads. Although the second genera-
tion sequencing platform produces highly accurate reads
[32], the read may also lead to misassembly. The second
generation sequencing platforms have characteristic error
profiles that change as the technologies improve. Error
profiles can include enrichment of base call error toward
the 3 ends of reads, compositional bias for or against high-
GC sequence, and inaccurate determination of simple
sequence repeats [33]. The rates and types of sequencing
errors with the next-generation platforms and library
preparation method, e.g., DNA sequence reads from
Illumina sequencing technologies, have errors at the rate
of 0.02%–0.05%. The second generation sequencing
technology has the following characteristics compared
with the first generation sequencing technology: (i) higher
sequencing throughput. It does not rely on traditional
capillary electrophoresis, and its sequencing reaction is
performed on a chip, enabling simultaneous sequencing
of millions of dots on the chip [34]; (ii) lower sequencing
costs. It reduces the base cost per Mb by 96% to 99%
compared to the Sanger sequencing method [35];
(iii) higher sensitivity. It has high sensitivity to identify
signals with lower abundance; (iv) it is not convenient to
follow up data analysis [36]; (v) more bias and
mismatches. PCR process may introduce bias and
mismatch [37].

Roche 454 sequencing platform

The Roche 454 system was the first next-generation
sequencing platform available as a commercial product
[38]. The Roche 454 system is performed by the

Table 1 The performance comparison between high-throughput sequencing platforms
Platform Company Error rate (%) Read length (bp) No. of reads/run Time/run Cost/Gb

GS FLX 454 Life Sciences, Roche 1 200–1000 0.4–0.5 Gb ~23 h $9.5

SOLiD 5500xl Applied Biosystems 0.1 2�35–2�75 30–50 Gb ~10 d $70

Illumina HiSeq 2500 Solexa, Illumina 0.2 2�50–2�150 750–1500 Gb ~40 h $45

Illumina MiSeq Solexa, Illumina 0.2 2�50–2�300 7.5–13 Gb 21–56 h $110

PacBio RS Pacific biosciences 16 ~20 �103 500 Mb–1 Gb ~4 h $1000

Nanopore MinION Oxford Nanopore 38 ~200 � 103 500 Mb–1.5 Gb ~50 h $750

No. of reads/run: the number of reads is generated by per run; Time/run: the time spent per run; Cost/Gb: the dollars spent per Gb.
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pyrosequencing method [39]. Compared with other
second generation sequencing platform, the Roche 454
system has the advantage of longer read length. The read
generated by the Roche 454 system can be up to 1 kb in
length. The accuracy of Roche 454 system was up to
99.9%, which reached the same accuracy as Sanger
sequencing. Although the cost of sequencing for the 454
platform is much higher than other second generation
sequencing platforms, it is still the most ideal choice for
applications that requires long read length, such as de
novo assembly.

Illumina sequencing platform

Illumina is currently the leader in the NGS industry and
most library preparation protocols are compatible with the
Illumina system. In addition, Illumina offers the highest
throughput of all platforms and the lowest per-base cost
[40]. Its length is up to 300 bp, compatible with almost all
types of applications. The Illumina platform uses bridge
amplification for polony generation and sequencing by a
synthesis approach. Forward and reverse oligos for
amplification, complementary to the adapter sequences
introduced during the library preparation steps, are
attached to the entire inside surface of the flow cell
lanes. The bridge amplification scheme that Illumina
exploits yields a high number of clusters, i.e., with good
loading of the flow cell, the total number of reads
generated per HiSeq2000 lane may reach ~180 million.
With a paired-end 2 � 100 bp read format the total output
of one flow-cell lane is up to ~36 Gb. A full run of 2 flow
cells sequencing in parallel may yield ~600 Gb of data
[41].

SOLiD sequencing platform

The SOLiD system is widely claimed to have low error
rates, 99.94% accuracy while most other systems are
owing to the fact that each base is read twice [42]. SOLiD
is the highest throughput system on the market. The
disadvantage of SOLiD is that its reads are the shortest
among all the platforms (75 bp maximum) and it takes
relatively long run times [43]. The deficiencies of SOLiD
makes it not well meet the needs of de novo assembly
[44]. The SOLiD system is much less widely used than
the Illumina system and the panel of sample preparation
kits and services is less well developed.

The third generation sequencing technology

An important advantage of the third generation sequen-
cing is the read length. While the original PacBio RS
system with the first generation of chemistry generated
mean read lengths around 1500 bp [45], the PacBio RS II

system with C4 chemistry boasts average read lengths
over 10 kb, with an N50 of more than 20 kb and
maximum read lengths over 60 kb [46]. In contrast, the
maximum read length of Illumina HiSeq2500 is only
paired-end 250 bp [47]. The short read lengths of the
second generation sequencing are commonly unable to
span repetitive regions with at least one unique flanking
sequence. In these cases, the origin of a read cannot be
precisely determined. The highly-contiguous de novo
assembly using PacBio sequencing can close gaps in
current reference assemblies and characterize structural
variation (SV) in personal genomes. With longer reads,
we can sequence through extended repetitive regions and
detect mutations, many of which are associated with
diseases [48]. The limited yield, high error rate and high
cost per base currently prohibit large scale sequencing
projects on the third generation sequencing technologies.
Currently, there are two main types of long read
sequencing technologies: single-molecule realtime
sequencing approaches and synthetic approaches that
rely on existing short read technologies to construct long
reads in silico [49].

PacBio sequencing platform

PacBio RS is a single-molecule real-time (SMRT)
sequencing system developed by Pacific BioSciences.
PacBio RS sequencing platform is developed by Pacific
BioSciences, which offers longer reads (20 kb and even
longer) than the second-generation sequencing technolo-
gies, making it wellsuited for unsolved problems in
genome, transcriptome, and epigenetics research [50].
Another advantage is that its run times is short (30�
human genome is expected to be completed in one day).
The disadvantages of PacBio RS are higher costs (US$2–
17 per Mb), higher error rates (~14%) and the lowest
throughput among all platforms (maximum 500 Mb–1.5
Gb ) [51]. All of these disadvantages have greatly limited
the scop of its applications.

Oxford Nanopore sequencing platform

The most recent third-generation technology was released
by Oxford Nanopore Technologies in 2014. Their current
instrument, the Oxford Nanopore MinION is a handhold
device that sequences DNA by electronically measuring
the minute disruptions to electric current as DNA
molecules pass through a nanopore. Nanopore sequencing
is expected to offer solutions to the limitations of short
read sequencing technologies and enable sequencing of
large DNA molecules in minutes without having to
modify or prepare samples [52]. Despite its potential
many technical hurdles remain, Nanopore MinION is a
small (~3 cm�10 cm) USBbased device that runs off a
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personal computer, giving it the smallest footprint of any
current sequencing platform [53]. This affords the
Nanopore MinION superior portability, highlighting its
utility for rapid clinical responses and hard-to-reach field
locations.

The single-cell sequencing technology

Cell theory provided an entirely new framework for
understanding biology and diseases by asserting that cells
are the basic unit of life [54]. Single-cell genomics aims to
provide new perspectives to our understanding of genetics
by bringing the study of genomes to the cellular level.
Acquiring high-quality single-cell sequencing data has
four primary technical challenges: efficient physical
isolation of individual cells; amplification of the genome
of a single cell to acquire sufficient material for down-
stream analysis; querying the genome in a cost-effective
manner to identify variation that can test the hypotheses
of the study; and interpreting the data within the context
of biases and errors that are introduced during the first
three steps. To maximize the quality of single-cell data
and ensure that the signal is separable from technical
noise, each of these variables requires careful considera-
tion when designing single cell studies [55]. The single
cell data sets display highly nonuniform coverage typical
of single-cell amplification, including blackout regions,
which are contiguous regions of the genome to which no
reads aligned (coverage 0), just as shown in Figure 1,

where the single-cell data sets of E. coli lane1 (subgraph
A) (reads available at http://bix.ucsd.edu/singlecell/)
display highly nonuniform coverage [56]. In multi cell
data set E. coli normal (subgraph B), most positions in the
genome have coverage of 450–800�.

DE NOVO ASSEMBLY METHODS

An assembly is a hierarchical data structure that maps the
sequence data to a putative reconstruction of the target. It
groups reads into contigs and contigs to scaffolds
(sometimes called supercontigs or metacontigs, defining
the contig order and orientation and the sizes of the gaps
between contigs). According to existing literature, the
assembly procedure can be classified as reference guided
genome assembly and de novo genome assembly. De
novo genome sequence assembly is important both to
generate new sequence assemblies for previously unchar-
acterized genomes and identify the genome sequence of
individuals in a reference-unbiased way. Here we focus
on the comparison and evaluation of tools for de novo
assembly of genome sequence. The next-generation
assembly algorithms play around three basic frameworks
for efficiently completing their tasks, namely, OLC graph
[57], de Bruijn graph [58] and string graph [23]. The
popular assemblers based on these three methods are
summarized in Table 2. The illustration of the pipeline of
de novo assembly is shown in Figure 2.

Figure 1. Coverage per genome positions in the E. coli datasets for lane1 (A), normal (B). The y-axis shows the number of
reads that contain position x of the genome in res with the genome binned into 1000 bp windows [56]. The single-cell data sets of

E. coli lane1 (subgraph A) (reads available at http://bix.ucsd.edu/singlecell/) display highly nonuniform coverage typical of single-cell
amplification. In multi cell data set E.coli normal (subgraph B), most positions in the genome have coverage of 450–800�.
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Overlap graph-based methods

OLC assembly algorithm generally works in three steps:
first overlaps (O) among all the reads are found, then it
carries out a layout (L) of all the reads and overlaps
information on a graph and finally the consensus (C)
sequence is inferred. It is an intuitionistic assembly
algorithm, initially developed by Staden (1980) and
subsequently extended and elaborated upon by many
scientists [59]. Construction of OLC graph using example
data from 15 bp length genome region is shown in Figure
2. During OLC assembly, overlaps between all reads are
first detected, then contigs are formed by iteratively
merging overlapping reads until a read heuristically
determined to be at the boundary of a repeat is reached
[60]. Repeats shorter than the minimally expected read
overlap are often resolved, implying that genome
resolution increases with read length. To account for
sequencing errors, imprecise read overlaps are allowed,
although this procedure may fragment the assembly even
when the genomic repeats are nearly identical. The human
genome was constructed primarily using OLC algorithms,
and notable OLC-based assembly methods include
parallel contig assembly program PCAP [61], AMOS
[62], Arachne [27] and Celera [26].

De Bruijn graph-based methods

In de Bruijn graph, each node represents a k-mer (k
consecutive bases in one read), and there will be a
directed arc between two nodes if there is an overlap with
k–1 bases and continuously emerge in one read. A read
with the length of r can be divided into r–k+ 1
overlapping k-mers [63]. Construction of de Bruijn
graph using example data from 15 bp length genome
region is shown in Figure 2. The de Bruijn graph is
classified into two types, Hamiltonian and Eulerian de
Bruijn graphs, according to the method of expressing the
nodes and edges [64]. In Hamiltonian approach, the k-
mers are the nodes, whereas they are the edges in the
Eulerian approach. The Hamiltonian graph approach is
similar to the OLC approach in that the node is the
sequence and the edge is the overlap. In Hamiltonian
graph approach and OLC approach, the sequences are
assembled by finding Hamiltonian paths that traverse all
nodes, each of which is visited only once. This scenario is
known as the NP-complete problem when the number of
nodes is not trivial [65]. Normally, the computational
complexity of finding the Hamiltonian paths is O(m�2n),
where m is the total number of nodes, and n is the number
of branching nodes [66]. The Hamiltonian approach is

Table 2 Summary of popular assemblers
Basic framework Assembler Input Speed Memory N50

OLC graph PCAP SE/PE/Li/L + + +++

AMOS SE/PE/Li + + +++

Arachne SE/PE/Li + + +++

Celera SE/PE/Li/L + + +++

de Bruijn graph Velvet SE/PE/Li ++ ++ +

ALLPATHS SE/PE/Li + + +++

Abyss SE/PE/Li ++ +++ ++

SOAPdenovo2 SE/PE/Li +++ ++ ++

SparaseAssembler SE/PE/Li ++ +++ ++

JR-Assembler SE/PE/Li + + +++

MaSuRCA SE/PE/Li/L + + +++

EPGA PE + +++ ++

EPGA2 PE + + ++

SPAdes SE/PE/Li ++ +++ +++

IDBA-UD SE/PE/Li ++ +++ +++

Velevet-SC SE/PE/Li ++ +++ +++

ALLPATHS-LG PE/Li/L + + +++

String graph SGA SE/PE/Li + + +++

Readjoiner SE/PE/Li + + +++

FALCON L + +++ ++++

SE: single-end reads; PE: paired-end reads; Li: large-insert reads; L: long reads.
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Figure 2. The illustration of the pipeline of de novo assembly. The subgraph (A) shows all reads; the subgraph (B) shows the
principle of building de Bruijn graphs; The subgraph (C) shows the principle of building OLC/String graph; The subgraph (D) shows

the principle of scaffolding and gap filling; The subgraph (E) shows the consensus operation; The subgraph (F) shows the final
genome sequence.
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widely used in de novo assembler such as SOAPdenovo
[21], Abyss [18] and velvet [67]. In Eulerian graph
approach, the sequences are assembled by finding
Eulerian paths that traverse all edges, each of which is
visited only once without simplification in polynomial
time O(n�2). The Eulerian approach is widely used in de
novo assembler such as SPAdes [68], IDBA-UD [69],
EPGA2 [70], MaSuRCA [71] and ALLPATHS [72]. The
Eulerian de Bruijn graph based assemblers generally
perform better in the assembly of a large genome than the
Hamiltonian graph based assemblers. Construction of
Hamiltonian and Eulerian de Bruijn graphs using example
data from 6 bp length genome region are shown in
Figure 3.
Assembly methods based on de Bruijn graphs begin,

somewhat counter-intuitively, by replacing each read with
the set of all-overlapping sequences of a shorter, fixed
length [60]. The length is often denoted by k, and the
sequences k-mers. The value of k is important for
constructing de Bruijn graph. A large value of k will
remove some short repetitive regions while reducing the
number of nodes in de Bruijn graph, but will give rise to
more unconnected sub-graphs which means that the
number of gap regions increases. A small value of k will
reduce some gap regions while increases the connectivity
of de Bruijn graph, but will add more nodes and increase
short repetitive regions. Therefore, the value of k cannot
be too large or too small [70]. Contigs are formed by
merging k-mers appearing adjacently in reads halting at k-
mers from repeat boundaries. This has the cost of
requiring highly accurate reads, and it initially discards
some of the ability for reads to resolve repeats longer than
k bases. It has the benefit of not requiring the storage of
pairwise overlaps and having a graph structure represen-
tative of the repeat structure of the genome. For these
reasons, de Bruijn graph is widely used in sequence
assembly tools.

String graph-based methods

The string graph is the main data representation used by
assemblers based on the OLC paradigm. Indeed, in a
string graph, the vertices are the input reads and the arcs
correspond to the overlapping reads, with the property

that contigs are paths of the string graph. The string graph
can be derived from the overlap graph by first removing
duplicate reads (distinct elements of reads set with the
same or reverse-complemented sequence) and contained
reads (elements in reads set that are a substring of some
element in reads set or their reverse complements), then
removing transitive edges from the graph.
The string graph assembly formulation is similar in

concept to a de Bruijn graph, however, it has the
advantage of not decomposing sequences into k-mers
but rather taking the full-length of a sequence read. The
overlap-based approaches are more suitable than the de
Bruijn graph-based methods for long sequences and
single molecule sequencing reads of high error rate. They
are produced based on operations of read overlap and the
removal of transitively inferred overlaps. The most
widely used string graph-based assembler is SGA [20],
which fist constructs the Burrows and Wheeler Transform
(BWT) [73] and the FM-index [74] of a set of reads, and
then uses those data structures to efficiently compute the
arcs of the string graph. Another famous string graph-
based assembler is called FALCON [60] which was
produced by Pacific Biosciences. FALCON is an experi-
mental string graph-based assembler designed to preserve
ambiguity in the assembly graph, and outputs the longest
path through the graph along with alternate paths [75].
The disadvantage of FALCON is that it can be used only
with high accuracy corrected sequences [76].

CHALLENGES AND SOLUTIONS

De novo genome assembly is an important issue in
bioinformatics. With the advancement of next generation
sequencing technologies, genome assembly has drawn
more and more attention. Although a lot of genome
assemblers are presented, there still exist four major
challenges for de novo genome assembly using next
generation reads. The first challenge is the sequencing
errors, which possibly introduce artifacts in the assembly
results. Sequencing errors usually lead to a complex de
Bruijn graph. In general, the final results from a complex
de Bruijn graph are often unsatisfactory; the second
challenge is the sequencing bias. For example, Illumina
sequencing platform has base composition bias (favoring

Figure 3. Construction of Hamiltonian and Eulerian de Bruijn graphs using example data from 6 bp length genome
region. In this example, the length of genome sequence is 6 bp, the length of k-mer is 4 bp.
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GC balanced regions), which usually results in uneven
sequencing depth across genome; the third challenge is
the topological complexity of repetitive regions in the
genome. Most genomes contain a certain proportion of
repeats, particulary mammalian in which repeats account
for 25%–50% of its entire genome. The repeats cause not
only misarrangements or gaps in the assembly results, but
also the uneven depth of sequencing data. The last
challenge is the huge computational resource consump-
tion. Although the de novo assembly of small genomes,
such as bacterial genomes, takes only serval minutes, the
assembly of large genomes, such as mammalian genomes,
typically takes several days to weeks and requires over
tens to hundreds of GB of peak RAM memory.

Sequencing error

Rapid advances in next generation sequencing technology
have led to exponential increase in the amount of genomic
information. However, next generation sequencing reads
contain far more errors than data from traditional
sequencing methods, and downstream genomic analysis
results can be improved by correcting the errors. The rates
and types of sequencing errors vary according to the next
generation sequencing platforms and library preparation
methods. Below, we focus on the sequencing errors which
are generated by the second and third generation
sequencing platforms. Although the second generation
sequencing platforms produce highly accurate reads (for
example, sequence reads from Illumina sequencing
technologies have errors at the rate of 0.5%–2.5%, and
the errors tend to be accumulated in the 3 part of reads),
the erroneous reads will not only result in misassemblies,
but also lead to a complex de Bruijn graph. In general, the
final results from a complex de Bruijn graph are often not
satisfactory. There are three types of errors which widely
reside in the second generation sequencing reads:
substitutions, insertions and deletions. The description
of those three types of error is shown in Figure 4.
In recent years, the third generation sequencing plat-

forms have been widely used in various fields of genetic
research. For the third generation sequencing platforms,
the major error type is indel (insertions and deletions). For
the third generation sequencing platforms, the average

error rate is 15%, in some cases the error rate is as high as
30%. The comparison of error rate between different high
throughput sequencing platforms is shown in Table 1.
The sequencing errors occur more frequently in regions

with an extremely high GC or AT content, such as
constant heterochromatin regions, including centromeres,
telomeres or highly repetitive sequences, all of which may
generate a complex assembly graph. Therefore, the
sequencing errors should be corrected for more accurate
and contiguous de novo assembly before or during
assembly [77]. The error correction methods can be
divided into three categories. The first one is k-mer
counting-based method, the second one is multiple
sequence alignment-based method, and the third one is
probabilistic consistency-based method. Below, we
introduce four methods one after one.

k-mer counting-based error correction

Most of the sequencing error correction tools implement
the k-mer counting methods, and even tools in other
categories often use k-mer counting to detect sequencing
errors. If a genome is amplified through an ideal
amplification processes, k-mers can be evenly distributed
over all genome regions, and the histogram of k-mers
depth forms a common distribution, e.g., a Poisson (if the
sequencing coverage is low) or Gaussian (if the sequen-
cing coverage is high) distribution [78]. However, when
sequencing errors and bias occur, the corresponding
histogram of k-mers depth may have an exponentially
decreasing or increasing curve, just as shown in Figure 5,
where the left side shows the low depth k-mers which
have a high probability of errors.
The k-mer counting-based error correction methods

work by decomposing the reads into the set of all k-mers
present in them, termed the k-specturm. In NGS data sets
predominantly containing substitution errors, k-mers
within a small Hamming distance from each other are
likely to belong to the same genomic location. By
identifying such a k-mer set, alignment is directly
achieved without resorting to MSA, and error correction
can then be applied by converting each consttituent k-mer
to the consensus [5]. Typical k-mer counting-based error

Figure 4. Three types of error widely reside in the second and third generation sequencing reads: substitutions,
insertions and deletions.
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correction methods includes: Bless [77], Quack [79],
Reptile [80], SOAPec2 [81], EDAR [82].

Multiple sequence alignment-based error correction

The multiple sequence alignment (MSA) based error
correction methods work by aligning reads with each
other and are corrected by consensus. Because those
methods are based on MSA, they will consume more time
to correct errors [83]. Typical MSA-based error correction
methods for short reads include: RASCAL [84], Kalign
[85], and Karect [86]: accurate correction of substitution,
insertion and deletion errors for next-generation sequen-
cing data. Although these methods are computationally
expensive, they are commonly used for error correction of
SMS long reads. Typical MSA based error correction
methods for SMS long reads include: MECAT [76],
LoRDEC [87]. The principle of MSA-based error
correction is shown in Figure 6.
An excellent MSA should be able to quickly and

accurately find the overlap of reads. To achieve this goal,
researchers have paid a lot of efforts and achieved fruitful
results. At present, all programs capable of genome wide
SMS long reads alignment follow the seed-and-extend
paradigm, seeding the alignment by using hash table
index or more recently FM-index [74], and extending
seed matches with the banded Smith-Waterman algo-
rithm. This allows for sensitive detection of indels
(insertions and deletions) as well as allowing for partial
hits. Typical MSA-based algorithms for NGS short reads
include: BWA [88], bowtie [89], MUMmer [90]. Typical

MSA-based algorithms for SMS long reads include:
SSAHA [91], MinHash [92], Min-Map [93], and MECAT
[76].

Probabilistic consistency-based error correction

A common approach of error correction of reads is to
determine a threshold and correct k-mers whose multi-
plicities fall below the threshold. Choosing the correct
threshold is crucial since a low threshold results in too
many uncorrected errors, while a high threshold results in
the loss of correct k-mers. The histogram of the
multiplicities of k-mers shows a mixture of two distribu-
tions) that of the errorfree k-mers, and that of the
erroneous k-mers. When the coverage is high and
uniform, these distributions are centered far apart and
can be separated without much loss using a cutoff
threshold; such methods therefore achieve excellent
results [79]. Though high-throughput sequencing plat-
forms provide relatively uniform coverage in many
standard sequencing experiments, in some of the more
challenging applications, such as single-cell sequencing,
the coverage remains drastically uneven, just as shown in
Figure 1. In the cases of uneven sequencing, the two
methods described above lose their effect.
In recent years, some researchers have proposed error

correction methods under the condition of uneven
sequencing. These error correction methods use some
special graph structures and simple statistical models to
implement sequence error correction. Among them, the
typical graph structures include Hamming graph [94],
while the typical statistical models include Hidden
Markov model [95] and Bayes model [96]. Typical
probabilistic consistency-based error correction methods
include Hammer [94], ProbCons [95], BayesHammer
[96] and ECHO [97].

Figure 5. The k-mers histogram of staphylococcus au-

reus HiSeq (The dataset of staph is obtained fromGAGE-B
website, the size of k-mer is 11). The x-axis refers to the
k-mer depthD(x), which indicates “k-multiplet”; the y-axis refers

to the frequency of the k-multiplet, f(D(x)). D′ is the k-mer depth
at the main peak of the k-mer histogram.

Figure 6. The principle of multiple sequence alignment-
based error correction. The red letter in row 5 indicates

insertion; the short green lines in rows 6 and 9 indicate
deletions; the purple letters in rows 1 and 6 indicates
substitutions. MSA based error correction methods work by

aligning reads with each other and are corrected by con-
sensus.
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In some cases, the sequencing errors are discounted in
the step of building the hash table of k-mers before the
assembly step. For example, in order to effectively reduce
assembly errors, EPGA [63] filters k-mers with unusually
low frequencies. On the other hand, some assemblers are
excluded by back trimming during extensions in the
assembly steps, just like SPAdes [68] and IDBA-UD [69].

Uneven sequencing depth

Nonuniform coverage poses a serious problem for
existing de novo assembly algorithms. Of de Bruijn-
based assemblers, for example, Velvet [67], SOAPdenovo
[21] and Abyss [18] use an average coverage cutoff
threshold for contigs to prune out low-coverage regions,
which tend to include more errors, whereas EULER-SR
[98] uses a k-mer coverage cutoff. This pruning step not
only reduces the complexity of the underlying de Bruijn
graph substantially and makes then algorithms practical,
but also seriously affects the effective length and genome
fraction of the final assembly. Therefore, uneven sequen-
cing is a major challenge of the current sequence
assembly.
Cell theory provides an entirely new framework for

understanding biology and disease by asserting that cells

are the basic unit of life [54]. Single-cell genomics aims to
provide new perspectives to our understanding of genetics
by bringing the study of genomes to the cellular level. The
single cell data sets display highly nonuniform coverage
typical of single-cell amplification, including blackout
regions, which are contiguous regions of the genome to
which no reads aligned (coverage 0), just as shown in
Figure 1. Most existing genome assemblers usually have
an assumption that sequencing depths are even. These
assemblers fail to construct correct long contigs. In order
to solve this problem effectively, the researchers put
forward some new solutions. Typical de novo assemblers
for single-cell sequencing data include Velvet-SC [56],
SPAdes [68] and IDBA-UD [69]. The flowchart of de
novo assembly of single-cell sequencing data is shown in
Figure 7.

Multisized de Bruijn graphs

The choice of k affects the construction of the de Bruijn
graph. Smaller values of k collapse more repeats together,
making the graph more tangled. Larger values of k may
fail to detect overlaps between reads, particularly in low
coverage regions, making the graph more fragmented.

Figure 7. The flowchart of de novo assembly of single-cell sequencing data.
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Since low coverage regions are typical for single cell
sequencing data, the choice of k greatly affects the quality
of single-cell assembly. Ideally, one should use smaller
values of k in low coverage regions (to reduce
fragmentation) and larger values of k in high coverage
regions (to reduce repeat collapsing). The multisized de
Bruijn graph allows us to vary k in this manner. The
comparison of contigs which are generated by standard de
Bruijn graph and multisized de Bruijn graph is shown in
Figure 8.

Error correction in assembly graph

Errors in reads may lead to several types of structures in
the de Bruijn graph. Miscalled bases and indels in the
middle of a read typically lead to bulges. Bulges also arise
from small variations between repeats in the genome. The
bulge structures in the de Bruijn graph is shown in
subgraph (A) in Figure 9. Errors near the ends of reads
may lead to tips, just as shown in subgraph (B) in Figure
9. The chimeric reads may lead to erroneous connections
in the graph, just as shown in subgraph (C) in Figure 9.
After obtaining the multisized de Bruijn graphs, it is

usually possible to optimize the graph based on its

topological structure. First, if nodes in one path have only
one outgoing arc except the end node and only one
ingoing arc except the start node, the path will be named
simple path and can be merged into one node. Second,
after merging simple paths, some tips (nodes whose out-
degree plus in-degree is one) shorter than 2�k can be
removed. Tips are usually produced by erroneous bases in
reads and gap regions. Third, there are some simple cycles
(two nodes direct each other) and bubbles which can be
simplified to one path. Bubbles or bulges are caused by
non-exact repetitions in genomic sequences or biological
variations, such as SNPs. On the graph, their structure is a
redundant path, which diverges and then converges.
Fixing a bubble involves removing the nodes that
comprise the less-covered side, which simplifies the
redundant paths into a single one.

Repetitive structures

Most genomes contain a certain proportion of repeats,
particularly mammalian in which repeats account for
25%‒50% of its entire genome [14]. Approximately 50%
of the human genome comprises nonrandom repeat
elements, such as LINEs, SINEs, LTRs and STRs [15],

Figure 8. The comparison of contigs which are generated by standard de Bruijn graph and multisized de Bruijn graph.

Figure 9. Errors in reads lead to several types of structures in the de Bruijn graph.
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which often cause misarrangements or gaps in the
assembly. The structure of repetitive regions is shown in
Figure 10.
Today, there are two main methods to solve the

problems caused by repetitive regions. The first one is
to use the large insertsize paired-end reads; and the second
one is to use the SMS long reads. Among then, the first
method can only be used to solve the repetitive regions
whose size is smaller than the insertsize [99–101]. The
second method can only be used when the size of
repetitive regions is smaller than the length of SMS long
reads [102].
The size of insertsize is a few thousand bp [103], and

the length of SMS long reads can reach tens of kb [104].
So the SMS long reads-based method can solve larger
scale of repetitive regions than the large insertsize paired-
end readsbased method. The large insertsize paired-end
reads based method has been applied to almost all
assembly tools. As the SMS long reads-based method
requires the third generation sequencing data, it is mainly
used in the assembly field of the combination of short and
long reads. Although SMS long reads are of great help in
solving the problem of repetitive regions, their range of
efficacy is also limited. Faced with a huge size of
repetitive regions (The length of SMS long reads is
shorter than the length of repeat), the SMS long reads are
also powerless.
The principle of the large insertsize paired-end reads

based method is shown in subgraph (B) in Figure 10. The

principle of the SMS long reads-based method is shown in
subgraph (C) in Figure 10. The assemblers that use SMS
long reads to solve the problems caused by repetitive
regions includes SSPACE-Long Read [105], FinisherSC
[106] and DBG2OLC [107]. In addition, repeats often
cause misarrangements or gaps in the assembly, and its
effects are difficult to eliminate under current technical
conditions. In order to reduce the impact of repetitive
regions on assembly as much as possible, researchers
have proposed some new misassembly detection meth-
ods, such as MISSEQUEL [108], MEC [109] and PECC
[110]. The principle of these methods is to improve the
quality of draft genomes by identifying misassembly
errors and their breakpoints with using paired-end
sequence reads and optical mapping data.

Computational cost

Based on the Graph structure (such as de Bruijn graph or
overlap graph), de novo assembly requires substantial
RAM, storage and long computation times. For example,
several short-read assembly packages(such as Abyss,
ALLPATHS-LG [19], SGA and SOAPdenovo) have been
proven for mammalian-size genomes up to the 3 Gbp
human genome, and they generally take several days to
weeks and require servers or clusters with 512 GB of
RAM and many TB of disk space available for a
gigabase-sized genome [22]. The specific resource
consumption of these tools is shown in Table 3. Abyss

Figure 10. The structure of repetitive regions.
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took 192 hours with Dell R720, 24 processers [18].
ALLPATHS-LG took 3.5 weeks with Dell R815, 48
processers [72]. SGA took 24 hours with single-Hexa-
core XEON X5650 (2.66GHz) [20]. SOAPdenovo2 took
81 hours with eight Quad-cores AMD (2.3 GHz) [21].
Plant genomes are nearly 100 times larger than the
currently sequenced bird, fish or mammalian genomes. In
addition, they can have much higher ploidy, which is
estimated to occur in up to 80% of all plant species and
higher rates of heterozygosity and repeats their counter-
parts in other kingdoms. For all of these reasons, it will
cost more resources for an assembler to assemble a plant
genome than the mammalian genome. Advances in next
generation sequencing technologies have resulted in the
generation of unprecedented levels of sequence data, and
traditional assembly tools have difficulty in processing
large-scale data from high-throughput sequencing. In
order to solve the new challenges caused by the dramatic
increase in data volume, researchers have made some new
explorations.
The message passing interface (MPI) and graphics

processing unit (GPU) are pioneer programming applica-
tion application programming interfaces (APIs) for
parallel computing. Based on MPI technology, research-
ers have proposed some parallel assembly tools, such as
Abyss [18] and Ray [111]. MPI cluster cannot deal with
node failue. Given the absence of load balancing, fault
tolerance and a distributed file system, MPI is unreliable
and insufficiently robust.
The open source Apache Hadoop project, which adopts

the MapReduce framework and a distributed file system,
has recently given researchers an opportunity to achieve
scalable, efficient and reliable computing performance on
Linux clusters and on cloud computing services.
MapReduce is an easy-to-use and general-purpose
parallel programming model that is suitable for large
scale data set analysis on a commodity hardware cluster
developed by Google. The hadoop-based assembly tools
include Contrail [112], CloudBrush [113], and DIME
[114]. Contrail uses Hadoop for de novo assembly from
short sequencing reads (without using a reference
sequence), scaling up de Bruijn graph construction.
CloudBrush is a de novo next generation genomic
sequence assembler based on string graph and MapRe-
duce cloud computing framework. DIME is a novel
framework for de novo metegenomic sequence assembly

based on Apache Hadoop platform. DIME offers great
improvement in assembly across a range of sequence
abundances and thus is robust to decreasing coverage.

OVERCOME THE CHALLENGES IN NGS
ASSEMBLY BY USING SMS LONG READS

Generally, there are three important contributions of SMS
long reads in NGS assembly. The first one is to provide
guidance for resolving repetitive regions encountered
during assembly (The first important contribution is
mainly reflected in the contig expansion phase); the
second one is to provide guidance for scaffolding (The
second important contribution is mainly reflected in the
scaffolding phase) and the last one is to provide guidance
for gap filling (The third important contribution is mainly
reflected in the gap filling phase). Below, we will give a
detailed introduction to these three main contributions.

Provide guidance for solving repetitive structures

Although large-insert reads can mitigate the problems of
repeats somewhat, they can not completely resolve the
problems in genomic regions with long repeats (The span
of paired-end reads is shorter than the length of repeat).
Two new third generation single molecule sequencing
technologies are currently available from Pacific
Bioscience (PacBio) [115] and Oxford Nanopore [116].
The most established of these is the SMRT sequencing
platform produced by PacBio. Their current instrument,
the PacBio RS II, can generate reads as long as 54 kb with
an average read length over 10 kb, approximately 50 to
250 times longer than those available from the widely
used next generation Illumina platform [117]. In de novo
assembly, the longer reads span more repetitive elements
making it possible to assemble more contiguous
sequences (contigs). Although SMS long reads are of
great help in solving the problem of repetitive regions,
their range of efficacy is also limited. Faced with a huge
size of repetitive regions (The length of SMS long reads is
shorter than the length of repeat), the SMS long reads are
also powerless.

Provide guidance for scaffolding

The length of short read makes it difficult to obtain

Table 3 The specific resources consumption of assemblers

Assembler
Resource consumption

Genome Memory (GB) Time (day) Ref.

Abyss Human ~16 ~8 [18]

ALLPATHS-LG Human ~512 ~597 [19]

SGA Human ~56 ~1 [20]

SOAPdenovo2 Human ~35 ~4 [21]
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complete de novo assemblies for genomes, which include
longer repetitive sequences, so resolving the genomic
order of some contiguous sequences (contigs) will be a
challenge. However, the SMS long reads which produced
by the third generation sequencing can be extended to tens
of kilobases in length. It provides a new direction for
overcoming this challenge. There are many scaffolders,
which can combine contigs with each other, as guided by
SMS long reads, such as SSPACE-LongRead [105], AHA
[118], LINKS [119], OPERA-LG [120], DBG2OLC
[107], hybridSPades [121]. The implementation details
of these tools are different, but their core idea is to use the
SMS long reads as the backbones to assist with
scaffolding. The algorithms of these scaffolders have
many advantages compared with the scaffolding by large-
insert meta-pair reads. First of all, the short sequence read
data and inability to scaffold across large repetitive
structures translates into more gaps missing data and more
incomplete reference assemblies [122]. However, the
length of SMS long reads can be up to tens kilobases, they
can easily cross the repetitive regions and effectively
reduce the negative effect of the repetitive regions on the
assembly results. Secondly, it easily solves the problems
that occur during scaffolding with NGS reads with a
larger inset size, because the SMS long reads tend to have
less systematic and nucleotide composition biases and
require less computational cost.

Provide guidance for gap filling

Sequencing biases, repetitive genomic features, genomic
polymorphism, and other complicating factors all come
together to make some regions difficult or impossible to
assemble. Most of the gap closers are based on greedy-
like extension processes and do not exhaustively search
for the optimal solution; hence, the methods may fall into
local minima. Some, but not all, gaps can be closed by
existing gap closers, such as GapReduce [123], GapFiller
[124], Sealer [125] or GapCloser [21]. Although existing
gap filling tools can fill most of the gaps during assembly,
their fill quality is not satisfactory. A recent study shows
that the misassembly rates caused by the gap closer by
using the NGS reads are 20–500 times higher than those
by using SMS long read gap closer. Typical gap filling
tools based on SMS long reads include: GMcloser [126],
PBJelly [127]. It should be noted that strict error
correction must be performed before gap filling with
SMS long reads.

DISCUSSION

De novo genome assembly is an important issue in
bioinformatics. With the advancement of next generation
sequencing technologies, genome assembly has attracted

more and more attention. Although a lot of genome
assemblers are presented, there still exist several major
challenges for de novo genome assembly by using NGS
reads. The next generation sequencing technologies can
be divided into three stages of development, which are the
first generation, the second generation and the third
generation. The first generation sequencing technology
has gradually withdrawn from the stage of history, so we
scarcely conduct too much research on it.
The second generation and the third generation

sequencing technologies are currently widely used, so
they become the focus of our research in this paper. The
second generation sequencing technologies are character-
ized by higher parallelism of operations, higher yield,
simpler operation, much lower cost per read, and
unfortunately shorter reads. An important advantage of
the third generation sequencing is the read length. While
the original PacBio RS system with the first generation of
chemistry generated mean read lengths around 1500 bp,
the PacBio RS II system with C4 chemistry boasts
average read lengths over 10 kb, with an N50 of more
than 20 kb. The disadvantages of the third generation
sequencing technologies are higher costs (US$2–17 per
Mb), higher error rates (15%–30%) and the lowest
throughput among all platforms (maximum 500 Mb–
1.5 Gb). The limited yield and high cost per base currently
prohibit large scale sequencing projects on the third
generation sequencing technologies.
The differences in sequencing technologies have led to

different assembly tools. For the second generation
assembly tools, they assembled shorter segments, but
with higher accuracy. Due to the short assembly segment,
the second generation assemblers are difficult to solve the
problem caused by repetitive regions. For the third
generation assembly tools, they assemble longer seg-
ments, but with higher error rates. Due to the higher error
rate of long reads, the third generation assemblers are
difficult to achieve highprecision assembly. Although the
third generation assemblers have the drawbacks of low
accuracy, high cost and low throughput, they are highly
helpful in resolving the problems as they generate more
contiguous results.
Future sequencing technologies may also offer

improvements. Currently, the original PacBio long read
sequencing is expensive. However, with the advent of
Oxford Nanopore MinION and PacBio sequel platforms,
inexpensive long read sequencing technologies are within
reach and may lead to long-read-only assembly being
more frequently used. It has also been expected that
quantum sequencing technologies may further reduce the
cost problem by increasing the throughput and read
length. The throughput of quantum sequencing should
reach 100 Tb per day by 2018. Although this throughput
is only an expectation, it appears promising that the
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throughput problem of long SMS reads can be solved.
Once the high throughput sequencing of long reads
becomes a reality, the current long read assemblers would
not be suitable, owing to overflowing memory, and thus a
high-priority challenge in de novo assembly will be the
development of new assembly algorithms with efficient
memory and computational costs.
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