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Background: Increasing evidences indicate that microRNAs (miRNAs) are functionally related to the development
and progression of various human diseases. Inferring disease-related miRNAs can be helpful in promoting disease
biomarker detection for the treatment, diagnosis, and prevention of complex diseases.
Methods: To improve the prediction accuracy of miRNA-disease association and capture more potential disease-
related miRNAs, we constructed a precise miRNA global similarity network (MSFSN) via calculating the miRNA
similarity based on secondary structures, families, and functions.
Results: We tested the network on the classical algorithms: WBSMDA and RWRMDA through the method of leave-
one-out cross-validation. Eventually, AUCs of 0.8212 and 0.9657 are obtained, respectively. Also, the proposed
MSFSN is applied to three cancers for breast neoplasms, hepatocellular carcinoma, and prostate neoplasms.
Consequently, 82%, 76%, and 82% of the top 50 potential miRNAs for these diseases are respectively validated by the
miRNA-disease associations database miR2Disease and oncomiRDB.
Conclusion: Therefore, MSFSN provides a novel miRNA similarity network combining precise function network with
global structure network of miRNAs to predict the associations between miRNAs and diseases in various models.

Keywords: miRNAs; hairpin structure; miRNA families; functional similarity; disease semantic; leave-one-out cross-
validation

Author summary: microRNAs (miRNAs) are functionally related to the development and progression of various human
diseases. To improve the prediction accuracy of miRNA-disease association and capture more potential disease-related
miRNAs, we constructed a precise miRNA global similarity network via calculating the miRNA similarity of secondary
structures, families, and functions. The novel miRNA similarity network combining precise function network with global
structure network of miRNAs showed the better performance compared with others similarity network and could be used to
predict the associations between miRNAs and diseases in various models.

INTRODUCTION

MicroRNAs are small length (~22 nt) non-coding RNAs
that regulate the expression of a target messenger RNAs
(mRNAs) by base pairing with their 3′-UTRs, and
triggering their translational repression or degradation
[1,2]. Accumulated studies have shown that miRNAs play

critical roles in various fundamental biological processes,
such as cell development, proliferation, differentiation,
apoptosis and signal transduction[3,4]. Not surprisingly,
the dysregulation of miRNAs is obviously associated with
the development and progression of complex diseases,
such as schizophrenia, cardiovascular diseases and
cancers [5].
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It is crucial to discover the mechanism through which
the regulatory mechanism of miRNA exerts its functions.
It is usually expensive and time-consuming to identify the
associations between miRNAs and diseases via experi-
mental methods. Considering that a large number of
datasets (miRNA functional similarity, disease semantic
similarity, disease phenotype similarity, and miRNA-
disease associations) are available, computational models
are efficient in predicting disease-related miRNAs in that
they can select the most promising associated miRNAs
for further experimental disease studies. So, more and
more researchers made further efforts and developed
efficient computational models (HDMP [6], RWRMDA
[7], WBSMDA [8], HGIMDA [9], RLSMDA [10],
MCMDA [11], etc.) to infer the potential miRNA-disease
associations.
Most of the known models were developed under the

basic assumption that functionally similar miRNAs are
regarded to be involved in similar diseases and vice versa
[12,13]. So, the prediction performance of these methods
is strongly relying on the miRNA functional similarity
network. When the biological functions of miRNAs are
unidentified, the similarity of miRNAs would not be
calculated by the methods so that they cannot be applied
to different computational models to predict related
diseases. More specifically, only the disease-related
miRNAs are used in these models so that the models
are too weak to capture the disease-related miRNAs that
are newly detected or uncovered their functions. Other
methods such as Net-CBI [14], MCMDA [11] can work
for diseases without any known associated miRNAs, they
have achieved unsatisfactory performances.
To overcome these limitations, we try to make full use

of the existing miRNA information to construct a global
miRNA similarity network. A striking feature of these
miRNAs is that their loci are usually clustering in the
genome [15,16]. More in-depth studies, including
miRNA co-expression and primary transcript identifica-
tion, suggest that the clusters of proximal miRNAs are
typically expressed as polycistronic, coregulated units and
shared common biological functions [16]. Meanwhile,
miRNA gene families are highly conserved in nucleotide
sequence and secondary structure among closely related
species over evolutionary time [17,18]. Notably, miRNAs
with similar sequences or highly conserved secondary
structures tend to play roles in the similar biological
process [2,19,20].
Taken together, we proposed a novel measurement to

construct a precise miRNA global network by calculating
the similarity of miRNA nucleotide sequence, secondary
structures, families, and their functions. Note that
calculating the similarity value between any two miRNAs
that will be extremely powerful and convenient by
constructing their structural similarity, especially for

new detected miRNAs or miRNAs whose functions are
unknown. Considering that factors, we applied new
miRNA similarity network (miRNA structural and
functional similarity network, MSFSN) into the models
of WBSMDA and RWRMDA. In WBSMDA, Chen et al.
[8] integrated known miRNA-disease associations,
miRNA functional similarity, disease semantic similarity,
and Gaussian interaction profile kernel similarity for
miRNAs and diseases so that they can infer the
associations of disease-related miRNAs. WBSMDA
makes a breakthrough in that it is successful in predicting
related miRNAs for new diseases without known related
miRNAs and new miRNAs without known related
diseases. Also, Chen et al. [7] proposed a RWRMDA
approach to predict new human miRNA–disease associa-
tions by adopting the method of random walk on miRNA
functional similarity network. RWRMDA is motivated
based on the investigation that global similarity measures
are better in predicting the associations between miRNAs
and diseases. Through employing the new network into
these two models, the exciting results, including leave-
one-out cross-validation and case studies, show that
MSFSN makes a breakthrough in that it succeeds in
introducing the miRNA structure into miRNA similarity
network and getting a superior performance to miRNA
functional similarity network.

RESULTS

Leave-one-out cross-validation

Leave-one-out cross-validation (LOOCV) on known
miRNA-disease associations is applied to evaluate the
prediction performance of MSFSN in various models.
Briefly, for each given disease d, one known disease-
related miRNA is omitted, whereas WBSMDA/
RWRMDA model is trained on the remaining candidate
miRNAs to rank them. The prediction probability is then
calculated based on the model prediction for the left-out
miRNAs. This is repeated until every miRNA is left out
once and the generate prediction probability values are
then used for receiver-operating characteristics (ROC)
analysis.
By varying the threshold, the true positive rate (TPR,

sensitivity) and the false positive rate (FPR, 1-specificity)
are calculated to obtain the ROC curves. TPR refers to the
percentage of the test miRNA-disease associations which
are ranked higher than the given threshold. And FPR
refers to the percentage of negative miRNA-disease pairs
below the threshold. The area under ROC curve (AUC)
can be calculated to evaluate the ability of MSFSN. If
AUC = 1, it indicates that the MSFSN has a perfect
performance in algorithms.
To avoid the impact of the different data sets on results,
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we unify miRNAs and diseases sets and obtain 5222
miRNA–disease associations, including 485 miRNAs and
325 diseases from HMDD2. Figure 1 illustrates the ROC
curves of two models after LOOCV.
The performance comparisons in the framework of

LOOCV are shown in Figure 1. As a result, WBSMDA
and RWRMDA gain AUCs of 0.8171 and 0.9414 in
LOOCVon MFSN, respectively. And for MSFSN, AUCs
are 0.8212 and 0.9657, respectively. The results show that
the performance of MSFSN is superior to MFSN’s in both
WBSMDA and RWRMDA. It is greatly demonstrated the
MSFSN has a more reliable and valid prediction
performance on miRNA-disease associations than MFSN.
Based on the assumptions that miRNAs with similar

sequences or highly conserved secondary structures tend
to play roles in the similar biological process. Especially,
the miRNAs belonged to a family share similar
biological functions. As for any newly found miRNAs
which theirs functions or disease-related are still uncov-
ered, we can calculate the similarity value by miRNA
nucleotide sequences, hairpin structures, and families to
predict their related-diseases. In addition, combining with
the accurate MFSN, new network can be used to improve
the prediction accuracy of miRNA-disease associations
and uncover more disease-related miRNAs by bioinfor-
matics.

Case studies

From the results, MSFSN has a superior performance of
RWRMDA to WBSMDA. Three cancers (breast neo-
plasms, hepatocellular carcinoma, and prostate neo-
plasms) are presented here to evaluate the prediction
ability of MSFSN through RWRMDA. The predicted
results are validated by another two major miRNA-
disease association databases, miR2Disease (updated in
2009) [21] and oncomiRDB (updated in 2014) [22], these
two validation data sets are entirely independent of data
sets used for prediction.
We present a case study for breast neoplasms, which is

one of the most commonly occurring cancers among
women and accounts for 22% of all female cancers [23].
We rank all miRNAs related to breast neoplasms. Among
the top 50 predicted breast neoplasms-related miRNAs in
MSFSN, 41 miRNAs have been confirmed to be
associated with breast neoplasms by miR2Disease or
oncomiRDB. However, only 37 miRNAs are related to
breast neoplasms in MFSN. We respectively list the top
50 miRNAs and evidence for their associations with
breast neoplasms in Table 1 (MSFSN) and Table 2
(MFSN). Recent literatures showed that the unconfirmed
potential miRNA, hsa-mir-139, will may represent a
useful signature for the identification of high-risk breast

Figure 1. Performance comparisons between miRNA-disease association prediction models (WBSMDA and RWRMDA)
concerning ROC curve and AUC based on MFSN and MSFSN for LOOCV, respectively.
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cancer patients [24]. Moreover, miR-17 is associated with
lymph node metastasis and receptor status of breast
cancer patients [25]. All the datasets used in this paper are
generated before the publication of this paper. Therefore,
this successful independent literature validation gives a
further strong support to the reliable performance
demonstration of MSFSN. We further list the associations
between other unconfirmed potential miRNAs. The
newest miRNA-disease association databases deDEMC2
[26] (updated in 2017) and HMDD V3.0 (updated in
2018) have been verified that all such miRNAs from new
network are related to breast cancer.
Owing to the space limitations, we only present the

predicted results for breast neoplasms, and implement two
case studies for hepatocellular carcinoma and prostate
neoplasms. For hepatocellular cancer, 38 miRNAs have
been confirmed by various databases. Compared with
MFSN, the percentage of disease-related miRNAs has
increased from 72% to 76% in MSFSN (Supplementary

Table S1). And as for MSFSN, 41 out of the top 50
miRNAs that are related to prostate neoplasms are
confirmed by the miR2Disaese and oncomiRDB data-
base, but MFSN only for miRNAs are verified
(Supplementary Table S2). These favorable predicted
examples sufficiently demonstrate that new miRNA
similarity network would be of great significance to
capture the potential relationships between miRNAs and
diseases.

DISCUSSION

Increasing evidences indicate that miRNAs are closely
related to the development and progression of various
human diseases [5,27]. Under the basic assumption that
functionally similar miRNAs are regarded to be involved
in similar diseases and vice versa, researchers propose
several computational models to uncover the new
potential miRNA-disease associations by integrating

Table 1 Prediction of the top 50 miRNAs which are associated with breast neoplasms based on MSFSN

miRNA Evidence miRNA Evidence

hsa-mir-218 oncomiRDB hsa-mir-141 miR2Disease; oncomiRDB

hsa-mir-200a miR2Disease; oncomiRDB hsa-let-7g oncomiRDB

hsa-mir-10b miR2Disease; oncomiRDB hsa-mir-222 miR2Disease; oncomiRDB

hsa-mir-200c miR2Disease; oncomiRDB hsa-let-7a miR2Disease; oncomiRDB

hsa-mir-135b Unconfirmed hsa-mir-497 miR2Disease; oncomiRDB

hsa-mir-200b miR2Disease; oncomiRDB hsa-mir-199b oncomiRDB

hsa-mir-25 oncomiRDB hsa-mir-151a Unconfirmed

hsa-mir-302c oncomiRDB hsa-mir-34a oncomiRDB

hsa-mir-93 oncomiRDB hsa-mir-146b miR2Disease; oncomiRDB

hsa-mir-205 miR2Disease; oncomiRDB hsa-mir-34b Unconfirmed

hsa-mir-135a oncomiRDB hsa-mir-148a miR2Disease; oncomiRDB

hsa-mir-302b Unconfirmed hsa-mir-193b miR2Disease; oncomiRDB

hsa-mir-107 Unconfirmed hsa-mir-191 miR2Disease

hsa-mir-182 miR2Disease; oncomiRDB hsa-mir-203 miR2Disease; oncomiRDB

hsa-mir-22 miR2Disease; oncomiRDB hsa-mir-9 oncomiRDB

hsa-mir-101 oncomiRDB hsa-mir-139 Unconfirmed

hsa-mir-27b oncomiRDB hsa-mir-30c oncomiRDB

hsa-mir-224 oncomiRDB hsa-mir-125b miR2Disease; oncomiRDB

hsa-mir-125a miR2Disease; oncomiRDB hsa-mir-152 miR2Disease; oncomiRDB

hsa-mir-127 miR2Disease; oncomiRDB hsa-mir-106b oncomiRDB

hsa-mir-221 miR2Disease; oncomiRDB hsa-mir-365b Unconfirmed

hsa-mir-27a miR2Disease; oncomiRDB hsa-mir-195 miR2Disease; oncomiRDB

hsa-mir-124 oncomiRDB hsa-mir-302d Unconfirmed

hsa-let-7d miR2Disease hsa-mir-338 Unconfirmed

hsa-mir-183 oncomiRDB hsa-mir-145 miR2Disease; oncomiRDB

The first column records top 1–25 related miRNAs. The second column records the top 26–50 related miRNAs.
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miRNA functional similarity, disease similarity, and
known miRNA-disease associations. For all of these
models, the most critical step is to construct a miRNA
similarity network. And with a precise similarity network,
more disease-related miRNAs will be ranked among the
candidate miRNAs. So, improving the prediction accu-
racy of miRNA-disease associations will be our primary
concern. Besides, previous prediction models of miRNA-
disease association cannot uncover the potential diseases
associated with new miRNAs without any known related
diseases.
So based on the hypothesis that (i) miRNA gene

families are highly conserved in the sequence of seed
region and hairpin structure among closely related species
over evolutionary time; (ii) the majority of miRNA
clusters is transcribed as a single unit and shared common
biological functions; (iii) miRNAs with conserved

structures tend to play roles in the similar biological
process; (iv) functionally similar miRNAs are regarded to
be involved in similar diseases, we proposed a novel
measurement to construct miRNA similarity global
network according to miRNA sequences, structures,
families, and functions. The MSFSN obtains reliable
AUCs of 0.8212 and 0.9657 in the validation schema of
LOOCV by WBSMDA and RWRMDA, respectively.
Furthermore, we implemented simulated case studies for
three important human diseases: breast neoplasms,
hepatocellular carcinoma and prostate neoplasms on
RWRMDA by using MSFSN. 82%, 76%, and 82% of
top 50 potential miRNAs for these three important
diseases are respectively confirmed miRNA-disease
association databases by miR2Disease and oncomiRDB.
It is anticipated that MSFSN would be a useful resource to
improve the prediction accuracy of miRNA-disease

Table 2 Prediction of the top 50 miRNAs which are associated with breast neoplasms based on MFSN

miRNA Evidence miRNA Evidence

hsa-mir-218 oncomiRDB hsa-mir-224 oncomiRDB

hsa-mir-10b miR2Disease; oncomiRDB hsa-mir-107 Unconfirmed

hsa-mir-135a oncomiRDB hsa-mir-139 Unconfirmed

hsa-mir-200c miR2Disease; oncomiRDB hsa-let-7a miR2Disease; oncomiRDB

hsa-mir-135b Unconfirmed hsa-mir-486 Unconfirmed

hsa-mir-183 oncomiRDB hsa-mir-145 miR2Disease; oncomiRDB

hsa-mir-205 miR2Disease; oncomiRDB hsa-mir-148a miR2Disease; oncomiRDB

hsa-mir-27a miR2Disease; oncomiRDB hsa-mir-151a Unconfirmed

hsa-mir-375 oncomiRDB hsa-let-7d miR2Disease

hsa-mir-25 oncomiRDB hsa-mir-191 miR2Disease

hsa-mir-22 miR2Disease; oncomiRDB hsa-mir-31 miR2Disease; oncomiRDB

hsa-mir-101 oncomiRDB hsa-mir-296 Unconfirmed

hsa-mir-302b Unconfirmed hsa-mir-96 miR2Disease; oncomiRDB

hsa-mir-18b oncomiRDB hsa-mir-199b oncomiRDB

hsa-mir-9 oncomiRDB hsa-mir-193a oncomiRDB

hsa-mir-127 miR2Disease; oncomiRDB hsa-mir-143 miR2Disease; oncomiRDB

hsa-mir-200a miR2Disease; oncomiRDB hsa-mir-629 Unconfirmed

hsa-mir-182 miR2Disease; oncomiRDB hsa-mir-100 Unconfirmed

hsa-mir-93 oncomiRDB hsa-mir-193b miR2Disease; oncomiRDB

hsa-mir-34b Unconfirmed hsa-mir-146b miR2Disease; oncomiRDB

hsa-mir-200b miR2Disease; oncomiRDB hsa-mir-215 Unconfirmed

hsa-mir-124 oncomiRDB hsa-mir-203 miR2Disease; oncomiRDB

hsa-mir-497 miR2Disease; oncomiRDB hsa-mir-126 miR2Disease; oncomiRDB

hsa-mir-302c oncomiRDB hsa-mir-625 Unconfirmed

hsa-mir-34c Unconfirmed hsa-mir-125a miR2Disease; oncomiRDB

The first column records top 1–25 related miRNAs. The second column records the top 26–50 related miRNAs.
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associations in various models and predict diseases
associated with newly discovered miRNAs without any
known related diseases.
The reasons why MSFSN achieves better performances

are as follows. Firstly, we construct a global miRNA
similarity network by using all of miRNAs nucleotide
sequence, hairpin structures, families, and functions. The
novel miRNA similarity network would offer lots of
assistance in inferring more disease-related miRNAs.
Besides, we did not abandon the miRNA functional
similarity and constructed a more precise miRNA global
similarity network based on structural and functional
similarity of miRNA. Practical experiments show that the
novel miRNA similarity network has a superior predic-
tion performance on miRNA-disease associations.
Further development of exploiting miRNA structure
information to improve the precision of MSFSN may be
needed for our future studies.

MATERIALS AND METHODS

Human miRNA-disease associations

The known miRNA-disease associations were down-
loaded from Human MicroRNA Disease Database
(HMDD version 2.0 in September 2013) [28]. After
integrating the name of miRNAs and diseases, we
obtained 5222 miRNA–disease associations, including
485 miRNAs and 325 diseases. The adjacency matrix A is
denoted as miRNA-disease associations, where the entity
A (m(i), d(j)) is 1 if miRNAm(i) is related to the disease d
(j), otherwise 0.

miRNA functional similarity network

In previous work, miRNA functional similarity score was
calculated based on the assumption that functionally
similar miRNAs tend to be associated with semantically
similar diseases [12,13]. Therefore, Wang et al. [29]
estimated functional similarity of two miRNAs by
measuring the semantic similarity of their associated
diseases. Based on the data sets from HMDD 2.0 and the
method in Ref. [22], we recalculate the miRNA functional
similarity score for each miRNA pair and retrieve miRNA
functional similarity network MFSN (m(i), m(j)). The
entity MFSN (m(i), (m(j) is the similarity score between
miRNA m(i) and m(j).

miRNA structural and functional similarity
network

This paper was aimed at constructing a global miRNA
structural similarity network primarily. In addition,
concerning the powerful miRNA functional similarity

network structured by former researchers, we further
combine MFSN with miRNA structural similarity net-
work and achieve a more precise global miRNA similarity
network.

Nucleotide sequence and hairpin structure

A detailed analysis of miRNA gene expression showed
that the coexpression of closely clustered miRNAs are
generated as polycistronic primary transcripts [30]. And
miRNAs are transcribed as long primary transcripts (pri-
miRNAs) that are first trimmed into the hairpin
intermediates (pre-miRNAs, with distinctive fold-back
hairpin structures), and subsequently cleaved into mature
miRNAs (containing identical seed sequences and
interaction with target mRNAs) [17,30]. So, the
sequences should be phylogenetically conserved in the
precursor hairpin, particularity in the mature miRNA
segment. In addition, conservation of hairpin structure in
spite of sequence variation implies that the structure may
be functionally important.
Considering the miRNA structural specificity (hairpin

structure) and its functional seed region, we downloaded
485 human pre-miRNAs with their hairpin structures and
nucleotide sequences from miRBase (version 21 in July
2014) [31] to construct their structure and sequence
similarity. According to the previous works, for any pre-
miRNAs, they can be represented as the brackets
(“(“or”)”) and dots (“.”) [32]. The left bracket “(”
means that the paired nucleotide is located near the 5'-
end. Similarly, the paired nucleotide near the 3'-end is
expressed as right bracket “)”. And the unpaired
nucleotide is replaced by dots “.”. Therefore, all the
miRNA structures can be represented by “bracket and dot
notation” chains. Then beginning from the 5'-terminal of
miRNA chains, we scanned each base along the chain till
its last base and substitute its upper case in bold italic for
“(” and the upper case for “)” in this base pair. Or else, the
lower case is adopted. Figure 2 has showed the
transferring processes from miRNA structures to linear
strings.
Eventually, we obtained the linear strings of miRNA

sequences and structures, and calculate its probability by
following formula:

Paiaj=

naiajX12
k=1

naiak

, if
X12
k=1

naiak≠0

0, if
X12
k=1

naiak=0

8>>>>><
>>>>>:

, i,j=1,2, :::, 12;

(1)

where ai represents the i-th element of {A, U, C, G, a, u, c,

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 143

miRNA structural and functional similarity network



g, A, U, C, G}; naiaj represents the occurrence frequency
of the event that base ai is followed by base aj and Paiaj is
the occurrence frequency of the event that base ai is
followed by base aj.
By arranging all these probabilities into a 144-

dimensional vector TPV [33], the sequence and structure
similarity score between miRNA m(i) and m(j) is defined
as follow:

SSðmðiÞ,mðjÞÞ=arccos
ðTPViÞðTPVjÞ
kTPVikkTPVjk

� �
: (2)

miRNA families

It is reported that the members of miRNA family or
clusters are more likely to associate with the similar
diseases [29]. So, 310 miRNA families, containing 485

miRNAs and derived from miRBase 21, will be
considered into the novel miRNA similarity network.
Adjacency matrix SF (m(i), m(j)) is defined to represent
known miRNA-miRNA family relationships. If miRNA
m(i) and miRNA m(j) belong to the same family, the
entity SF(m(i), m(j)) is 1, otherwise 0.
After taking together, we obtain the miRNA structural

similarity network MSSN (m(i), m(j)).

MSSNðmðiÞ,mðjÞÞ=SSðmðiÞ,mðjÞÞ þ SFðmðiÞ,mðjÞÞ
2

:

(3)

Eventually, a novel miRNA similarity network based
on miRNA structural and functional similarity is denoted
as:

MSFSN= lMSSN þ ð1 – lÞMFSN if MFSNðmðiÞ,mðjÞ≠0
MSSN if MFSNðmðiÞ,mðjÞ=0

,

�
(4)

where the entityMSFSN (m(i), m(j)) reflects the similarity
value of miRNA m(i) and m(j) based on the method in
[22], and l is the weight parameter. We assigned the
different weights in the Equation (4) for novel miRNA
similarity network and calculate their AUCs by Leave-

one-out cross-validation. In this paper, we chose. l= 0.5
in the final network considering the outstanding
performance of miRNA global similarity network.
Figure 3 shows the main methodology of this paper
proposed.

Figure 2. The basic idea of transforming complex nucleotide sequences and hairpin structures to linear strings. Because of the

space limitations, here we have omitted some bases or brackets in Step 1, 3, and 4. The “...” is used to replace the missing bases or brackets.
The nucleotide sequences in yellow shadow are the mature miRNAs (hsa-miR-1-5p and hsa-miR-1-3p).
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SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://

doi.org/10.1007/s40484-019-0170-0.
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