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Background: Common variable immunodeficiency (CVID), the most prevalent form of primary immunodeficiency
(PID), is characterized by hypogammaglobulinemia and recurrent infections. Understanding protein-protein
interaction (PPI) networks of CVID genes and identifying candidate CVID genes are critical steps in facilitating the
early diagnosis of CVID. Here, the aim was to investigate PPI networks of CVID genes and identify candidate CVID
genes using computation techniques.
Methods: Network density and biological distance were used to study PPI data for CVID and PID genes obtained
from the STRING database. Gene expression data of patients with CVID were obtained from the Gene Expression
Omnibus, and then Pearson’s correlation coefficient, a PPI database, and Kyoto Encyclopedia of Genes and Genomes
were used to identify candidate CVID genes. We then evaluated our predictions and identified differentially expressed
CVID genes.
Results: The majority of CVID genes are characterized by a high network density and small biological distance,
whereas most PID genes are characterized by a low network density and large biological distance, indicating that
CVID genes are more functionally similar to each other and closely interact with one other compared with PID genes.
Subsequently, we identified 172 CVID candidate genes that have similar biological functions to known CVID genes,
and eight genes were recently reported as CVID-related genes. MYC, a candidate gene, was down-regulated in CVID
duodenal biopsies, but up-regulated in blood samples compared with levels in healthy controls.
Conclusion: Our findings will aid in a better understanding of the complex of CVID genes, possibly further facilitating
the early diagnosis of CVID.

Keywords: common variable immunodeficiency; primary immunodeficiency; candidate CVID genes; protein-protein
interactions; network density; biological distance

Author summary: Like many human diseases, common variable immunodeficiency (CVID) is multigenic, resulting from
mutations in multiple genes that affect the same or diverse phenotypes. In fact, multigenic causes of CVID have been found
in approximately 90% of cases. However, the genetic causing of CVID is still largely unclear. The multigenic traits of CVID
are possibly the results of complex interactions between genes. The protein-protein interaction network-based view can,
therefore, provide a deeper insight into CVID.
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INTRODUCTION

Common variable immunodeficiency (CVID), the most
prevalent form of primary immunodeficiency (PID), is
characterized by low serum levels of IgG, IgA, and IgM;
deficient specific antibody responses to infection or
vaccination; and exclusion of other causes of hypogam-
maglobulinemia; it has an estimated prevalence of
1:50,000 to 1:25,000 [1]. CVID shows substantial
phenotype and genotype heterogeneity, and the majority
of CVID cases have an unknown genetic cause [2]. The
monogenic defects that have been implicated in CVID
include the following: (i) recessively inherited mutations
in IL21, IL21R, LRBA, ICOS, PRKCD, CD19, CD20,
CD21, CD27, CD81, and RAC2; (ii) dominantly inherited
mutations in CTLA4, TNFSF12, NFKB1, PLCG2,
NFKB2, PIK3CD, PIK3R1, VAV1, BLK, IKZF1, and
IRF2BP2; and (iii) monoallelic or biallelic mutations in
TNFRSF13B and TNFRSF13C [3].
For example, the B cell co-receptor complex is

composed of CD19, CD21, CD81, and CD225, which
together lower the threshold for B cell activation
following antigen binding to the B cell receptor, and it
has been recently reported that CD19, CD81, and CD21
deficiencies occur in autosomal recessive forms of CVID
[4]. BLK plays an important role in BCR signaling and
the recruitment of T cell help, and a heterozygous loss-of-
function mutation in BLK was previously detected in two
related patients with CVID [5]. NFKB1 encodes the
mature p52 subunit and its precursor p105 subunit, and it
belongs to the NF-κB transcription factor family and has
been associated with CVID in multiple consanguine
families or sporadic cases [6,7]. Loss-of-function variants
in TNFRSF13B might aggravate the effect of already
impaired Toll-like receptor (TLR) signaling or impose
TLR signaling defects [8], and they have also been
detected in many patients with CVID [3]. However, not
all CVID causes involve monogenic defects, as mono-
genic causes of CVID have been found in only
approximately 10% of cases. Conversely, there are
numerous examples of multigenic (or polygenic) causes
of CVID, where variants in multiple genes can contribute
to the same or diverse phenotypes [9–11]. Although
CVID is thought to result from genetic defects, the exact
cause of the disorder is unknown in the large majority of
cases.
Great progress has been made in approaches used to

identify PID disease genes. In the early years, Keerthi-
kumar et al. used a support vector machine to classify all
human genes as PID genes or non-PID genes. The
underlying principle of this classification was to calculate
the confidence score for each candidate PID gene based
on the 69 features observed in the 148 known PID genes
[12]. Recently, a research team identified PID candidate

genes by analyzing the properties of protein-protein
interaction (PPI) networks of all essential human immune
tissue genes and their gene ontology (GO) terminology
[13]. Other studies predicted 3,110 candidate PID genes
using an in silico computational approach based on
biological distance [14,15]. Importantly, they found that
PID genes, compared with other human genes, tend to be
in the central hub of the human genome network and to
more closely interact with each other. Moreover, PID
genes form several tightly intra-related sub-clusters, and
most of them have at least one other PID gene as a close
functional neighbor among a wide array of biological
mechanisms [14]. Understanding this mechanism might
provide additional insight into the diversity of genetic
pathways underlying PID, which in turn might facilitate
the development of new drugs and therapeutic
approaches. Although the mechanism of PID has been
adequately studied and several in silico methods have
been developed to identify candidate PID genes, to our
knowledge, there have been no reports on either
identifying CVID candidate genes or revealing the
biological network features of CVID genes. In particular,
the underlying mechanisms of the PPI networks of CVID
genes remain unclear and lack a systematic level of
interpretation. With the recent accumulation of novel
CVID genes [3,16], reliable molecular interactions [17],
and the state-of-the-art computational techniques [18–20],
there is an urgent need to predict candidate CVID-specific
genes using systems biology and bioinformatics methods
to help the rapid and accurate discovery of new CVID-
related genes.
In this study, by calculating the network density and

biological distance of CVID genes and PID genes, we
found that CVID genes are more similar in function and
interact more closely compared with most PID genes. We
also present a comprehensive approach for predicting
candidate CVID genes. Finally, we identified differen-
tially expressed genes in the duodenal biopsy and blood
samples from patients with CVID.

RESULTS

Exploration of the PPIs of CVID genes

The PPI data for PID genes were retrieved from the
STRING database and visualized using Cytoscape soft-
ware (Figure 1), and the original PPI network generated
using the STRING database is provided in Supplementary
Figure S1. We found that CVID genes have a central
tendency in the network, suggesting that CVID genes
might interact more frequently than PID genes. To further
study the phenomenon of the complex interactions of
CVID genes, the PPI data of a CVID group composed of
39 CVID genes and that of ten random groups (each
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Figure 2. PPI network of CVID genes, network densities and biological distances of the CVID group and random groups,

KEGG enrichments of CVID genes, and PPI network of candidate CVID genes and known CVID genes. (A) PPI network of
CVID genes. (B) Barplot of the network densities of a CVID group and ten random groups. (C) Density plot of the biological distances
of a CVID group and two random groups. (D) Bubble plot of the KEGG enrichment results of CVID genes. The size of the displayed

bubble corresponds to the count of the gene, and the color of the bubble corresponds to the adjustedP-value. (E) The PPI network of
candidate CVID genes (orchid) and known CVID genes (dark slate gray).
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group consists of 39 PID genes) were obtained from
STRING. The PPI network of the CVID group is shown
in Figure 2A and those of the random groups are shown in
Supplementary Figure S2. Then, network density
(Dnetwork) was used to measure and compare the cohesion
and tightness of the PPI networks of each group (the
greater the network density is for a group, the closer the
interaction of the genes within the group). The results
revealed that the CVID group possessed a higher network
density than the ten random groups, indicating that CVID
genes more closely interact with each other (Figure 2B).
In addition, we utilized HGC to calculate the biological
distance of a CVID group and two random groups (each
group consists of 39 PID genes) and compared the density
distribution of the biological distance. The smaller the
biological distance is for a group, the closer the functional
relevance between the genes in the group. The results
revealed that the density distribution of the CVID group
had a median value of 8.8, while the median values of the
random 1 and random 2 groups were around 14,
indicating a tighter functional interrelatedness between
the CVID genes (Figure 2C). Altogether, these observa-
tions lead to the generalization that CVID genes more
closely interact with each other and have a closer
biological interrelatedness with one another than PID
genes.

Identification of candidate CVID genes

The first and second filtration steps mentioned in
“Materials And Methods” yielded 2,751 CVID-specific
interactions, including 1,716 candidate genes. We per-
formed a KEGG analysis of known CVID genes and
found that a total of 15 KEGG pathways (e.g., Epstein-
Barr virus infection, cytokine-cytokine receptor interac-
tion, and B cell receptor signaling pathway) were
statistically significant (P< 0.05, Figure 2D). To identify
candidate genes that are functionally similar to known
CVID genes, we further screened for certain candidate
genes enriched in at least one of the above-mentioned 15
KEGG pathways, resulting in 414 CVID-specific inter-
actions comprising 172 novel CVID candidate genes
(Supplementary File 1 and Supplementary materials S1).
The resulting PPI network for known CVID genes and
CVID candidate genes is shown in Figure 2E.

Evaluation of candidate CVID genes

To evaluate our predictions, we calculated the biological
distance of 172 CVID candidate genes and compared it to
that of 39 known CVID genes. As a result, the median
biological distance of candidate CVID genes was 6.01,
which was smaller than (or similar to) that of known
CVID genes, indicating a strong biological association

between CVID candidate genes similar to that between
CVID genes (Figure 3A). Then, the CVID candidate
genes were mixed up with CVID genes, and the biological
distance was assessed again for the mixed genes; the
results were shown in Supplementary File 2. FGA
phylogenetic analysis was subsequently performed on
the mixed genes to assess the biological correlation
between CVID genes and CVID candidate genes. The
results showed that candidate CVID genes were evenly
distributed over the entire range of known CVID genes,
suggesting that these CVID candidate genes were closely
related to known CVID genes (Figure 4C). We also
evaluated our predictions by reviewing some studies.
Notably, eight genes (AKT1, AKT3, RELA, SOCS1,
STAT3, XIAP, CD40, and CASP8) not included in our
original list of CVID genes were identified as CVID
candidate genes and have been shown to cause or affect
CVID in experiments, demonstrating the importance of
the CVID candidate genes (Table 1).

Identification of differentially expressed genes
(DEGs) between patients with CVID and healthy
controls (HCs)

In the GSE72625 dataset, compared with the levels in
HCs, 464 genes were significantly differentially
expressed in the duodenal biopsy of patients with
CVID, with 275 genes up-regulated and 189 genes
down-regulated. In the GSE51406 dataset, 489 DEGs
were differentially expressed in the blood of patients with
CVID compared with the levels in HCs, with 348 genes
up-regulated and 141 genes down-regulated (Supplemen-
tary Figure S3A and S3B). Moreover, 31 genes were
observed to be up-regulated both in the blood and
duodenal biopsy of patients with CVID compared with
the levels in HCs, whereas seven overlapping genes were
observed to be down-regulated both in the blood and
duodenal biopsy of patients with CVID compared with
the levels in HCs (Supplementary Figure S3C and S3D,
and Supplementary materials S2). Importantly, several
well-known PID genes (e.g., STAT1, ISG15, CDCA7, and
SAMD9L) and previously reported candidate PID genes
(e.g., JCHAIN, CXCL10, XAF1, TNFSF13B, WARS,
UBE2L6, HERC5, IDO1, TOP2A, IFITM1, MX1) were
significantly differentially expressed [7,9]. With the
exception of JCHAIN, all of the PID-related genes
mentioned above were up-regulated in both the blood
and the duodenal biopsy of patients with CVID compared
with the levels in HCs (Figure 3C). MYC, a CVID
candidate gene found both in this study and a previous
study, was down-regulated in the duodenal biopsy of
patients with CVID compared with the level in HCs,
whereas it was up-regulated in the blood of patients with
CVID compared with the level in HCs (Figure 3D).
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Figure 3. Biological distances and functional genomic alignment (FGA) of candidate CVID genes and CVID genes,
heatmap plot of differentially expressed known PID genes and candidate PID genes, and boxplot of MYC in the GSE51406
and GSE72625 datasets. (A) Density plot of biological distances of known CVID genes and predicted CVID candidate genes.
(B) Phylogenetic tree of biological distances generated by FGA, showing the hierarchical clustering of all known CVID genes (blue)

and predicted CVID genes (violet-red). The length of a branch indicates the strength of separation between individuals. (C) Heatmap
plot of differentially expressed known PID genes and candidate PID genes. Yellow indicates high expression, and turquoise
indicates low expression. (D) Boxplot of the comparison of the expression level of MYC between patients with CVID and HCs in the

GSE51406 dataset. (E) Boxplot of the comparison of the expression level of MYC between patients with CVID and HCs in the
GSE72625 dataset.
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DISCUSSION

CVID, a type of PID, presents a profound heterogeneity in
both phenotype and genotype, with monogenic or
complex causes. Our research sheds light on the under-
lying molecular mechanism of the complicated CVID
genes, that is, CVID genes have a closer biological
interrelatedness and tighter interactions with each other
than most PID genes. In addition, we identified 172 new
CVID candidate genes that interact with known CVID
genes in the same biological pathway and show a high
biological correlation with known CVID genes.
Many experimental studies have confirmed that the

eight genes in our obtained CVID gene list are true CVID-
causing genes or CVID-related genes (Table 1). Akt
mediates biological functions such as differentiation,
survival, cell cycle, metabolism, cytokine production,
growth, and activation of B cells through direct down-
stream molecules such as FoxO, GSK-3, Tpl-2, and TSC2
[21]. Our approach identified two isoforms of Akt (AKT1
and AKT3) as CVID candidate genes. AKT1 is a key
signaling protein in the cellular pathways involved in
skeletal muscle hypertrophy and general tissue growth. A
previous study found impaired phosphorylated AKT1
expression that was significantly correlated with antibody
response to a vaccine and worse clinical complications in
B cells of patients with CVID [21]. AKT3, the major
effector downstream of the PI3K signaling pathway, plays
a key role in peripheral B cell maturation and survival,
and it was found to be hypermethylated in B cells when
comparing a twin with CVID with his healthy sibling
[22]. RELA is initially located in the cytoplasm, and it can
translocate to the nucleus after anti-IgM stimulation in

CD21+ B cells of HCs, whereas nuclear translocation of
RELA is strongly induced in CD21+ and CD21low B cells
of patients with CVID. In addition, the phosphorylation of
RELAwas, surprisingly, found to be significantly lower in
CD21+ and CD21low B cells of patients with CVID
compared with that of HCs [23]. An analogous study
observed that the transcriptional level of SOCS1 was up-
regulated after activation of TLR4 and TLR9 in patients
with CVID and HCs [24]. Several other studies have
suggested that mutations in the coiled-coil domain of
STAT3 can promote the transcriptional activity of STAT3,
which is pathogenic for CVID [25,26]. Likewise, others
have reported that increased tyrosine phosphorylation of
STAT3 was detected in the memory B cell population of
patients with CVID, which was associated with elevated
apoptotic rates in these cells [25]. Granulomatous
lymphocytic interstitial lung disease (GLILD), as a
discrete histopathological entity, was first described as a
manifestation of XIAP deficiency. Moreover, one study
speculated the possibility of XIAP deficiency in severe
CVID because GLILD has been most frequently
described as a complication of CVID [27]. CASP8
mutations not only impair adequate TCR and TLR
signaling, but also skew the immune responses towards
a pro-inflammatory pattern [31]. CASP8 has also been
found to be mutated in many patients with autoimmune
lymphoproliferative syndrome (ALPS), which may be
associated with CVID because their similar clinical and
immunological diagnoses [32].
Some genes exhibit drastic differences in expression

between HCs and patients with CVID. For example, the
expression level of CD40 and ICOS was significantly
lower in the B cells and T cells of patients with CVID than

Table 1 List of CVID candidate genes with a recently reported association with CVID
Gene symbol Description Aliases Ref.

AKT1 AKT serine/threonine

kinase 1

AKT, CWS6, PKB, PKB-ALPHA,

PRKBA, RAC, RAC-ALPHA

[21], PMID: 27664934

AKT3 AKT serine/threonine

kinase 3

MPPH, MPPH2, PKB-GAMMA,

PKBG, PRKBG, RAC-PK-gamma,

RAC-gamma, STK-2

[22], PMID: 26081581

RELA RELA proto-oncogene,

NF-κB subunit

NFKB3, P65 [23], PIMD: 27461466

SOCS1 Suppressor of cytokine

signaling 1

CIS1, CISH1, JAB, SOCS-1, SSI-1,

SSI1, TIP-3, TIP3

[24], PMID: 29618830

STAT3 Signal transducer and

activator of transcription 3

ADMIO, ADMIO1, APRF, HIES [53], PMID: 29180260

[25], PMID: 26360251

[26], PMID: 27379089

XIAP X-linked inhibitor of

apoptosis

API3, BIRC4, IAP-3, ILP1, MIHA,

XLP2, hIAP-3, hIAP3

[27], PMID: 27492372

CD40 CD40 molecule Bp50, CDW40, TNFRSF5, P50 [28], PMID: 23305827

[29], PMID: 30464201

[30], PMID: 28756897

CASP8 Caspase 8 ALPS2B, CAP4, CASP-8, FLICE,

MACH, MCH5

[30], PMID: 28756897
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in those of HCs [28], and the expression level of CASP8
was significantly lower in CD11c+ B cells of patients with
CVID compared with that in cells of HCs [30]. As
observed in previous research, our results also demon-
strated that 38 genes are significantly differentially
expressed, including four well-known PID genes and 11
previously proposed candidate PID genes [12,14]. It is
important to stress again that MYC, a CVID candidate
gene identified in this study and previous studies, is
down-regulated in the duodenal biopsy of patients with
CVID compared with the level in HCs, whereas it is up-
regulated in the blood sample of patients with CVID
compared with the level in HCs [12,14]. Therefore,
whether the mutation of MYC leads to the alteration of its
expression in patients with CVID needs to be further
investigated.
The bioinformatic analysis performed in this study

produced reliable results regarding the investigation of
PPI networks of CVID genes and identification of CVID
candidate genes. It is worth noting that we can enhance
our research in following aspects in the future: (i) One
goal of this study was to identify candidate CVID genes
that are significantly co-expressed, functionally similar,
and interact with each other. However, these features only
occur in some CVID genes, and it is therefore of utmost
importance to design a new algorithm or approach that
can predict CVID genes that are both related and
unrelated to one other. (ii) Our hypothesis of close
interactions between CVID genes is based only on
algorithmic methods (e.g., network density and biological
distance). The recent rapid advances in sequencing
technology provide an opportunity to test this hypothesis
using transcriptional big data. (iii) Data cleaning and
processing also result in the possibility of errors. Thus,
our results need to be further validated in a large cohort of
CVID samples.

CONCLUSIONS

In conclusion, our study raises the hypothesis that CVID
genes are more biologically interrelated and interact
closer with each other than most PID genes, which may
help physicians and researchers gain a deeper under-
standing of the pathophysiology of CVID. In addition, we
provided a list of CVID candidate genes that represent
attractive targets for testing in patients whose etiology
cannot be ascribed to any known CVID gene.

MATERIALS AND METHODS

Data acquisition and pre-processing

The transcriptomic profiles of patients with CVID were

downloaded from the Gene Expression Omnibus (GEO)
of the National Center for Biotechnology Information
(NCBI). The datasets taken into consideration included
GSE72625 (20 patients with CVID and 17 HCs, duodenal
biopsy) and GSE51406 (91 patients with CVID and 39
HCs, whole blood). The pre-processing procedure for the
raw microarray data consisted of deleting rows containing
more than 70%–75% of missing values and log2-
transforming the gene expression values. The list of 351
well-known PID genes was obtained from the European
Society for Immunodeficiencies (ESID), and it is shown
in Supplementary materials S3. The 39 literature-based
CVID genes are shown in Supplementary materials S4.

Evaluation of network density and biological
distance for CVID and PID genes

The protein-protein interaction (PPI) data for PID and
CVID genes was derived from the STRING database,
including known and predicted interactions from genomic
contexts, high-throughput experiments, co-expression,
and previous knowledge [27]. We chose Homo sapiens
and set the minimum required interaction score to 0.4.
The network of PPI data was visualized using Cytoscape
software (version 3.2) [33]. Network density (Dnetwork) is
the most widely used concept in gene regulatory network
and PPI network studies, and it can be used to determine
whether a network is tight or cohesive. The Dnetwork can
be defined as [34]

Dnetwork=
Σn
i=1Σj≠iaij
nðn – 1Þ (1)

where aij is pairwise adjacency, Σj≠iaij represents the
connectivity (the unweighted network connectivity equals
the number of genes that are directly linked to gene i) of
the i-th gene, and n is the number of genes in the network.
Note that aij=1 if the interaction of gene i and gene j
occurs in the STRING database, whereas aij=0 other-
wise. The PPI data of a CVID group (39 literature-based
CVID genes) and ten random groups (each group consists
of 39 PID genes) were respectively converted into the
symmetric adjacency matrix (aij, i, j = 1, …, n) using the
“igraph” R package [35]. Network density was used to
compare their network cohesion or tightness. The greater
the network density is of a group, the tighter the
interaction of the genes in the group.
Biological distance (Bij) was first introduced by Itan

et al., and it can be used to calculate the shortest distances
for all possible human gene pairs [36]. Using biological
distance, a previous study found that PID genes tend to be
centrally located based on the human genome network
and form several tightly intra-related sub-groups across
diverse biological mechanisms [14]. Bij is defined by
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where Si,j is the combined score between gene i and gene j
provided by the STRING database, and C is the number of
direct connections between gene i and gene j. The smaller
the biological distance is of a group, the closer the biological
interrelatedness between genes in the group. We calculated
the biological distance of a CVID group (39 CVID genes)
and two random groups (each group consists of 39 PID
genes) with the human gene connectome (HGC) Python
package provided by Itan et al. [36].

Prediction of candidate CVID genes

The three following steps were taken to predict the CVID
candidate genes: (i) Pairwise Pearson’s correlation
analysis was performed on the expression values of 39
CVID genes and each protein-coding gene (or, that is,
candidate gene) based on the GSE51406 and GSE72625
datasets. Using |r|> 0.9 and P< 0.05 as cut-off values,
the candidate genes were acquired from each of the two
datasets. The overlapping candidate genes obtained from
the two datasets were used for the subsequent analysis. (ii)
The PPI data for all human protein-coding genes were
obtained from Cheng et al. [37], including 217,160
interactions provided by eleven databases (e.g., BioGRID
[38], HI-II-14_Net [39], HPRD [40], Instruct [41],
InnateDB [42], IntAct [43], MINT [44], PINA [45],
SignaLink2.0 [46], KinomeNetworkX [47], and Phos-
phositePlus [48]). A candidate gene was then retained if
the interaction between the CVID gene and candidate
gene obtained in the previous step occurred in the PPI
data. (iii) Kyoto Gene and Genomic Encyclopedia
(KEGG) analysis was performed using the R package
“clusterProfiler” for CVID genes to estimate their
biological function enrichment [49]. KEGG analysis
was then performed on the remaining candidate genes,
and a gene was defined as a true CVID candidate gene if
the candidate gene was enriched in the same pathway as
the CVID gene.

Estimation of novel CVID candidate genes

To determine whether our method was appropriate for
predicting CVID candidate genes, we calculated the
biological distances of the predicted CVID candidate
genes and compared them to those of 39 known CVID
genes. Subsequently, functional genomics alignment
(FGA), a phylogenetic clustering analysis, was performed
using the “APE” package available in R to assess the
biological correlation between candidate CVID genes and

CVID genes [36,50]. Specifically, we first created a
biological distance matrix between CVID genes and
CVID candidate genes and then applied the neighbor-
joining algorithm (nj function) to generate a phylogenetic
fan-shaped tree showing the hierarchical clustering of
CVID candidate genes and CVID genes. The R package
“limma” was applied to screen for differentially expressed
genes between patients with CVID and HCs, with |log2
fold change|> 0.4 and P-value< 0.05 as the cut-off values
[51]. The overlap between the DEGs obtained from
GSE72625 and the DEGs obtained from GSE51406 was
determined using the R package “VennDiagram” [52].

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://

doi.org/ 10.1007/s40484-019-0174-9.
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