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Background: Multi-view -omics datasets offer rich opportunities for integrative analysis across genomic,
transcriptomic, and epigenetic data platforms. Statistical methods are needed to rigorously implement current
research on functional biology, matching the complex dynamics of systems genomic datasets.
Methods: We apply imputation for missing data and a structural, graph-theoretic pathway model to a dataset of 22
cancers across 173 signaling pathways. Our pathway model integrates multiple data platforms, and we test for
differential activation between cancerous tumor and healthy tissue populations.
Results: Our pathway analysis reveals significant disturbance in signaling pathways that are known to relate to
oncogenesis. We identify several pathways that suggest new research directions, including the Trk signaling and focal
adhesion kinase activation pathways in sarcoma.
Conclusions: Our integrative analysis confirms contemporary research findings, which supports the validity of our
findings. We implement an interactive data visualization for exploration of the pathway analyses, which is available
online for public access.
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Author summary: Genomic Big Data is now collected across multiple experimental platforms as a matter of course.
These data offer multiple unique perspectives of the human genome and its processes, with great potential to improve our
understanding of complex diseases such as cancer. In this paper, we apply a statistical model of the biological structure of
genetic signaling pathways, which we use to explore functional differences between healthy and tumorous tissue. Our
analysis, applied across multiple cancers and hundreds of signaling pathways, is accompanied by an interactive web
application for exploratory visualization of our findings.

INTRODUCTION

Multi-view -omics datasets offer unprecedented detail for
molecular analysis of a wide range of biological
phenomena, particularly the genesis and evolution of
complex diseases. Especially because of the complexity
of data collection, processing, and multi-step analyses, it
is critical to apply methods that are scientifically valid and
statistically rigorous. Different data types can provide
new insight into unique facets of genomic systems, and
deepen understanding of complicated biological func-
tions. However, development of flexible statistical
methods for these trends in research and next-generation

data platforms has not kept pace with the speed of data
collection. Moreover, the viability and validity of a
statistical method does not equate with accessibility and
interpretability. Expressive tools for functional analysis
are necessary to advance our understanding of the systems
processes of the cell, and to apply novel treatments for
complex diseases with distinctive genomic characteris-
tics.
The variety of approaches available for analysis of

-omics data is rich, and may address different dimensions
of genomic Big Data. With respect to -omics datasets,
basic approaches often focus on a single data type. Gene
expression and clinical covariates have been applied to
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assess cancer survival outcomes across many different
cancer types [1], which leverages the large sample sizes
that are available. On the other hand, integrative analyses
offer unified approach for joint analysis of a large number
of genomic features across multiple data platforms [2].
Linear methods have been applied to gene-level measure-
ments of expression, methylation, and copy number
within individual cancers [3,4], emphasizing the aggre-
gate information obtained from distinct data platforms.
Methods for analysis of higher-level biological func-

tionality began by testing for differential expression
through application of gene set enrichment analysis
(GSEA) among collections of genes [5], disregarding
functional relationships. Pathway analysis offers a more
systematic, structural approach to modeling genomic
processes [6]. Application of GSEA to genes a priori
known to comprise a signaling pathway can give
comparative insight into patterns of differential activity
across multiple cancers [7]. But, more sophisticated
pathway methods have been introduced and applied. The
random walk with restart has been applied to assess both
network cohesion and compare the explanatory power of
several different pathway databases [8]. The SAFE model
[9] identifies local neighborhoods of high enrichment
situated within larger networks. A factor model approach,
PARADIGM, was applied to a single unified network of
multiple signaling pathways [10], and has also been used
for comparative analysis of individual pathways across
cancer types [11]. Graphical methods have also been
developed, for directed as well as undirected Gaussian
networks [12].
A natural fusion combines data integration and path-

way analysis. This has been applied to comprehensive
analysis of individual signaling pathway in a single cancer
using gene-level covariates including expression, methy-
lation, and copy number, and somatic mutations to
analyze androgen receptor signaling [13]. Pathway
analysis has also been applied across multiple cancers
and multiple pathways [14], and the Lemon-Tree model
[15] used a module network model to integrate data and
identify novel pathway components.
The large volume of data available for statistical

analysis of -omics data present an immense and unique
challenge to presenting, exploring, and interpreting
analytic results. Phandango [16] provides an interactive
web application for visualization of phylogenetic datasets
and analyses. General tools for interactive visualization
and analysis have introduced software packages tooled
for downstream implementation of -omics data in
individual analyses [17,18]. The software SeqPlots [19]
implemented novel statistical graphics for visualizing
cluster analysis applied them to gene expression data.
In this paper, we performed a fully integrative pathway

analysis on a pan-cancer dataset. We constructed a multi-

platform -omics cancer dataset, including measurements
of gene expression, methylation, and DNA copy number
from tumor and healthy tissue samples across 22 cancer
types. We imputed missing data using the iterative
integrated imputation (I3) procedure [20]. We performed
pathway analysis using the EMC-NetGSA model [21], a
graph-theoretic statistical framework that integrates the
multi-modal genetic, transcriptomic, and epigenetic data
in a single, unified linear model. We estimated the EMC-
NetGSA model for a set of 173 known signaling
pathways, and test for differential activation in tumor
and healthy tissues. We identified pathways with strong
significance in several cancers. We implement a web-
based interactive data visualizations for dynamic explora-
tion of the results of our pathway analysis, accessible to
the public.

RESULTS

Overview of dataset, pre-processing, and
imputation

For our analysis, we used a multi-platform -omics dataset
from The Cancer Genome Atlas (TCGA). This long-
running study is funded by the National Cancer Institute
(NCI), and aggregates data from many research sites [22].
We considered gene expression, methylation, and copy
number data collected from tumor and healthy tissues in
32 cancers. The available sample sizes for each cancer are
given in Table 1. The samples exhibit a systematic
imbalance between the population sample sizes: the
number of tumor sample is consistently higher than the
number of healthy samples.
For analysis of signaling pathways, we also obtained

the NCI Pathway Interaction Database (PID), a set of 212
known signaling pathways expressed as directed func-
tional relationships between genes [23]. We used the
pathways to identify the genes of interest among all
-omics features available from TCGA. The PID contains
2393 distinct gene symbols, and the TCGA dataset
contains some -omics feature for 2369 of these gene
symbols. At the level of the individual data types, our
dataset contained 2351 genes with expression observa-
tions; 2279 genes with methylation; and 2331 genes with
copy number. In total, the data matrix for each cancer type
contained 6973 -omics features across the three data
platforms.
We used TCGA level-3 data for our analysis. We

aggregated methylation and copy number observations at
the gene level, and applied basic pre-processing steps,
both according to the procedures detailed below in
Section of “Methods”. This produced an observation
matrix of all -omics features for genes in the PID. The data
matrix contained a substantial number of missing values.
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The specific features with missing values varied accord-
ing to each sample in the dataset, depending on the
research location at which the data was collected, as well
as depending on data quality within each individual

sample.
To remedy this missing data, subsets of which may

conform to a rectangular submatrix of data but other
subsets of which do not, we applied the iterative
integrated imputation (I3) procedure [20]. I3 extends an
existing matrix-completion method based on the assump-
tion of a low-rank data matrix. Whereas the original
method, structured matrix completion (SMC) [24],
required the assumption of a missing submatrix, I3
performs SMC separately for each sample that exhibits
missing data. At each iteration, we considered one sample
and formed the maximal set of other samples of the same
cancer type for which the observed features in the sample
of interest were also observed. We then imputed the
minimal covering submatrix for the missing values in the
sample of interest, after appropriate row and column
reordering. Full details of the imputation method are
given in Section of “Methods”.

Integrative pathway analysis

We applied the EMC-NetGSA model [21], discussed in
greater detail in Section of “Methods”. In brief, we
constructed for each signaling pathway in the PID a
directed graph, with edges representing functional
relationships connecting the corresponding vertices for
gene expression. We also introduced graph vertices for
gene-level methylation and copy number, with directed
edges connecting each to the gene’s expression vertex.
We estimated association weights for the graph edges
within each cancer, and applied the NetGSA hypothesis
test [25] to test for differential activity. We tested the
entire pathway for significance, as well as the subgraphs
corresponding to the three vertices available for each
gene.
We considered for pathway analysis the 22 cancers

listed in Table 1 that are marked with a star (*). Of the 32
total cancers available from TCGA, these had more than
10 samples in both the tumor and normal populations.
After removing the pathways that contained genes for
which our data lacks observations of gene expression, we
tested 173 of the PID pathways across the 22 paired
populations. In order to correct for possible false
discoveries due to the multiple testing problem, we used
the procedure of Benjamini-Hochberg (BH) [26] to adjust
all p-values within each cancer.
Figure 1 shows the – log10ðpÞ transformation for the p-

values in all pathways in all cancers. Many p-values are
strongly significant: even after BH-adjustment of the
3806 hypothesis tests we performed, only 88 pathways
did not have a significant p-value at the α = 0.05 level.
However, it is clear from the figure that there exist

associations among the p-values across all cancers in
specific pathways. This includes consistent disturbance in

Table 1 Sample sizes for cancer and control populations
in data for 32 cancers from The Cancer Genome Atlas
(TCGA)
Cancer Code Sample sizes

Cancer Normal

Adrenocortical carcinoma ACC 92 5

Bladder urothelial carcinoma* BLCA 412 36

Breast invasive carcinoma* BRCA 1096 161

Cervical squamous cell carcinoma and

endocervical adenocarcinoma

CESC 308 8

Cholangiocarcinoma* CHOL 36 15

Colon adenocarcinoma* COAD 455 92

Lymphoid neoplasm diffuse large B-cell

lymphoma

DLBC 48 0

Esophageal carcinoma* ESCA 185 64

Glioblastoma multiform* GBM 586 31

Head and neck squamous cell carcinoma* HNSC 528 82

Kidney chromophobe renal cell carcinoma* KICH 66 57

Kidney renal clear cell carcinoma* KIRC 534 427

Kidney renal papillary cell carcinoma* KIRP 291 87

Brain lower grade glioma LGG 516 0

Liver hepatocellular carcinoma* LIHC 377 87

Lung adenocarcinoma* LUAD 519 179

Lung squamous cell carcinoma* LUSC 504 240

Mesothelioma MESO 87 1

Ovarian serous cystadenocarcinoma* OV 586 130

Pancreatic adenocarcinoma* PAAD 185 37

Pheochromocytoma and paraganglioma PCPG 179 5

Prostate adenocarcinoma* PRAD 500 117

Rectum adenocarcinoma* READ 167 17

Sarcoma* SARC 261 22

Skin cutaneous melanoma SKCM 104 3

Stomach adenocarcinoma* STAD 478 131

Testicular germ cell tumors TGCT 150 0

Thyroid carcinoma* THCA 507 99

Thymoma* THYM124 12

Uterine corpus endometrial carcinoma* UCEC 545 51

Uterine carcinosarcoma UCS 57 6

Uveal melanoma UVM 80 0

The cancer “code” is an abbreviation for each cancer. All samples are

from tissue in the afflicted, cancerous region. For the cancer population,

tissue samples are from tumorous tissue. For the normal population,

tissue is from healthy normal tissue. Cancers marked with a star (*) were

included in the analysis of pathway disturbance, on the basis of each

sample population including more than 10 samples.
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the pathways B-cell receptor (BCR) signaling, ErbB1
downstream signaling, and transforming growth factor-
beta (TGF-beta) receptor signaling, as well as consistent
lack of disturbance, as in the glypican 2 and 3 networks,
and PDGF receptor signaling. Likewise, we observe
systematic elevation of p-values in some cancers, such as
sarcoma (SARC) and thymoma (THYM), as well as
depressed significance across other cancers, including
colon adenocarcinoma (COAD) and rectum adenocarci-
noma (READ).
The high significance in some pathways is in

accordance with current scientific consensus. BCR
signaling regulates B cell activity, and has additional
downstream effects on other pathways that promote tumor
growth [27]. Burger and Wiestner [28] discussed recent
work to target malignancy in B cell signaling. ErbB1
plays a role related to epidermal growth factor (EGFR),
and its disturbance is known to relate to a variety of
cancers: Roskoski found interactions in non-small cell
lung cancer, colon cancer, and breast cancer [29]. They
also discussed ErbB1-related targets for clinical treatment
of tumors. TGF-beta plays a central role in basic cellular
activity [30], and it can suppress or promote tumorigen-
esis, dependent on the cell type [31]. Fabregat et al. [32]
discussed treatments that target and inhibit malignant
behavior in the TGF-beta pathway, in order to recover
normal functioning.
It is also reasonable that we observed co-disturbance of

pathways within cancers. Iengar [33] considered genes
that consistently exhibit mutation across multiple cancer
types, and identified a large number of pathways to which
they relate. Leiserson et al. [34] directly considered the
contrast between driver and passenger mutations in

oncogenesis, and focus on finding multiple drivers that
coexist within individual cancers.
Among the hypothesis tests shown in Fig. 1, we

considered a subset of 14 pairs of cancer and pathway that
exhibited stronger significance than would appear typical
for the combination of the two. The cancer-pathway pairs
we considered are listed in Table 2. We considered 8
pathway disturbances in sarcoma, 3 in thymoma, and 1
pathway disturbance each for kidney renal clear cell
carcinoma, ovarian serous cystadeno-carcinoma, and
pancreatic adenocarcinoma. In both sarcoma and thy-
moma, disturbance of T-cell receptor (TCR) signaling in
naïve CD4+ T cells was elevated, as was ErbB1
disturbance. The remaining 9 pathways are found in
only 1 cancer.
Some of the pathways in Table 2 reflect well-known

drivers of the respective cancers. Differential expression
of MYB in ovarian cancer has been suspected for a long
time [35], and some recent work has given attention to the
role of C-MYB activation in other cancers [36]. The latter
study found up-regulation in non-small cell lung cancer, a
finding we corroborate— albeit to a lesser degree— in
lung adenocarcinoma (LUAD), the corresponding TCGA
cancer type. The prominent significance of ErbB1 is
unsurprising in light of its known role in a wide range of
cellular functions.
The significance of Trk signaling mediated by

neurotrophic factor is perhaps surprising in sarcoma, a
bone cancer. But while research on this type of neural
signaling is relatively new, it does support a tumorigenic
role for Trk signaling. Increased expression in TrkB and
TrkC has been found to correlate with tumor growth in
brain tumors [37]. The brain-derived neurotrophic factor

Table 2 The cancer-pathway pairs
Cancer Pathway

Kidney renal clear cell carcinoma Coregulation of androgen receptor activity

Ovarian serous cystadenocarcinoma C-MYB transcription factor network

Pancreatic adenocarcinoma Regulation of nuclear SMAD2/3 signaling

Sarcoma BCR signaling pathway

Sarcoma Beta1 integrin cell surface interactions

Sarcoma Ceramide signaling pathway

Sarcoma ErbB1 downstream signaling

Sarcoma Neurotrophic factor-mediated Trk receptor signaling

Sarcoma Signaling events mediated by focal adhesion kinase

Sarcoma TCR signaling in naïve CD4+ T cells

Sarcoma TCR signaling in naïve CD8+ T cells

Thymoma BCR signaling pathway

Thymoma ErbB1 downstream signaling

Thymoma TCR signaling in naïve CD4+ T cells

Pairs of cancer and pathway for which the residual from a regression of the logit (p)-value was negative, and larger in magnitude than a Bonferroni-adjusted

critical value. In sarcoma, we observed 8 disturbed pathways; in thymoma, we observed 2 disturbed pathways; and we observed 1 pathway disturbance in each

of kidney renal clear cell carcinoma, ovarian serous cystadenocarcinoma, and pancreatic adenocarcinoma.
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(BDNF) was found to bind to the TrkB receptor, and
elevated expression had strong downstream effects in
other pathways [38]. A Phase I clinical trial was also
performed for an inhibitor of Trk in several cancer types
including sarcoma [39]. Another study found that
inhibition of Trk signaling corresponded to improved
clinical outcomes in Ewing sarcoma [40].
Increased adhesion of shed tumor cells in the presence

of focal adhesion kinase (FAK) activation has been
reported, and it is hypothesized that inhibition of FAK
may yield superior patient outcomes in a variety of
cancers, including sarcoma [41]. Others observed tumor
suppression as a result of FAK inhibition [42], and FAK
inhibition-mediated signaling was found to complement
and reinforce synergistically the therapeutic effects of
Aurora kinase B inhibition in Ewing sarcoma [43].
The role of androgen receptors has been considered in

murine tissues, including kidney tissue, which exhibit a
different biological effect from prostate and epididymis
tissue [44]. That effect suggests a novel, kidney-specific
role for the androgen receptor pathway. Increased
androgen receptor expression in kidney renal clear cell
carcinoma was found to correspond to improved clinical
outcomes [45], which supports earlier findings that also
found a possible tumor-suppressive role for androgen
receptors via circadian regulation in the kidney [46].

Data visualization

The variety of these results hints at the complex and
exhaustive detail that is produced as a result of the
integrative procedure. The results just detailed were
identified on the basis of the p-value of the hypothesis test
alone, but the EMC-NetGSA analysis offers many
additional outputs beyond a binary decision. First, it is
important to understand the network topology of the
pathways under consideration, and consideration of the
association weights in the weighted graphs. In addition,
EMC-NetGSA estimates network-adjusted expression
parameters that offer insight into the contribution of
individual genes to pathway disturbance, as well as which
pathway components have differential activity across
populations. Subsets of genes within a pathway, or
individual genes themselves, may be of interest for
testing differential pathway activity, especially while
controlling for the network effects of other genes that are
not of interest but may contribute to genomic activity
through the signaling pathway network.
To facilitate in-depth exploration of these pathway

analysis results, we implemented an interactive web
application and data visualization. The software can be
accessed online at the website (zhang-lab.shinyapps.io/
pathway-analysis-tcga-cancers/). We provide an explora-
tory tool to interact with the network topology of each

signaling pathway from our analysis, for all 22 cancers we
considered. We also provide visualizations of the
hypothesis test outcomes, for the entire pathway, as well
as the subpaths formed by the 3 -omics vertices—
expression, methylation, and copy number— for each
gene in the dataset. Moreover, we performed a compara-
tive analysis of the results of different -omics integration
strategies: in addition to the EMC-NetGSA model, we
also considered integrated pathway of expression and
methylation (EM-NetGSA); expression and copy number
(EC-NetGSA); and expression-only pathway analysis
(NetGSA). Figure 2 shows an example pair of plots for
the signaling events mediated by focal adhesion kinase
pathway in the sarcoma cancer. We display the – log10ðpÞ
-values for significance tests of the full pathway, as well
as the integrated subgraphs of -omics features at the level
of individual genes, and we also plot the test statistic to
show the sign and magnitude of the overall pathway
disturbance effect. The plots were generated by the
interactive data visualization website, and provide
comparative analysis of significance and the direction
and magnitude of differential activity across data integra-
tion schemes and attributable to different data types.

DISCUSSION

By applying multi-platform pathway analysis to a
network model of signaling pathways, we identified
significant pathway disturbances in several cancers. We
applied an iterative imputation procedure to pre-process
missing data in configurations that would otherwise be
inaccessible for analysis. We performed a top-to-bottom
integrative pathway analysis of the TCGA cancer dataset
using observations collected on 3 different data platforms.
We performed the integrative pathway analysis on 22

cancers from TCGA and 173 pathways published by the
NCI PID. We tested for differential pathway activation for
each cancer, and identified 14 cancer-pathway pairs that
exhibited robust, high significance across 11 different
pathways in 5 cancers. We discussed current research to
support the disturbance of these pathways. The con-
cordance of results of our pathway analysis and ongoing
biological research studies indicates that our pathway
analysis across the set of TCGA cancers identifies real
biological phenomena. Two particular findings that
warrant further investigation relate to Trk signaling and
FAK inhibition in sarcoma.
We also introduced an interactive web application for

data visualization of the results of the pathway analysis.
Available to the public, this web-based software provides
a simple interface to explore the large number of model
outputs, including estimated signaling pathway topology
and weights, significance test results, and parameter
estimates.
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The TCGA project offers additional data types such as
point mutations, non-coding RNAs, and protein micro-
array data. These additional data types present opportu-
nities for further work, based on their structural
relationships with the expression, methylation, and copy
number data. These data and the functional units they
represent may be of intrinsic value, as entities of scientific
focus in their own right. They may also be used to refine
estimates that relate to the gene-level features, to increase
statistical power and precision.
The accessibility and interpretability of our pathway

analysis improves substantially through a visualization
interface. It is possible to quickly examine a large number
of plots, within a cancer and by pathway. It also offers
access to the data necessary to drill down into the effect of
data integration within a pathway, and understanding the
role of individual -omics features. As an example, the
pathway analysis in Fig. 2 indicates that integration of
copy number into the pathway analysis does not increase
significance, relative to an expression-only analysis,
despite a large increase in the magnitude of the test
statistic. On the other hand, integration of methylation
using EM-NetGSA yields a smaller test statistic, in
magnitude, but a much higher degree of statistical
significance. And, full integration using the final EMC-
NetGSA model sustains the significance of the pathway
disturbance. This provides a fuller picture of the
biological components that comprise the larger biological
process. Moreover, our data visualization was easy to
construct, using the R language, and easily deployed for
open access, demonstrating the potential for widespread
use of similar tools to analyze and assess a large volume
of analytic outputs.

METHODS

Dataset and pre-processing

Prior to statistical analysis, we assembled the -omics
dataset from TCGA. We downloaded multi-platform data
for 32 cancers. The data consisted of measurements of
gene expression, methylation, and copy number variation
(CNV). We downloaded the TCGA data from the NCI
Genomic Data Commons (GDC), an online interface to
access TCGA data [47]. We used the TCGA-Assembler
software, version 2.0.0 [48,49], with which we down-
loaded the level-3 TCGA data.
We also downloaded the NCI Pathway Interaction

Database (PID), a set of known signaling pathways. The
pathway information specifies known, directed functional
relationships between genes. We used the pathways to
identify the -omics features to include in our dataset for
imputation and, later, for analysis of pathway disturbance
and differential activity. We downloaded network infor-

mation for 212 signaling pathways from the NCI PID,
using the graphite R package [50].
Prior to imputation, we performed pre-processing,

transformations, and aggregation of the -omics features
to the gene level. Gene expression data was measured on
the RNASeqV2 platform. We used normalized data
supplied by TCGA, which converts the raw read counts
to fragments per kilobase of transcript per million mapped
reads upper quartile (FPKM-UQ). We applied a log2
transformation to the normalized read counts. Methyla-
tion beta values were collected using the HumanMethyla-
tion450 BeadChip platform, by CpG site. We grouped the
sites according to the corresponding gene, and took the
average beta value across all sites for that gene. We used
copy number variation with germline copy number
variants removed, and took the average across all DNA
regions for a given gene.

Iterative integrated imputation

Within each cancer, we constructed a q�N data matrix X
of gene expression, methylation, and copy number
observations. q gives the number of genomic features
corresponding to any gene in the PID pathways, and N is
the number of samples available for the cancer. We further
distinguished samples as either tumorous or healthy
tissue. Denote the number of tumor samples by N1 and the
number of healthy samples by N2, which are such that N =
N1 + N2. We found the sample sizes were not balanced,
i.e., N1³N2, so we applied integration to the full data
matrix.
For each sample, we observed a vector xi of q genomic

observations on one of the three platforms, i = 1,..., N.
This gives the column-wise block structure X = (x1,...,
xN). The data matrix obtained from TCGA contains a
large number of missing values, which can be categorized
as one of three types. Some features were present across
all samples in the dataset. Other features were missing in a
block-wise fashion, typically in subjects collected at the
same experimental site, where a certain data platform may
not have been collected. Finally, individual samples were
missing values at-random, due to quality problems in the
data. The patterns of these last features cannot be
rearranged in such a way that the missing values form a
rectangular submatrix.
To address the second type of missing data, Cai et al.

[24] introduced the Structured Matrix Completion (SMC)
method, which they applied to a TCGA dataset to impute
block-missing data. Their method used a low-rank
assumption to perform imputation by way of an
approximation to the singular value decomposition
(SVD). The applicability of this method is limited,
however, due to the values that are missing at-random.
To address the non-block missing data, Linder and Zhang
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[20] proposed the iterative integrated imputation (I3)
method. They adapted the SMC method for at-random
missing data in individual columns of X. The method
produces imputed values that are exactly those of the
original SMC, when applied to the special case of
rectangular missing data. They demonstrated superior
performance relative to the naive application of SMC to
the minimal covering submatrix for the missing data in X,
and we used this method for imputation in our pathway
analysis.
We note that I3 and SMC rely upon the SVD, which

exhibits the property of invariance under row and column
permutations. Therefore, we may rearrange the rows and
columns of X without loss of generality. We partitioned
the columns of X into two groups: (1) samples with no
missing values; (2) samples with any missing values.
Thus, we may consider X as a block matrix, X = (X1 X2)
where X1 contains no missing values, and X2 contains at
least one missing value in each column. It is possible the
matrix X1 has zero columns, that is, that every sample in
the data matrix contains at least one missing value.
Another attractive feature of the I3 method is its ability to
impute data even in this edge scenario.
Denote the dimension of X1 by q�n1, and the

dimension of X2 by q�n2, where N = n1 + n2. Using
I3, we iterated over the n2 columns of X2, performing a
separate imputation for each column.
Consider the column xi of X2. We may form a new

matrix by χíi =ðX1     xiÞ, which has dimension q � (n1
+ 1), and by the invariance of SVD, we may rearrange the
columns and rows such that the qi missing values in xi are
located in the bottom-right corner χíi , so that χíi is a matrix
with n1 columns with no missing values, and a qi � 1
rectangular submatrix of missing values.
Denote the number of features that are not missing in xi

by pi = q - qi. Among the n2- 1 columns that remained in
X2 after removing xi, we located the ki columns that were
not missing any values in the pi features that are observed
in xi, where 0£ki£n2- 1. Denote the index set for these
ki samples by ωi=fωi1,:::,ωikig. That is, the index ωij

corresponds to a column index in X2, where ωij≠i and
j = 1,..., ki. Finally, we formed the matrix

χi =ðX1     xi     xωi1
   ⋯    xωiki

Þ (1)

which had dimension q�(n1 + ki + 1). Without loss of
generality, we suppose the only missing values in χi are
located in the bottom-right qi�(ki + 1) submatrix. It may
be that some of the observations in this submatrix are
observed, but by construction, the first column of the
submatrix is entirely missing, and corresponds to the
missing values in xi.
We imputed this entire submatrix using SMC, which

produced an imputed submatrix. In particular, we used the
imputed values found in the first column of this submatrix

to form the imputed vector x̂i which contained no missing
values. We applied this procedure iteratively to each of
the n2 columns of X2, so that at the completion of the I3
procedure, we formed the imputed matrices X̂2 and X̂=
(X1     X̂2).
Intuitively, at each step of the iteration, we imputed the

minimal covering submatrix of the missing values in a
column of xi that had the maximal number of columns
drawn from X2 for which all observed values in xi were
also observed. Although any individual imputation of χi
may have ignored missing values in other columns xj, j
≠i, those sample vectors were imputed at a separate
iteration, using all available information for that sample.
In the event that the missing data conforms to a
rectangular shape, we would perform n2 iterative steps
using all columns of X2 in each iteration, which produces
exactly the result of application of SMC to that submatrix.

EMC-NetGSA pathway model

Having imputed the missing values in X, we next applied
pathway analysis to the data matrix. Our analysis
proceeds from a graphical representation of a signaling
pathway. We expanded the set of graph vertices to include
not only elements that correspond to genes, but also
vertices representing gene methylation and DNA copy
number variation (CNV). We aggregated methylation and
CNV data at the level of the gene. We integrated these
secondary data platforms with gene expression with
directed edges leading from the methylation and copy
number vertices, into the gene expression vertex.
Suppose a known signaling pathway, specified as

directed functional relationships between genes. Denote
the signaling pathway of interest by a graph GE, defined
through a set of p vertices VE and a set of nE directed
edges EE. The vertices in VE correspond to the genes in
the signaling pathway, and the edges in EE correspond to
the network topology of the signaling pathway. The
network topology is given by the known functional
interactions between genes vertices in EE.
We considered the graph adjacency matrix of GE, a

conventional representation of a graph specified in a
compact, discrete form. Denote the unweighted graph
adjacency matrix of GE by A�

E , a p � p matrix where the
element αjk is equal to 1 if vertex j is conditionally
dependent upon vertex k. In terms of the signaling
pathway, we may consider αjk to be an indicator function,
where

αjk=1ð9  a  directed  pathway  edge  from  gene  k   to gene  jÞ
(2)

The edges in EE specify known biological interactions
between genes, which operate in a causal manner.
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Symmetric to this interpretation of the gene expression
vertices, Zhang et al. [21] introduced the EMC-NetGSA
model for integration of methylation and copy number
with expression values. We applied that integration
method to obtain a pathway graph that includes -omics
observations as well as the basic gene expression values.
First, we specified a new set of 2p vertices VMC,
containing one methylation vertex and one CNV vertex
for each gene in GE. Denoting the collection of all gene
expression, methylation, and copy number vertices by
V ≡ VE [ VMC, we also introduced a set of graph edges
EMC between the vertices in V. EMC contained 2p edges,
one leading from each methylation and copy number
vertex to the corresponding gene expression vertex in VE.
Taking E � EE [ EMC, we obtained a graph G = {V ,E}

consisting of 3p vertices— three for each gene— and
nE+ 2p edges. We may write the full unweighted graph
adjacency matrix by

A�= A�
E Ip Ip

O2p�p O2p�p O2p�p

� �
(3)

where Og�g is a g � g matrix of zeros. Thus defined, A�

is a 3p�3p matrix composed of the graph adjacency
matrix for the signaling pathway, A�

E; identity matrices
along its right hand margin, and zeros elsewhere. The
identity matrices express the directed edges leading from
the methylation and copy number vertices to the gene
expression vertices. The zeros reflect that we did not
include any graph relationships between the secondary -
omics features, nor did we include any feedback
mechanism by which gene expression influences methy-
lation or copy number activation.
We considered a population of N samples, and we

denote the observation vector of 3p -omics features by yi,
i = 1,..., N. yi consisted of three subvectors of p elements
each, i.e., yi=ðy#i1, y#i2, y#i3Þ#. Here, yi1 contains gene
expression elements; yi2 contains methylation elements;
and yi3 contains copy number elements.
Graphical statistical models are often characterized in

terms of the inverse of the covariance matrix for a
multivariate normal distribution. In that Gaussian setting,
the elements of the resultant matrix specify conditional
dependence between graph vertices, and we say that
vertex j is conditionally dependent on vertex k when the
element αjk of A� is nonzero. This coincides with the
presence of a directed edge from vertex k to vertex j.
Conditional dependence is formalized using the partial

correlation coefficient. Denoting two random variables by
X and Y , we also consider a setZ of additional covariates.
Denote the linear projection onto the elements of Z by
PZ . The orthogonal complement of X with respect to Z is
then XX\Z = X-PZX. In the linear models setting, XX\Z is
simply the residual of a regression of X onZ. Applying an
identical procedure to Y, we obtain these orthogonal

complements, and the partial correlation coefficient is
then given by rXY = corr (XX\Z , YY\Z ) [51].
Returning to the signaling pathway, for a vertex j

conditionally dependent on the vertex k, we performed
two linear regressions, one of each vertex on the
remaining (3p – 2) vertices. Then, we calculated the
Pearson correlation coefficient rjk between the residuals
of these two regressions [52]. Finally, we formed a
weighted adjacencyAmatrix from the elements ofA� and
{ rjk | 1(αjk = 1), where the element ajk of A corresponding
to αjk in A� is given by ajk = rjkαjk . Although in principle
we may calculate the values of rjk for all j, k = 1,..., 3p, in
practice it is only necessary to do so for the nE+ 2p edges
given by E .
Shojaie and Michailidis [25] introduced a transforma-

tion of A, denoted by Λ and called the influence matrix,
that expresses the cumulative network effect of each
graph vertex on the other vertices in the matrix. They
originally demonstrated that for directed acyclic graphs
(DAGs), the transformation has the analytic form Λ =
(I –A)–1, where I is an identity matrix with the same
dimension as A. Shojaie and Michailidis [53] extended
the transformation in two ways. First, they demonstrated
that it holds for any substochastic graph, which coincides
with graphs with an adjacency matrix that has eigenvalues
all smaller than 1 in magnitude. Second, they derived a
limit result to induce substochasticity in an arbitrary
directed graph. This permits approximation of the
influence matrix for graphs that are not substochastic.
Accompanying the influence matrix, Shojaie and

Michailidis [25] introduced the NetGSA framework for
significance testing of differential activation in signaling
pathways. Zhang et al. [21] applied that same frame-
work to the integrated graph, yielding the EMC-NetGSA
model. The essential components of the NetGSA frame-
work are a mixed-effects linear regression model for the
response vectors yi. Adjusted appropriately for the EMC-
NetGSA framework, the model has the following form:

yi=Λβ þ Λgi þ ϵi,    i=1,:::,N (4)

ϵi � N3pð03p,�2
ϵ I3pÞ (5)

gi � N3pð03p,�2
gI3pÞ (6)

In addition to the observation vectors yi and the
influence matrix Λ, derived from the weighted adjacency
matrix A, the model consists of b, a vector of network-
adjusted mean parameters; gi, a sample-level random
effect; and ϵi, a sample-level random error. The term gi
serves to model the correlation in the observations within
each sample.
The NetGSA framework provides a statistical hypoth-

esis test for differential activation of -omics features in a
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signaling pathway. To begin, we classified samples
according to two populations, treatment and control. In
the context of a complex disease like the 32 TCGA
cancers we considered in our analysis, the treatment
population represents samples of tumor tissue, whereas
the control population represents the normal tissue
samples collected from the corresponding anatomical site.
For a given sample i, denote the sample population by a

class label ci ∈ {T, C}, i = 1,..., N. Denote the number of
treatment (tumor) samples by N1 and the number of
control (normal) samples by N2, where N = N1 + N2. We
then parameterize population-specific weighted adjacency
matrices AT,AC, influence matrices ΛT, ΛC, and network-
adjusted mean parameters bT, bT. Thus, the NetGSA
model given above becomes

yi=Λci βci þ Λci gi þ ϵi (7)

For analysis of differential activation in a subset of
genes of interest, controlling for the network effect of all
features in the -omics pathway, we specified an indicator
vector b with 3p elements, each equal to zero or one. The
elements correspond to the genomic features in the
observation vectors yi. We tested the differential activity
of the elements corresponding to values of one in b. The
NetGSA network contrast is given by ‘ = (-b$bΛC,
b$bΛT). As discussed by Shojaie and Michailidis [25], ‘
facilitates significance testing for pathway disturbance
while controlling for the cumulative network effects of the
full pathway. The test statistic is given by T/ ‘b, where b
=ðβ#C, β#TÞ#, which approximately follows a Student’s t
distribution. We estimated the degrees of freedom for T
using the Satterthwaite approximation.
Even after imputation of the missing values in the

original data matrix X, it may be that individual -omics
features that correspond to genes in the PID pathways
remain missing— namely, missing across all samples. In
these instances, we could not impute the missing data, and
the impact on the pathway analysis depended on the data
type of the missing feature. In the case of missing gene
expression features, we were unable to perform any
analysis of signaling pathways in which it is found, and
we ignored these pathways. On the other hand, when the
absent feature measured methylation or copy number, we
simply removed the corresponding vertex and integrative
edge from V and E , respectively, following the argument
found in Zhang et al. [21]. Therefore, final analysis of a
pathway could contain fewer than 3p genomic features,
but always contained p gene expression features.

Software for interactive data visualization

We pre-rendered the results of the pathway analysis by
analyzing all 173 pathways in all 22 cancers, and saving
the output. We built the data visualization using several R

packages: for interactivity we used shiny, which enables
implementation of rich-content, dynamic websites ren-
dered with HTML, CSS, and Javascript, but coded using
the R language [54]. For graph visualization, we used the
package igraph [55], a cross-platform software package
for analysis and display of graphs, and visnetwork [56],
an interactive extension of the igraph functionality with
integration with the shiny software.
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