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Background: The coronavirus disease 2019 (COVID-19) is rapidly spreading in China and more than 30 countries
over last two months. COVID-19 has multiple characteristics distinct from other infectious diseases, including high
infectivity during incubation, time delay between real dynamics and daily observed number of confirmed cases, and
the intervention effects of implemented quarantine and control measures.
Methods: We develop a Susceptible, Un-quanrantined infected, Quarantined infected, Confirmed infected (SUQC)
model to characterize the dynamics of COVID-19 and explicitly parameterize the intervention effects of control
measures, which is more suitable for analysis than other existing epidemic models.
Results: The SUQC model is applied to the daily released data of the confirmed infections to analyze the outbreak of
COVID-19 in Wuhan, Hubei (excluding Wuhan), China (excluding Hubei) and four first-tier cities of China. We
found that, before January 30, 2020, all these regions except Beijing had a reproductive number R > 1, and after
January 30, all regions had a reproductive number R < 1, indicating that the quarantine and control measures are
effective in preventing the spread of COVID-19. The confirmation rate of Wuhan estimated by our model is 0.0643,
substantially lower than that of Hubei excluding Wuhan (0.1914), and that of China excluding Hubei (0.2189), but it
jumps to 0.3229 after February 12 when clinical evidence was adopted in new diagnosis guidelines. The number of un-
quarantined infected cases in Wuhan on February 12, 2020 is estimated to be 3,509 and declines to 334 on February
21, 2020. After fitting the model with data as of February 21, 2020, we predict that the end time of COVID-19 in
Wuhan and Hubei is around late March, aroundmidMarch for China excluding Hubei, and before earlyMarch 2020
for the four tier-one cities. A total of 80,511 individuals are estimated to be infected in China, among which 49,510 are
from Wuhan, 17,679 from Hubei (excluding Wuhan), and the rest 13,322 from other regions of China (excluding
Hubei). Note that the estimates are from a deterministic ODEmodel and should be interpreted with some uncertainty.
Conclusions: We suggest that rigorous quarantine and control measures should be kept before early March in
Beijing, Shanghai, Guangzhou and Shenzhen, and before late March in Hubei. The model can also be useful to predict
the trend of epidemic and provide quantitative guide for other countries at high risk of outbreak, such as South
Korea, Japan, Italy and Iran.
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Author summary: The coronavirus disease 2019 (COVID-19) is rapidly spreading in China and more than 30 countries
over last two months. COVID-19 has multiple characteristics distinct from other infectious diseases, including high
infectivity during incubation, time delay between real dynamics and daily numbers of confirmed cases, and the intervention
effects of quarantine and control measures. We developed a SUQCmodel to characterize the dynamics of COVID-19. SUQC
is applied to the daily released data of China to predict the trend of epidemic. SUQC can also provide quantitative guidance
for other countries in a high risk of outbreak, such as South Korea, Japan and Iran.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) occurred in
Wuhan, China in mid-December 2019 [1,2]. At that
time, most patients inWuhan were related to exposure to a
seafood market. Later, the number of patients shows an
increasing trend due to human-to-human transmission [3].
The incubation period of COVID-19 is reported to be 3–7
days, at most 14 days, which varies greatly among
patients [2]. The novel coronavirus is believed to be
infectious during incubation period when no symptoms
are shown on the patients [4], an important characteristics
differentiating COVID-19 from its close relative SARS.
Considerable measures have been implemented to control
the outbreak in Wuhan and China, mainly by quarantine
to reduce transmission. On Jan 23, 2020, Wuhan
restricted travel outside the city. Any person exposed to
COVID-19 is required to perform a self-isolation for 14
days. Around Jan 25, 2020, nucleic acid kit was
developed to diagnose the patients. On Feb 12, 2020,
clinical diagnosis was used to assist the confirmation of
infection in Hubei province. Nonetheless, COVID-19 has
been identified in all provinces of China and more than 30
other countries in the last two months [5,6].
COVID-19 has three features that make it hard to

describe with the existing epidemic models including
SIR, SEIR etc. [7,8]. Firstly, COVID-19 has a relatively
long incubation period, which causes a time delay
between real dynamic and the daily-observed case
numbers. Secondly, the epidemic trend heavily depends
on multiple artificial factors, including local medical
resources, quarantine measures, and the efficiency of
confirmation approaches, which should be explicitly
modeled. For example, the outbreak is more severe in
Wuhan compared to other cities in China that constrains
the medical resources, therefore the infected need a longer
time to be confirmed and reported in the official released
numbers. This potentially leads to a larger difference
between real and reported infected cases in Wuhan than in
other places. This could also explain why a sudden
increase of confirmed infected cases was observed when
clinical diagnosis was adopted in confirmation in Wuhan.
Lastly, the quarantine measures are widely implemented,
and the quarantined have a lower chance to infect the
susceptible individuals. This is critical for controlling the
spread across China.
The characteristics of COVID-19 outbreak and control

are distinct from existing infectious diseases, and the
existing epidemic models cannot be applied to describe
the observed data directly. We thus propose to use a
simple SUQC model (Susceptible, Un-quarantined
infected, Quarantined infected, Confirmed infected).
SUQC distinguishes the infected individuals to be un-

quarantined, quarantined but not confirmed, and con-
firmed. Among the three types, the confirmed number is
the data we can directly observe from the official released
report. Only un-quarantined infected have ability to infect
susceptible individuals and affect the development of the
epidemic. In our proposed model, the quarantine rate
parameter is used to quantify the strength of quarantine
policy on the development of epidemics, and the
confirmation rate parameter is used to measure the
efficiency of confirmation based on the released data.
The two parameters can be solved from fitting the
observed confirmed cases over time. Note that the model
contains only four variables and three parameters to
model both artificial factors and characteristics of
epidemics using the data we can directly observe. We
expect that the simplified model will not over fit the data
given the short time span, but it will adequately
characterize the essential dynamics.
We apply the SUQC model to the daily released

numbers of confirmed cases in Wuhan city, Hubei
province (excluding Wuhan), China1) (excluding Hubei)
and four first-tier cities: Beijing, Shanghai, Guangzhou
and Shenzhen. The parameters of the model were
inferred, and used to predict the future trends of epidemics
in China.

RESULTS

The data of confirmed infected numbers includes 33
consecutive daily records from Jan 20, 2020 to Feb 21,
2020 released by the National Health Commission of the
People’s Republic of China (see Supplementary Table
S1). The parameters in the model, such as the quarantine
rate, are time varying, and thus we divided data into
different stages (according to the changes of measures
during the epidemic), and we assumed the parameters
within each stage are relatively stable. We defined time
before Jan 30, 2020 as stage I, and after Jan 30, 2020 as
stage II. To guarantee enough data points within the two
stages, the start and end of the stages may vary by one or
two days. Wuhan has recently undergone stricter
measures of quarantine and transmission limiting, and
clinical diagnosis was adopted after Feb 12, we thus
further did a stage III analysis of the dynamics in Wuhan
using data after Feb 13.

Remarkable difference among trends inferred from
three-stage data

Figure. 1 shows the inference and prediction of epidemic
dynamics of Wuhan using stage I, II and III data
respectively. The first 15 daily data points (from Jan 28
to Feb 11) of stage II were used to fit the model and infer

1) The date is from China mainland (excluding Hubei) .
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Figure 1. Inferring the epidemic dynamics in Wuhan. (A) Prediction using stage II data. (B) Model-fitting and testing with stage II

data. The first 15 data points (from Jan 28) are used to infer the parameters, and the remaining points are used to test the model
performance. (C) Prediction using stage I data. (D) Model-fitting and testing with stage I data, the first 10 data points (from Jan 20)
are used to infer the parameters, and the remaining points are used to test the model. (E) Prediction using stage III data. (F) Model-

fitting and testing with stage III data. The first 7 data points (from Jan 23) are used to infer the parameters, and the remaining points
are used to test the model.
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parameters. The following 10 daily data points were used
as test data for evaluating the performance of the model.
In Fig. 1B, the blue curve presents the model fitting result;
blue dots present the predicted numbers of the confirmed
infections with the fitted model; and red dots are the
observed number of the confirmed infections. Note that
the reported numbers of confirmed are based on nucleic
acid diagnosis before Feb 12; both results of nucleic acid
and clinical diagnosis are provided from Feb 12 to 14, and
only the total confirmed numbers of the two diagnoses are
provided from Feb 15 to 21. By comparing with three
daily data points of the nucleic acid diagnosis, we can see
the fitted model predicts the trend well. The predicted
numbers of all infected (IðtÞ) are also plotted in Fig. 1B.
We can see big gap between the predicted numbers of
total infections and the predicted numbers of confirmed
infections in Wuhan. Clinical diagnosis is adopted by
Wuhan local medical agency as an additional diagnosis
criterion after Feb 12, increasing the confirmation rate and
causing a big boost of the number of confirmed infections.
Note that a proportion of the total infected still remains
unidentified even with clinical diagnosis.
With the inferred parameters, we further plot the long-

term predictions of the numbers of total infected (I), un-
quarantined infected (U ), quarantined infected (Q) and
cumulative confirmed infections (C) in Wuhan (Fig. 1A).
The end time (increment of confirmed infections equals
zero) is predicted to be 147 days from Jan 28, 2020. The
total number of infected individuals is 62,577 (Table 1).
We can do a similar analysis using stage I data of

Wuhan. The stage I data is informative for predicting the
epidemic trend assuming no rigorous quarantine and
control measures. The first 10 daily data points (from Jan
20) were used to infer the parameters. The rest data points
were used to test the performance of the model (Fig. 1C,
D). As clearly seen in Fig. 1C, the predicted numbers of
CðtÞ and IðtÞ increase dramatically, which are far beyond
the observed numbers after Jan 21. The number of total
infected can be as large as 8,923,823, and the epidemic
lasts for a much longer time (328 days, see Table 1). The
dramatic difference between predictions from stage I and

stage II data indicates the preventing measures and
quarantines, such as travel restrict, are very efficient in
controlling the outburst of the epidemic.
Since more strict quarantine and traffic control

measures were executed recently to inhibit the infection
of COVID-19 in Wuhan and clinical diagnosis was
adopted after Feb 12, we also analyzed the stage III data
(from Feb 13). The estimated quarantine rate is 0.6185,
much higher than that of 0.3917 estimated based on stage
II data. The total number of infected individuals is
estimated to be 49,510, indicating a further acceleration of
the epidemic end (Table 1).
Similar analysis was accomplished on stage I and II

data of Hubei province (excluding Wuhan), the whole
country (excluding Hubei), and four tier-1 cities in China
(Figs. 2 and 3; Supplementary Figs. S1–S4; Tables 1 and
2). Overall, the model predictions are in high accuracy.
We see similar trends in these regions: the predicted
numbers of infected are distinct between results from the
two stage data, indicating the necessity and efficiency of
quarantine and control measures. We note that even with
stage I data, Beijing has a reproductive number smaller
than 1 (Supplementary Fig. S1; Table 2, 0.8840),
indicating an early-stage prompt and effective response
to COVID-19.
Confirmation rate. From Figs. 2 and 3, Supplemen-

tary Figs. S1–S4, we notice that the difference between
CðtÞ and IðtÞ in Wuhan is the biggest. Wuhan has the
most infected individuals than any other places in China
(more than 50%), highly beyond the limit of local clinical
resources, leading to a long waiting time for confirmation,
and the lowest confirmation rate of 0.0643 in Wuhan,
compared with 0.1914 of Hubei (excluding Wuhan),
0.2189 of China (excluding Hubei), 0.2680 of Beijing,
0.2846 of Shanghai, 0.2871 of Guangzhou, and 0.2599 of
Shenzhen. As predicted by the model, 26,810 quarantined
infections haven’t been confirmed in Wuhan by Feb 11,
2020. The confirmation rate of Wuhan increases to 0.3229
(Table 1) after Feb 12 when clinical diagnosis was
adopted in Wuhan.
Quarantine rate and reproductive number. At stage

Table 1 Parameter estimation of the epidemic dynamics in Wuhan, Hubei (excluding Wuhan) and China (excluding Hubei)

Wuhan Hubei (excluding Wuhan) China (excluding Hubei)

stage I stage II stage III stage I stage II stage I stage II

Quarantine rate 0.0630 0.3917 0.6185 0.05 0.4880 0.1941 0.5157

Reproductive number 4.7092 0.7575 0.4797 5.934 0.6079 1.5283 0.5753

Confirmation rate 0.05 0.0643 0.3220 0.05 0.1914 0.05 0.2189

End time (U < 1) 299 101 28 397 47 368 38

End time (Ct –Ct – 1 < 1) 328 147 33 391 55 477 45

Infected number 8,923, 823 62,557 49, 510 47,971, 179 17,679 802,606, 289 13,322

R2 0.8720 0.9746 0.9961 0.9390 0.9863 0.9863 0.9960

Note: the end time is counted from the start point of the stage.
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II, Wuhan has the smallest quarantine rate (0.3917)
compared to the other six regions (all close to or larger
than 0.5). This leads to a larger reproductive number
(R=α=g1). The reproductive number of Wuhan decreases
from 0.7575 at stage II to 0.4797 at stage III. Based on
reproductive numbers, the epidemic all over China is
apparently under control.
Un-quarantined. The un-quarantined individuals are

the source of new infection. Using stage II data, the
estimated number of UðtÞ individuals in Wuhan (Fig.1A)
on Feb 12 is still as high as 3,509. The person-to-person
transmission will last for more than two months to mid
May 2020. However, estimated with stage III data, the
quarantine rate of Wuhan increases to 0.6185 and the un-
quarantined infected individuals decreases to 334 on Feb
21, 2020 (Fig.1E).

Predictions

After fitting the model with the recent data from stage II
and stage III (for Wuhan), we make a series of predictions
about future dynamics of the COVID-19 outbreak in
China.
� The end time of the epidemic (with zero new

confirmed infections as the criterion) of Wuhan and
Hubei (excluding Wuhan) is around late-March, and
around mid-March of China. The end time of the four
first-tier cities, Beijing, Shanghai, Guangzhou and
Shenzhen, is before early March. The end time with
zero un-quarantined infections as a criterion is usually
earlier than that with zero new confirmed infections.
� The final reported infected number of the whole

Figure 2. Inferring the epidemic dynamics in Hubei province (excluding Wuhan). (A) Prediction using stage II data. (B) Model-
fitting and testing with stage II data. The first 15 data points (from Jan 28) are used to infer the parameters, and the remaining points

are used to test the model performance. (C) Prediction using stage I data. (D) Model-fitting and testing with stage I data. The first 10
data points (from Jan 20) are used to infer the parameters, and the remaining points are used to test the model.
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country is predicted to be 80,511 individuals, among
which 49,510 are from Wuhan and 17,679 from Hubei

(excluding Wuhan), and the rest 13,322 are from other
regions of China.

Table 2 Parameter inference of the epidemic dynamics in Beijing, Shanghai, Guangzhou and Shenzhen

Beijing Shanghai Guangzhou Shenzhen

stage I stage II stage I stage II stage I stage II stage I stage II

Quarantine rate 0.3357 0.5647 0.0817 0.5813 0.2467 0.5838 0.05 0.5566

Reproductive number 0.8840 0.5254 3.6288 0.5104 1.2026 0.5082 5.934 0.5331

Confirmation rate 0.0906 0.2680 0.0881 0.2846 0.05 0.2871 0.05 0.2599

End time (U < 1) 117 19 282 16 481 19 379 17

End time (Ct –Ct – 1 < 1) 103 23 280 20 492 23 372 21

Infected number 814 388 23,524,072 326 4,724,899 345 12,992,106 411

R2 0.9636 0.9839 0.9760 0.9864 0.9290 0.9821 0.9617 0.9845

Note: the end time is counted from the start point of the stage.

Figure 3. Inferring epidemic dynamics in China (excluding Hubei province). (A) Prediction using stage II data. (B) Model-fitting and
testing with stage II data. The first 15 data points (from Jan 30th) are used to optimize the parameters, and the remaining points are

used to test the model. (C) Prediction using stage I data. (D) Model-fitting and testing with stage I data. The first 10 data points (from
Jan 20) are used to optimize the parameters, and the remaining points are used to test the model.
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� Given the inferred end times, rigorous quarantine and
control measures should be kept before March in Beijing,
Shanghai, Guangzhou and Shenzhen, and before late
March in China (including Hubei). We should further
point out that, the real confirmed infections in Beijing
(Supplementary Fig. S1B), Shanghai (Supplementary Fig.
S2B) and Shenzhen (Supplementary Fig. S4B) are a bit
larger than the predicted values by our model. This is
likely caused by the recent return-to-work tide after the
traditional Chinese Spring festival.

DISCUSSION

We developed a model SUQC for the epidemic dynamics
and control of COVID-19. SUQC uses four variables and
as few parameters as possible to avoid over-fitting the
data, while adequately characterizes the epidemic
dynamics. The model is different from the well-known
epidemic SEIR model in the following aspects: (1) the
infected individuals are classified into un-quarantined,
quarantined and confirmed. And only the un-quanrantined
can infect the susceptible individuals; While in SEIR, all
the infected are infectious; (2) the quarantine rate is a
parameter in SUQC to explicitly model the effects of
quarantine and control measures; (3) SUQC distinguishes
the confirmed infected individuals (observed data) and the
total infected individuals, and the parameter confirmation
rate is affected by medical resources and the sensitivity of
diagnosis methods. Overall, SUQC is developed to
characterize the dynamics of COVID-19, and is more
suitable for analysis and prediction than adopting existing
epidemic models. However, we should emphasize that the
estimates of SUQC are from a deterministic ODE model
without confidence intervals, and the uncertainty from
various sources will be taken into account in future study.
SUQC is applied to the daily released data of China to

analyze the dynamics of COVID-19 outbreak, and
demonstrates an accurate prediction of the trends with
the test data. COVID-19 has currently been spreading in
more than 30 countries. Some countries, such as, South
Korea, Japan, Italy and Iran are in their early stage of an
outbreak, and the governments are attempting to mini-
mize further spread. SUQC can serve as a useful tool for
quantifying parameters and variables concerning the
effects of quarantine or confirmation methods on the
epidemic, and further provide guidance on the control of
the outbreak in these countries.

METHODS

SUQC model

SUQC takes into account the following novel epidemic
features of COVID-19: (1) the epidemic has an infection

probability during the incubation (presymptomatic)
period; (2) various isolation measures are used to control
the development of the epidemic; (3) the main data source
is the daily number of confirmed infections released in the
official report, which is affected by the detection method
and has a delay between the real infected and confirmed
infected number. Four variables related to the features are
used to model the flows of people between four possible
states:
S=SðtÞ, the number of susceptible individuals with no

resistance to disease in the population. S is the same as
that in existing infectious disease models, e.g., SIR and
SEIR.
U=UðtÞ, the number of infected and un-quarantined

individuals that can be either presymptomatic or sympto-
matic. Different from E in the SEIR model, U are
infectious, and can render a susceptible to be un-
quarantined infected.
Q=QðtÞ, the number of quarantined infected indivi-

duals. The un-quarantined infected become quarantined
infected by isolation or hospitalization, and lose the
ability of infecting the susceptible.
C=CðtÞ, the number of confirmed infected cases. The

number of confirmed infections is released by the official
agency or media, which may be the only variable with
observation that we can access. Note that C is usually
smaller than the number of real infected individuals, due
to the limited sensitivity of diagnosis methods. The
duration of incubation can also cause a time delay of
confirmation. Nevertheless, C is also the number useful
for monitoring and predicting the trend of epidemic
dynamics.
Besides the aforementioned variables, we have a

composite variable IðtÞ=UðtÞ þ QðtÞ þ CðtÞ, represent-
ing the real cumulative number of infected individuals at
time t. The limitation of detection methods and the
medical resources can greatly delay the confirmation
process, insomuch the confirmation proportion C=I is less
than 1 and time-varying.
R, the number of removed individuals, is not included

in the model as in the SIR/SEIR models. Once the
infected are quarantined, we assume their probability of
infecting susceptible individuals is zero, and thus no
matter the infected are recovered or not, they have no
effect on the dynamics of the epidemic system.
The model comprises the following independent

parameters:
α is the infection rate, the mean number of new infected

caused by an un-quarantined infected per day. α∈[0,1Þ.
g1 is the quarantine rate for an un-quarantined infected

being quarantined, with the range g1∈[0,1]. The
quarantines can be centralized isolation, self isolation,
hospitalization and so on. It is a parameter representing
multi-resource measures to reduce infection caused by U .

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 17

Epidemic dynamics of COVID-19



g2, the confirmation rate ofQ, is the probability that the
quarantined infected are identified to be confirmatory
cases by a conventional method, such as the laboratory
diagnosis, with the range g2∈[0,1]. g2 is affected by the
incubation period duration, medical conditions, accuracy
of laboratory tests, and other artificial factors such as the
time delay between case confirmation and the official
release. g2 is time-varying since the change of diagnosis
criterion and the improvement of nucleic acid test can
accelerate the confirming process.
� is the subsequent confirmation rate of those infected

that are not confirmed by the conventional methods, but
confirmed with some additional tests. If no other special
approaches used, � is set to 0. Combing two sources of
confirmation approaches β ¼ g2 þ ð1 –g2Þ� is the total
confirmation rate.
δ is the confirmation rate of the un-quarantined infected

who can be identified as confirmed infections without
being quarantined.
We thus set up a set of ODE equations to model the

dynamics of an infectious disease and the control by
artificial factors (Eq.1). In the model, U goes directly to
C, or go through Q indirectly. Actually, the former can be
viewed as a special case of the later with zero delay time
during

Q↕ ↓C:

Thus we delete the direct way and simplified the model as
Eq. 2.

dS

dt
=– αUðtÞSðtÞ=N

dU

dt
=αUðtÞSðtÞ=N –g1UðtÞ – ð1 –g1ÞδUðtÞ

dQ

dt
=g1UðtÞ – [g2 þ ð1 –g2Þ�]QðtÞ

dC

dt
=[g2 þ ð1 –g2Þ�]QðtÞ þ ð1 –g1ÞδUðtÞ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

(1)

dS

dt
=– αUðtÞSðtÞ=N

dU

dt
=αUðtÞSðtÞ=N –g1UðtÞ

dQ

dt
=g1UðtÞ – [g2 þ ð1 –g2Þ�]QðtÞ

dC

dt
=[g2 þ ð1 –g2Þ�]QðtÞ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

(2)

From the above SUQC model, we can further define
some biologically meaningful parameters, for monitoring
and predicting the trend of disease: T=1=g1 is the mean
waiting time from quarantine to confirmation; w=1=[g2

– ð1 –g2Þ�] is the mean time delay from isolation to
confirmation; the reproductive number of the infection is
R=α=g1.

Parameter inference

Among the four variables of the model, the number of
cumulative confirmed infections, CðtÞ, is usually the only
variable with daily observed data to be used for model
fitting and parameter inference.
The initial value of susceptible individuals Sð0Þ is

approximately equal to the population size. The initial
confirmed infections Cð0Þ is the number of infected
obtained from the official report. Note that the initial
time of the ODE system does not have to be at the
beginning of the epidemic, and can start from any time
point during the break of COVID-19.
Some parameters can be calculated beforehand using

the public data directly. We calculate the infection rate α
using the confirmed infected numbers of Wuhan city
during Jan 20 and Jan 27. By fitting an exponential curve,
we get α=0:2967. Confirmed infected numbers during
this time interval may be less biased and represent natural
character of COVID-19, while confirmed numbers are
small and fluctuating at early stages before Jan 20 and are
affected by strict quarantine measures in later stages. The
parameter α is hard to estimate accurately. The values
estimated by using different methods or different data sets
range from 0.3 to 0.5 [9–11]. Luckily in SUQC an
accurate value of α is not necessary; the overall infection
ability measured by the reproductive number R=α=g1 as
a compound parameter is sensitive in parameter optimiza-
tion, and thus the bias of α can be balanced by g1.
Other free parameters and initial values, including g1,

β, Uð0Þ and Qð0Þ, are estimated by fitting the daily time
series of confirmed infections to the model. Denote
Ĉ=f ðg1,β,U0,Q0Þ as the expected daily time series of
confirmed infections provided by the model (Eq. 2),
which was solved by the fourth order Runge-Kutta
method with given values of g1, β,Uð0Þ andQð0Þ. Define
the loss function,

errðα,g1,U0,Q0Þ=jjC – Ĉjj2 (3)

The loss function is then optimized with the interior-
point method implemented in the MATLAB function
fmincon to infer the parameter values. We try different
initial values in parameter optimization, and notice that
the inferred parameter values are not sensitive to the
provided initial values.
Note that the loss function (Eq. 3) may give too much

weight to later observations since the cumulative case
numbers are higher than earlier days. We tried another
two weighted loss functions to better integrate informa-
tion across the whole epidemic (Eqs. S1 and S2 in the
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Supplementary Materials), and compared the prediction
of the loss functions. The prediction seems robust on the
choice of loss functions (Supplementary Figs. S5 and S6).
In practice the loss functions may be chosen by their
performances evaluated on the test data.

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://

doi.org/10.1007/s40484-020-0199-0.
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