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Abstract
Recommender Systems (RSs) are often assessed in off-line settings by measuring 
the system precision in predicting the observed user’s ratings or choices. But, when 
a precise RS is on-line, the generated recommendations can be perceived as margin-
ally useful because lacking novelty. The underlying problem is that it is hard to build 
an RS that can correctly generalise, from the analysis of user’s observed behaviour, 
and can identify the essential characteristics of novel and yet relevant recommenda-
tions. In this paper we address the above mentioned issue by considering four RSs 
that try to excel on different target criteria: precision, relevance and novelty. Two 
state of the art RSs called SKNN and s-SKNN follow a classical Nearest Neighbour 
approach, while the other two, Q-BASE and Q-POP PUSH are based on Inverse 
Reinforcement Learning. SKNN and s-SKNN optimise precision, Q-BASE tries to 
identify the characteristics of POIs that make them relevant, and Q-POP PUSH, 
a novel RS here introduced, is similar to Q-BASE but it also tries to recommend 
popular POIs. In an off-line experiment we discover that the recommendations pro-
duced by SKNN and s-SKNN optimise precision essentially by recommending quite 
popular POIs. Q-POP PUSH can be tuned to achieve a desired level of precision at 
the cost of losing part of the best capability of Q-BASE to generate novel and yet 
relevant recommendations. In the on-line study we discover that the recommenda-
tions of SKNN and Q-POP PUSH are liked more than those produced by Q-BASE. 
The rationale of that was found in the large percentage of novel recommendations 
produced by Q-BASE, which are difficult to appreciate. However, Q-BASE excels in 
recommending items that are both novel and liked by the users.
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1 Introduction

Nowadays, tourists are accessing a wide spectrum of on-line information services 
that enable them to search and discover various types of travel-related services, such 
as, city tours, accommodations, food services and many others  (World  Tourism 
Organization 1995; Revfine.com 2019). This huge variety of tourism-related items, 
which are searchable and potentially findable on the web, have created a vast virtual 
landscape of possibilities for tourists and service providers. In fact, in the attempt 
to ease tourists’ items search and selection processes and increase the number of 
searches that result in real bookings and purchases, the most prominent players of 
the tourism industry have introduced various types of Recommender Systems. As a 
matter of fact, key players, such as, Expedia,1 Booking2 and Kayak3 have developed 
business models rooted in information search and recommendation technologies.

More in general, Recommender Systems (RSs) are software tools that aim at 
easing human decision making in on-line information search and discovery sce-
narios  (Ricci et  al. 2015). In tourism applications, recommendation processes are 
characterised by specific facets. Firstly, tourists often search information in different 
contextual situations and for a wide range of activities that vary in nature and extent. 
For example, a tourist may prefer to visit a museum on a hot and humid day, but she 
may choose a park when the weather is mild. Context-Aware RSs have been devel-
oped to intelligently adapt the recommendations to the tourist’s context  (Adoma-
vicius and Tuzhilin 2015). Besides, tourists typically search and consume more than 
a single service and perform more than one activity in their visit to a destination. In 
other words, they follow visit trajectories or itineraries, which are composed by suc-
cessions of points of interest (POIs). Therefore, session- and sequence-aware RSs 
have been introduced (Mobasher et al. 2002; Jannach et al. 2017). The next-POI rec-
ommendation problem has been defined as correctly suggesting POIs that the tourist 
may be interested to visit next, i.e., after she has visited already some other POIs 
during the same day or in a previous visit (Cheng et al. 2013; He et al. 2016). We 
note that while general recommendation tasks have been addressed by the tourism 
industry, such as, recommending a city destination or a hotel, technical solutions 
of this more complex next-POI recommendation problem have not been yet imple-
mented and deployed.

In Massimo and Ricci (2018, 2019) we have developed a novel next-POI context-
aware RS that we call here Q-BASE. It is designed to help tourists to choose POIs, 
one after the other, during their visits to a city. Q-BASE models with a reward func-
tion how a POI is estimated to be relevant for a user and recommends POI-visits 
that are estimated to give a large reward. Moreover, we observe that users typically 
provide scarce and not explicit feedback (e.g., ratings) and are not keen to disclose 
behavioural data (Smith et al. 1996; Perentis et al. 2015). Hence, Q-BASE learns the 
reward function by applying Inverse Reinforcement Learning (IRL) (Ng and Russell 

1 http:// www. exped ia. com.
2 http:// www. booki ng. com.
3 http:// www. kayak. com.

http://www.expedia.com
http://www.booking.com
http://www.kayak.com
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2000), which does not require explicit users’ feedback and can learn the reward 
function even when a few user’s behaviour observations are available, by making 
the simplifying assumption that the reward is the same for the tourists in a cluster of 
tourists making similar visit trajectories.

In  Massimo and Ricci (2018) a preliminary off-line experiment showed that a 
state of the art nearest neighbour RS, namely SKNN (Jannach et al. 2017), generates 
more precise recommendations compared to Q-BASE. This means that SKNN more 
often includes in the recommendation list the precise next POI-visit performed by 
the tourist. But, it was also shown that Q-BASE suggests POIs that are more novel 
and with larger reward, i.e., they are estimated to be more relevant, compared to 
SKNN. Hence, it was conjectured that in an on-line scenario, i.e., when users really 
interact with the RS, they will like more the novel and rewarding recommendations 
generated by Q-BASE. It was also conjectured that the higher precision of SKNN is 
due to its bias to recommend popular items, i.e., items that have been often chosen 
by the observed users.

Hence, motivated by the above mentioned studies, we here attempt to address the 
following research questions:

• RQ1 If SKNN achieves high precision by being biased towards popular items, 
can Q-BASE be modified, by biasing the recommendations towards more popu-
lar items, to achieve similar precision as SKNN?

• RQ2 Will on-line users like the precise recommendations of SKNN more than 
those generated by Q-BASE, which are more novel and yet relevant?

In this study, we focus on the analysis of these research questions. We propose a 
novel and flexible RS, called Q-POP PUSH, that is derived from Q-BASE and 
generates recommendations that optimises simultaneously two criteria: the reward 
of the recommendations (as for Q-BASE) and their popularity. We test Q-POP 
PUSH in an off-line experiment by comparing its performance with Q-BASE and 
two Nearest Neighbour next-item RSs: SKNN and s-SKNN (Ludewig and Jannach 
2018). Finally, we assess in a user study the user perception of the recommendations 
generated by the best performing (off-line) models.

Our research extends previous analyses that evaluated the popularity bias in RSs 
(Abdollahpouri et al. 2019, 2020; Park and Tuzhilin 2008; Jannach et al. 2015). But, 
while most of the research has focused on measuring such a bias and taming it, we 
are interested in understanding the dependency between precision and popularity 
bias, as it is investigated in Jannach et al. (2015), and in devising methods that allow 
us to balance the pros and cons of this bias by enabling the selection of the right 
amount of recommendations’ popularity that better suits a specific application sce-
nario. Hence, we are interested in understanding the positive effect of the popularity 
bias in tourism RSs.

In the off-line analysis, we replicate the evaluation procedure that was origi-
nally used in Massimo and Ricci (2018), while here the research focus is question 
RQ1. We measure the off-line performance of the IRL-based and nearest neigh-
bour RSs in terms of reward (estimated relevance), precision and popularity. We 
note that popularity is normally considered as an indicator of (lack of) novelty: a 
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popular item is unlikely to be perceived by a user as a novel one. We investigate 
the effect of the proposed hybrid approach Q-POP PUSH and we inspect whether 
the popularity bias of Q-POP PUSH can help to generate recommendations simi-
lar to those computed by SKNN. To this end, we also compare the Jaccard similar-
ity of the recommendations produced by Q-BASE and Q-POP PUSH with the 
recommendations produced by SKNN.

Then, in a user study, we address the research question RQ2. We designed an 
interactive on-line system to measure the user-perceived novelty and appreciation 
for the recommendations generated by Q-BASE, Q-POP PUSH and SKNN. In 
this on-line system, the user can enter a set of POIs, which has already visited in 
a city (Florence), and she will obtain suggestions for possible next POI visits in 
the same city.

The findings of the above-mentioned analyses (off-line and on-line) are here 
summarised. Firstly, the off-line evaluation results show that Q-BASE gener-
ates next-POI recommendations with higher reward and lower popularity, but 
also with lower precision, if compared to SKNN and s-SKNN. The experiment 
addresses the first research question by showing that Q-POP PUSH can actu-
ally achieve a precision very close to that of SKNN and s-SKNN at the cost of a 
significant increase of the popularity of the recommendations. It is also interest-
ing to note that Q-POP PUSH can be tuned, via its parameter, to obtain different 
precision-popularity trade-offs.

Secondly, the user study results confirm that while Q-BASE suggests more novel 
items, actually SKNN and Q-POP PUSH suggest items that the users like more. We 
explain this result by observing that items that are novel to the user are also hard 
to evaluate. Hence, it is difficult for the user to formulate an explicit appreciation 
(“like”) for an item that is discovered the first time with the help of the RS, and it is 
illustrated only by a picture and a short description. But, the user study shows that 
Q-BASE can identify, better than SKNN and Q-POP PUSH, items that are both 
novel and liked by the users. This is an important result, since a valuable goal of an 
RS, especially in the tourism domain, is to identify novel experiences that are liked 
by the user.

Here we summarise the contribution of this study:

• We address the next-POI recommendation problem which is an important func-
tionality for tourism RSs and not yet implemented and deployed by the on-line 
tourism industry.

• We describe two inverse reinforcement learning based (IRL-based) RSs that try 
to excel on different target criteria: precision, relevance and novelty.

• We devised off-line and on-line comparative studies of the IRL-based RSs with 
session-based RSs, applying them to the tourism domain.

• We show that the difference in performance between the IRL-based and the near-
est neighbour-based RSs lies in the popularity bias of the latter.

• We investigate the effect of the popularity bias by showing that with an oppor-
tune definition of the model parameter the IRL-based RS Q-POP PUSH can 
achieve a precision similar to that obtained by the nearest neighbour-based RSs, 
and yet more reward.
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• We show that the on-line user perception of the recommendations generated by 
the compared models is strongly influenced by the novelty of the recommenda-
tions.

The paper structure is as follows. In Sect. 2 the most relevant and related research 
works are presented. Then, in Sect.  3 we describe how IRL-based recommenda-
tions are generated and the novel hybrid model Q-POP PUSH is introduced. The 
experimental data used in this study is presented in Sect. 4. Section 5 presents the 
off-line evaluation of the proposed IRL-based models. The user study is the subject 
of Sect. 6. In particular, the on-line system developed for the user evaluation of rec-
ommendations is here presented. The outcomes of the user study are presented in 
Sect. 7. Finally, in Sect. 8, the limitations of the proposed approach are discussed 
and conclusions are stated.

2  Related works

POI recommendation has drawn considerable attention in RS research, but research 
results have not yet reached the level of development needed to be applied in tour-
ism portals. In fact, major players of the on-line tourism market, such as, Booking.
com or Tripadvisor.com, still offer a recommendation functionality that is not per-
sonalised: it is either based on the average opinion of the users or on experts’ opin-
ions or on the items’ popularity.

In  Torrijos et  al. (2020) POI recommendations are generated by leveraging 
POI-visit trajectories collected by the Foursquare Location-Based Social Network 
(LBSNs) and by employing a user-based nearest neighbour algorithm. The authors 
propose to select neighbour trajectories by leveraging state of the art similarity 
measures, previously used in the field of trajectory data mining: Dynamic Time 
Warping and Hausdorff Distance. However, these similarity measures solely con-
sider spatial-temporal properties of the trajectories and ignore the semantic of a 
POI-visit, which is instead considered in the RSs models that we propose (Q-BASE 
and Q-POP PUSH). Moreover, the recommendation generation process is agnostic 
of the sequential nature of next-POI selection.

Another POI recommendation method, which exploits POIs specific geographi-
cal information is presented in Wang et al. (2018). The proposed approach is also 
assessed by employing check-in data collected by LBSNs. The authors leverage the 
capacity of a POI to spread visitors to or attract them from other POIs. The authors 
also consider the physical distance among POIs. The proposed method uses the 
above mentioned data to compute the probability of a user to visit a POI. It is impor-
tant to note that, differently from Q-BASE and Q-POP PUSH, the POI content 
information and the visit context is not used.

In Zhang et al. (2018) is presented a personalised RS for a specific type of POIs, 
namely, restaurants. The authors propose a clustering technique that identifies in Tri-
pAdvisor groups of related customers and groups of related restaurants. Restaurant 
recommendations for a target user are computed in two steps. Firstly, the customer 
group that is closer to the target user is identified. Then, the most related restaurants 
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are proposed. We note that this RS requires explicit user feedback to generate rec-
ommendations while in Q-BASE and Q-POP PUSH only behavioural data (implicit 
feedback), i.e., observations of POI-visit trajectories are considered.

It is also worth stressing that the previously described approaches do not consider 
the sequential nature of the tourists’ choices while building an itinerary. This aspect 
has been instead considered in Palumbo et al. (2017), where a neural network-based 
next-POI RS is presented. The authors, also in this case, use check-in data collected 
by LBSNs. Besides, they consider users’ demographic to cluster their check-ins. A 
Recurrent Neural Network is trained to identify common visit patterns for the (spe-
cific) clustered check-ins. Relevant next-POIs recommendations are then found by 
using the POI category that the model predicts. The usage of clustering in Palumbo 
et al. (2017) solves the new user problem, but in contrast to Q-BASE and Q-POP 
PUSH, it is not paired with a learning step where the user’s behaviour model is 
derived.

In Huang and Gartner (2014) is presented a next-POI RS that, similarly to our 
approach, exploits observations of sequences of POI-visits made by users. But, dif-
ferently from Q-BASE and Q-POP PUSH, the visit context and POI specific infor-
mation are not leveraged in the generation of the recommendations. Next-POI rec-
ommendations are computed by identifying users similar to the target one. These are 
users that visited the last visited POI of the target user, and after that, also visited 
POIS not yet visited by the target user.

A basic and important difference between the state-of-the-art approaches 
discussed so far and that proposed in this article, is related to the fact that these 
approaches do not learn an explicit tourist behavioural model, i.e., a model that can 
predict and explain why the tourist is making their POI-visit choices. The previously 
mentioned approaches mine frequent patterns in the observed users’ data without 
seeking for structural properties correlated to the user choices, i.e., they do not try to 
reveal the factors that steer users to take specific actions.

Inverse Reinforcement Learning (IRL) is a machine learning technique that can 
address the above mentioned task by finding the optimal policy of a Markov Deci-
sion Process (MDP) where the reward function is unknown (Ng and Russell 2000). 
In practice, with IRL one can compute the optimal decision making policy of a deci-
sion maker modelled by an MDP by just observing the decisions that she makes, 
i.e., without knowing or making any assumption on the reward obtained by the deci-
sion maker during the process. Moreover, IRL estimates the reward function, i.e., it 
explicitly provides a function that measures how much a choice, in our case a POI-
visit decision, is estimated to be rewarding for the decision maker.

We mention here a couple of applications of IRL to problems that are similar to 
the one we have considered, i.e., the decision making process of a tourist. In Ziebart 
et al. (2008) the authors apply IRL to road navigation. They identify a choice dis-
tribution over decision sequences (i.e., driving decisions) that matches the reward 
estimated from the demonstrated behaviour. This technique is useful to model route 
preferences as well as to predict destinations based on partial trajectories. Instead, in 
Suzuki (2018) the authors apply IRL to model pedestrian behaviour from observed 
traces. The learnt behavioural model is used to generate synthetic trajectories at the 
city level and conduct simulations for urban planning. The IRL-based solution was 
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shown to better simulate users’ movements, compared to a popular baseline used in 
the sector of mobility and transportation. We must observe that these works focus on 
learning a decision making model, but they do not apply it to the recommendation 
task, which is instead the focus of our work.

Regarding the RS evaluation methods that are used in our work, it is important 
to cite other studies that have touched some of the issues discussed in this paper. 
In  Kouki et  al. (2020) the authors note that off-line evaluation does not provide 
enough information to identify the best RS, for all the considered metrics. They 
also note that the precision metric scores high an algorithm only when it predicts 
the exact same item that the user choose. In a practical scenario, however, there are 
near-identical products which, although they are assigned different identifiers, they 
should be considered as equally-good recommendations. This observation is moti-
vating our adoption of the IRL approach and the introduction of the reward metric, 
which is discussed in the rest of the article. This metric is scoring high the items that 
have the properties of the items, which are typically chosen by a user in a context, 
but they might not be the same that were actually selected. In Kouki et al. (2020) the 
authors also conduct a user study, but while in their case the recommendations were 
evaluated by experts, on behalf of the real users, we directly asked the subjects who 
received the recommendations to evaluate them. Moreover, we must observe that 
the application domain is very different, as they focused on the home-improvement 
domain. Hence, the results of our analysis are novel and provide an additional per-
spective on the topic of how to effectively evaluate RSs. Another interesting study 
that obtained some results, which we have derived as well, is described in Loepp 
et al. (2018). Here the authors investigate the effect of consuming the recommended 
items on the user evaluation of the recommendations. They show that it is not always 
possible to adequately measure user experience without allowing users to consume 
items; this is observed in the music domain. Participants rated system effectiveness, 
choice and overall satisfaction higher when they could listen to music tracks prior 
to filling in the questionnaire. We have observed a similar situation in the tourism 
domain, and this can justify the observed inferior number of likes produced by the 
algorithms that suggest more novel items.

Finally, its worth discussing the relationship between item novelty and rec-
ommendation satisfaction. In Knijnenburg et al. (2014), it has been shown that 
users’ choice satisfaction for an RS is influenced by the users’ knowledge about 
the recommendation domain. In that study the analysis was conducted on a dif-
ferent application domain, namely, the energy domain. But, the general principle 
can be applied to the tourism scenario as well: the knowledge of a destination 
influences the evaluation of a tourist for POI recommendations in that desti-
nation. Hence, a tourist needs not only suggestions of POIs that she may like, 
but also recommendations that she can recognise that she will like. In order to 
achieve that goal, the recommendations must match the user’s level of knowl-
edge of the domain and therefore must be recognisable as relevant suggestions 
by the user. In practice, this means that the user should have the possibility to 
estimate, based on her knowledge, that the offered recommendations match her 
needs and wants, hence, recommendations cannot be too much novel and diverse 
from those previously consumed. In Ekstrand et al. (2014) the authors report the 
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outcome of a user study where they asked users to compare lists produced by 
three common collaborative filtering algorithms on the dimensions of novelty, 
diversity, accuracy, satisfaction, and degree of personalisation, and to select an 
RS that they would like to use in the future. They found that satisfaction is neg-
atively dependent on novelty and positively dependent on diversity. This, fur-
ther stresses the difficulty to generate recommendations that are novel and liked, 
which is one of the primary goals of our RS.

Fig. 1  Proposed approach for next-POI recommendation
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3  Recommendation techniques

Figure 1 shows the logical computational phases of the proposed Next-POI rec-
ommendation approach. These phases are described in the next sub sections.

3.1  User behaviour modelling

We model the user (tourist) choice-making behaviour with a Markov Decision 
Process (MDP) (Sutton and Barto 1998). A MDP is a tuple (S,A, T , r, �) . S is the 
set of possible states; in our scenario, a state models the visit to a POI in a spe-
cific contextual situation. For instance, a tourist who visits Florence could be at 
Ponte Vecchio (POI) in an overcast, mild morning. So, a state is the combination 
of a physical location and a contextual situation. The specific contextual dimen-
sions that we use are weather (sunny, rainy or windy time); day time (morn-
ing, afternoon or evening); and visit temperature (warm or cold). A is the set of 
actions a user can perform: the action space. In our scenario, an action represents 
the decisions to move to a next POI (next state). Consequently, POIs and actions 
are in a bijective relation. We assume that a user located at a specific POI and 
context can potentially reach any other POI in a possibly new context (e.g., the 
day time may change). T is the (finite) set of transition probabilities. A transition 
probability T(s�|s, a) quantifies the chance to perform a transition from state s to 
s′ when action a is taken. For instance, a user that visits the Uffizi Gallery in a 
cloudless morning (state s1 ) and then wants to visit San Miniato al Monte (action 
a1 ) in the afternoon, can arrive at the desired POI with either rainy weather (state 
s2 ) or an overcast sky (state s3 ). Transition probabilities are estimated by min-
ing a data set of visit trajectories. The function r ∶ S → ℝ models the reward a 
user obtains from visiting a state, i.e., visiting a POI in a particular context. This 
function must be learnt, i.e., the reward function is unknown in our application 
scenario. We assume that the reward the user obtains from a POI visit is unknown 
because the user is not supposed to reveal if that was a rewarding experience. 
Moreover, we assume that the reward obtained by the user is related to the rel-
evance of the visit and therefore we believe that the estimated reward function 
reveals also what POI-visits (states) are relevant for the user. It is also worth not-
ing that the learning approach that we use to learn the reward function, namely 
Inverse Reinforcement Learning, implicitly assumes that if the user visits a POI 
and not another nearby one, then this indicates that the first POI gives to the user 
a larger reward than the second. This is a very common assumption made in many 
RSs that exploit implicit feedback (Jannach et al. 2018).

Finally, � ∈ [0, 1] is a parameter measuring how much the rewards obtained from 
visits performed later in a visit trajectory are discounted with respect to the immedi-
ate ones: a reward received k visits after the current visit is worth only �k−1 times 
what is would be worth if it were received immediately. The lower the value of � the 
more myopic is the decision maker, i.e., she is just trying to optimise the immediate 
reward and less the rewards that can be obtained by the subsequent visits.
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3.2  User behaviour learning

Given a MDP the objective is to find a policy �∗ ∶ S → A that maximises the 
cumulative reward that the user, i.e., the decision-maker, obtains by perform-
ing actions that follow that optimal policy �∗ . The state-action value function 
Q�(s, a) expresses the value of taking the action a in state s under the policy � . It 
is the expected discounted cumulative reward obtained by taking action a in state 
s and then following the policy � . It is computed as Q�(s, a) = �

s,a
�
[
∑∞

k=0
�kr(sk)] . 

The optimal policy �∗ dictates to a user in state s to perform the action that 
maximises Q. In order to compute Q�∗ the previous formula is rewritten as: 
Q�∗ (s, a) =

∑
s� T(s

��s, a)
�
r(s) + � maxa� Q�∗ (s�, a�)

�
 . When the reward function r is 

known, various reinforcement learning algorithms have been proposed to compute 
the optimal policy for a MDP (Sutton and Barto 1998).

With �u we denote a sequence of actions performed by a user u, i.e., her POI-
visit trajectory: �u is a temporally ordered list of states (POI-visits). For instance, 
�u1 = (s20, s3, s11) represents a trajectory of user u1 , starting from state s20 , then mov-
ing to s3 and ending at s11 . Z denotes the set of the available users’ trajectories; they 
are used to estimate the probabilities T(s�|s, a).

As we previously mentioned, in an RS the reward a user obtains by consuming an 
item is often not known because users tend not to provide explicit feedback on the 
consumed items (visited POIs) (Smith et al. 1996; Jannach et al. 2018). Moreover, 
the explicit feedback is often not faithfully describing the true user’s preferences, 
as users are biased in how they remember their experiences  (Do et  al. 2008) and 
they do not report good and bad experiences with the same probability (Yang et al. 
2018). Therefore, standard Reinforcement Learning techniques cannot be directly 
employed to compute the optimal decision making policy for a given MDP. Con-
versely, by having at disposal a good amount of POI-visit observations of a user, i.e., 
the user’s POI-visit trajectories, a MDP (for each user) could be solved via Inverse 
Reinforcement Learning (IRL) (Ng and Russell 2000). IRL algorithms can learn 
simultaneously the reward function and its corresponding optimal policy. The opti-
mal policy dictates actions close to the demonstrated behaviour, i.e., the observed 
user’s POI-visit trajectory. Hence, in this context optimal is not referring to the 
actual best choice that a tourist can do, but it is optimal conditioned by the shown 
interests of the user. In this study, to learn the users’ policy and reward function 
(behaviour), we have used Maximum Likelihood IRL (Babes et al. 2011). In fact, 
Maximum Likelihood estimation has been shown to be an effective optimisation cri-
terion for solving IRL problems similar to those we address in this paper (Babes 
et al. 2011; MacGlashan et al. 2015).

3.3  Clustering trajectories

In general, it is hard to have at disposal a large user’s history of travel-related choices, 
which is needed to learn the specific reward function of the user. The scarcity of 
users’ specific preference and choice data is a common problem of e-commerce 
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applications and RSs in particular; users may have not consistently interacted with 
the RS and, even if they have a large interaction history, they may not be eager to 
disclose it. In travel and tourism applications some travellers consider this informa-
tion personal and private, especially because it can reveal their past position (Smith 
et al. 1996; Perentis et al. 2015; Poikela et al. 2014).

Hence, to learn a user’s behavioural model from a relatively small set of observa-
tions of POI-visit actions, we cluster the full set of trajectories Z in a few smaller 
groups of trajectories belonging to users with similar interests and then we learn one 
behaviour model per each group.

We define the interests of a user, as they are shown in a visit trajectory, by utilis-
ing the terms that describe the visited POI (e.g., category) and the visit context (e.g., 
weather) associated with each POI-visit that is contained in that user’s trajectory. 
These terms are also considered as Boolean features of the POI-visits; by represent-
ing the presence or absence of a term in the POI-visit description. We them use a 
document-like representation of each POI-visit trajectory where the interest of the 
user for a term (feature) is assumed to be proportional to its frequency in the trajec-
tory’s POIs. For instance, if “cathedral” appears very often in the document repre-
sentation of a visit trajectory, and “bridge” only once, we infer that the user has a 
stronger interest for the first compared with the second. By building this representa-
tion for all the POI-visit trajectories in Z we obtain a collection of documents (cor-
pora) that we then use to identify the different groups of interests of the users who 
performed those POI-visit trajectories. To achieve this objective we employ topic 
modelling (Blei 2012). In total, in the data set considered in this article, there are 

Table 1  POI-visit trajectory example listing the visited POIs, their visit order (step) and the context of 
each POI visit: weather summary, temperature and part of the day

POI Weather Temperature Day part Step

Colonna dell’Abbondanza Cloudy Cold Afternoon 1
Museo dell’Opera del Duomo Cloudy Cold Afternoon 2
Cupola del Brunelleschi Cloudy Cold Afternoon 3
Mercato Centrale Cloudy Cold Afternoon 4
Piazzale degli Uffizi Clear Cold Evening 5
Ponte Vecchio Clear Cold Evening 6

Table 2  Document-like representation of the POI-visit shown in Table 1

POI-visit document-like representation

(Step 1) Cold, afternoon, cloudy, square, monument, foggini, century_15,
(Step 2) Cold, afternoon, cloudy, museum, musei_storici, ghiberti, bru-

nelleschi, century_15,
(Step 3) Cold, afternoon, cloudy, church, brunelleschi, century_15,
(Step 4) Cold, cloudy, afternoon, square, century_19,
(Step 5) Cold, evening, clear, square,
(Step 6) Cold, evening, clear, bridge, century_14
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|Z| = 1663 POI-visit trajectories and F = 137 POI-visit Boolean features (listed in 
Sect. 4), which are also the terms appearing (or not) in a document-like representa-
tion of a trajectory.

Table 1 shows an example of POI-visit trajectory and its document-like represen-
tation is shown in Table 2.

A topic is a group of closely coupled and related POI terms, i.e., POI catego-
ries and visits conditions (weather) that are often found together in the documents 
(trajectories) of the collection. Each term in a topic is associated with a score that 
defines its importance in the topic, hence we can represent a topic with a list of 
terms ordered according to their (descending) term-to-topic relationship scores. For 
instance, the 5 most important terms, for two topics that we identified, are: morning, 
cold, square, palace, 15th century, for topic A; and hot, afternoon, 16th century, 
church, palace, for topic B. Topic A identifies trajectories of users that prefer to visit 
open areas (square) and palaces in the initial part of the day (morning), whereas 
topic B is representative of users interested in indoor activities (visiting churches, 
palaces) mostly during milder afternoon.

In addition, each POI-visit trajectory in the corpora is associated to a topic 
according to a trajectory-to-topic score that measures how strong is this link. By 
using these association scores we define clusters of similar trajectories, which are 
performed by users with similar interests (in context). We create a cluster for each 
topic and assign to the cluster the POI-visit trajectories that have a trajectory-to-
topic association score that is larger than a threshold. The size of the threshold can 
be used to determine the size of the resulting clusters. We note that a POI-visit tra-
jectory can be assigned to more than one cluster. This enables to leverage more sam-
ples when the behavioural model (reward function and optimal policy) of each clus-
ter is learnt via Inverse Reinforcement Learning (Massimo and Ricci 2018).

More precisely, we consider the document-like representation of a POI-visit 
trajectory as a (row) vector of terms so that the combination of these vectors form 
the rows of a matrix. If the document-like POI-visit trajectory does not contain a 
specific term then the corresponding element of the matrix has value 0, otherwise, 
it contains the number of times the term appears in the document. Then, to bet-
ter represent the importance of each term that appears in a document-like POI-visit 
trajectory we substitute the corresponding matrix element with the term frequency-
inverse document frequency (tf-idf) (Rajaraman and Ullman 2011) of the POI-visit 
trajectory term. We finally denote with D the tf-idf POI-visit trajectories matrix, 
which has dimension |Z| × F : one row for each trajectory and one column for each 
term. In Table 3 the five most important terms, according to the tf-idf weights of the 
POI-visit trajectory shown in Table 2, are shown.

Table 3  Most important terms according to the tf-idf weights for the document-like representation shown 
in Table 2

Term Cloudy Cold Afternoon Square Museum

tf-idf 0.486 0.484 0.286 0.119 0.092
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Topics are identified by using Non-negative Matrix Factorisation (NMF) (Lee and 
Seung 1999; Jia et al. 2017). Given the matrix D, NMF computes two matrices H (of 
size |Z| × K ) and W (of size F × K ), of a lower rank than D, such that D ≈ HWT . 
The matrix H identifies K hidden topics (columns) and their association to each visit 
trajectory (row). In our experiments, we identified the optimal K by using the sta-
bility analysis method described in Greene et al. (2014). That method is based on 
the measure of the agreement between term rankings (top-m terms of the K top-
ics) generated over multiple runs of the NMF topic-modelling algorithm. The agree-
ment is computed employing a top-weighted ranking measure (average Jaccard) that 
gives stronger influence to highly ranked terms. Details can be found in Greene et al. 
(2014). By applying this analysis and searching in the range {1,… , 30} , we found 
that the optimal number of topics for our data set is K = 5.

Concerning cluster formation, similarly to Jia et al. (2017), we associate a trajec-
tory to any of the 5 topics that has trajectory-to-topic association score larger than a 
given threshold � . For each topic the threshold is set as the median of the values in 
the columns of H. For instance, in order to illustrate the trajectory-to-topic associa-
tion, we refer again to the POI-visit trajectory example shown in Table 1. Table 4 
shows the specific scores that associate this trajectory to the 5 identified topics. This 
trajectory is finally included in cluster C since the value of that score is larger than 
the threshold.

Conversely, by using the matrix W we can identify the most relevant terms of 
a topic by selecting the rows with the largest values. In Table  5 we show the 5 

Table 4  Row of the H matrix containing the trajectory-to-topic association scores of the same trajectory 
used in previous tables

Cluster A Cluster B Cluster C Cluster D Cluster A

0.012 0.019 0.165 0.005 0.001

Table 5  Top 10 terms in the five topics extracted from the trajectory data set and number of trajectories 
assigned to each topic (cluster)

#Term Cluster A Cluster B Cluster C Cluster D Cluster E

1 Morning Hot Cloudy Warm Freezing
2 Cold Afternoon Cold Cloudy Cloudy
3 Square Century 16 Church Century 14 Afternoon
4 Palace Palace Square Church Century 14
5 Century 15 Church Century 13 Square Palace
6 Century 13 Square Palace Building Building
7 Church Century 19 Rain Palace Century 13
8 Night Century 13 Museum Ponte Church
9 Dante Museum Brunelleschi Century 13 Foggini
10 Century 10 Brunelleschi Century 15 Century 19 Century 19
#Traj. 368 339 341 297 153
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generated topics, corresponding to the 5 generated trajectory clusters, in terms of the 
top-10 features of each topic and the number of included POI-visit trajectories.

3.4  Recommending next‑POI visits

In this section we describe a new next-POI RS, which is called Q-POP PUSH, and 
extends the IRL-based Q-BASE model that was introduced in Massimo and Ricci 
(2018) (where it was called CBR). We first recall the definition of Q-BASE.

In Q-BASE the behaviour model of the cluster the user belongs to is used to 
suggest the optimal action this user should take after the last visited POI. The POI 
visit actions a suggested to user in state s are those with the largest Q�∗ (s, a) values 
(Massimo and Ricci 2018). Here �∗ is the optimal policy for the users in the clus-
ter. Hence, if the tourist will make any of these choices and will continue to make 
successive POI visits by choosing the actions with the largest Q value, which are 
recommended by Q-BASE, then the obtained cumulative reward will be maximised. 
Q-BASE is therefore a recommendation strategy that not only tries to suggest the 
most satisfying immediate next POI visit, but also the visits that the tourist will be 
able to make after that immediate next. Moreover, since the reward is estimated on 
the base of the POI and context features, Q-BASE can even recommend novel POIs, 
not yet visited by tourists, provided that they have the features of the POIs visited by 
the tourists in the same cluster, and are visited in the contextual condition typically 
preferred by the tourist in the same cluster.

The original recommendation strategy introduced in this paper is called Q-POP 
PUSH. This generates recommendations that optimize two criteria: the cumulative 
reward of the next-POI visit recommendation, as for Q-BASE, and the popularity 
of the POI. Q-POP PUSH computes two scores and then combines them before 
selecting the POIs that have the largest combined scores. The first score measures 
how much reward can be obtained by the consumption of the POI and the second 
one measures how popular is the POI in the users’ trajectories data set. Moreover, 
Q-POP PUSH can differently balance the two scores, hence, the recommendations 
can be made more or less popular, as needed.

Given a state s and a POI visit action a we consider the state-action value func-
tion Q�∗ (s, a) and the pop(a) function, which is the number of occurrences of the 
POI-visit corresponding to action a, in the trajectories data set Z. These two func-
tions are normalised with min-max scaling to range in [0, 1]. Finally Q-POP PUSH 
scores a POI-visit action a for a user in state s as following:

This is the harmonic mean of the two scores Q�∗ (s, a) and pop(a). The harmonic 
mean is widely used in information retrieval to combine two scores in a single one, 
e.g., the harmonic mean of precision and recall is F1 (Manning et al. 2008). In the 

(1)

QPP(s, a) =
1

�
1

pop(a)
+ (1 − �)

1

Q�∗ (s,a)

= (1 + �2)
Q�∗ (s, a) ⋅ pop(a)

(Q�∗ (s, a) + pop(a) ⋅ �2)
.
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equation above �2 = 1−�

�
 and � ∈ [0, 1] , while � ∈ [0,∞[ . These two parameters 

weigh the relative importance of Q�∗ (s, a) and pop(a). With 𝛼 >
1

2
 ( 𝛽 < 1 ) the popu-

larity of a POI-visit action has a higher importance, whereas with 𝛼 <
1

2
 ( 𝛽 > 1 ) the 

state-action value Q�∗ (s, a) is weighed more. When � = 1 ( � =
1

2
 ) equal importance 

is given to the two scores. The POI-visit actions recommended to the user are those 
with the largest QPP scores.

4  Experimental data

In order to address the two research questions formulated in the introduction (RQ1 
and RQ2) we employed a data set consisting of POI-visit trajectories in the city of 
Florence (Italy).4 These trajectories have been extracted from a pre-existing dataset 
described in Muntean et  al. (2015). To build the original dataset the authors first 
collected from the Flickr5 photo-sharing platform a set of photos taken in the city of 
Florence, together with their metadata (i.e., user id, timestamp, geographic coordi-
nates). Then they built users’ photo albums, i.e., manually grouped geo-referenced 
photos taken by the same photographer, who took more than one picture. After-
wards, each photo was matched to an existing POI by exploiting the geo-reference 
field in the POI Wikipedia pages of Florence attractions. Specifically, for each POI 
in Florence, they searched for photos that fall in the circular area (radius of 100 m) 
centred at the POI coordinates. Finally, for each user multiple POI-visit trajectories 
were formed. A POI-visit trajectory contains POI-visits that are separated by a time 
difference smaller than 8 hours.

Since our objective is to learn the sequential choice-making behavioural model 
of tourists visiting a physical space, we limit our analysis to a subset of the original 
data set, by considering only trajectories that contain at least 5 POI visits. In Table 6 
we report some important statistics about the dataset we finally considered. We note 
that the trajectories/users ratio is 1.43. In practice, the majority of the user’s in this 
dataset have just one visit trajectory. This data scarcity makes learning a user-spe-
cific user behaviour impossible, and it justifies the clustering approach followed in 
this article (Sect. 3.3).

Table 6  Dataset statistics
Number of users 1163
Number of trajectories 1663
Number of POIs 779
Number of POI-visits 21,129
User-trajectory ratio 1.43
Avg. trajectory length 12.6

4 The dataset and code used in this study can be obtained from the authors upon request.
5 http:// www. flickr. com.

http://www.flickr.com
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The identified POIs are mainly cultural attractions, and we sought for an appro-
priate set of features. The Boolean features here described corresponds exactly to 
the terms that were used for clustering the visit trajectories (see Sect. 3.3). POI 
content-related and contextual features define the state model and determine the 
learned user’s behaviour: both the reward function and the optimal policy are 
functions of the state. By using the POI Wikipedia page of each POI we manually 
labelled them with the content features in Fig. 2.

In total we collected 137 content features that are divided in three groups: 13 
POI category features; 18 historical period features; 106 historical person related 
to the POI (only one per POI) features. We note that the features were considered 
to be Boolean (present vs. absent), also to ease the computation of the inverse 
reinforcement learning algorithm.

In the selection of POI category features we balance the need to discriminate 
the items while being able also to tackle the problem of scarce POI-visit data. In 
other words, we considered features that are shared by multiple POIs. Clearly, the 
selected features depend on the peculiar characteristic of the historical city centre 
of Florence.

In Fig. 3 we show the 14 Boolean context features that we identified and used 
in the experiments. There are 6 features describing the weather summary, 4 fea-
tures for the temperature and 4 features to model the daytime at POI-visit time. 
The identification of these features for each POI-visit has been performed by 

Fig. 2  Frequencies of the POI features in the trajectories’ dataset
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leveraging the timestamp (the date) and the geographical coordinates of the origi-
nal POI’s photo and then querying a weather service.6

The MDP that we derived from the trajectories’ data has |S| = 2317 states and 
|A| = 779 distinct visit actions. The feature vector used for representing the states 
� has dimension 151 (137 content and 14 context Boolean features), and the total 
number of observed transitions is |T| = 14,233.

5  Off‑line algorithm analysis

5.1  Baseline recommendation algorithms

We compare the performance of the IRL-based RSs, Q-BASE and Q-POP PUSH, 
with two nearest neighbour-based baselines that were previously proposed, session 
KNN SKNN (Jannach et al. 2017) and sequential SKNN (s-SKNN) (Ludewig and 
Jannach 2018), and a popularity-based baseline, POP.
SKNN generates next-item (visit action) recommendations by leveraging the user 

current POI-visit trajectory and searching for similar trajectories in the dataset. 
Firstly, SKNN finds N� , which is the set of the N most similar trajectories to the cur-
rent user trajectory � . The similarity c(� , �i) between the current trajectory � and one 
in the dataset �i is computed as the cosine of the angle of the two boolean vector 
representations of the trajectories (one boolean value for each possible POI included 
in the trajectory). Then the score of a candidate next-POI visit action a is computed 
as follows:

scoresknn(a, �) =
∑

�n∈N�

c(� , �n) 1�n (a)

Fig. 3  Context features’ frequencies in the trajectories’ dataset

6 https:// darks ky. net.

https://darksky.net
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where 1�n(a) is the indicator function of the next-POI visit action a in the set of POIs 
contained in �n : it is 1 if a is included in �n and 0 otherwise. SKNN finally recom-
mends the actions with the largest scores.
s-SKNN extends SKNN by employing a linear decay function w�n

(�) to weigh 
more in the prediction formula a neighbour trajectory w�n

 that contains the user’s last 
observed visit actions in � . The neighbourhood of the current user POI-visit trajec-
tory is obtained as in SKNN, while the computation of the score of a POI visit action 
is:

In that scoring formula the weighting function w�n
(�) that is used to take into 

account the order of the POI-visit actions in the current POI-visit trajectory � . The 
weight computed by w�n

(�) is higher if a more recent POI-visit in � is also present in 
the neighbour POI-visit trajectory �n . For example, let us assume that the user POI-
visit trajectory � has length 7 and that b is the most recent action in � also contained 
in �n and it is located at position 3 of � (counting from the beginning of the trajectory 
� ). Then the weight defined by the decay function is w�n

(�) = 3∕7 . Also, s-SKNN 
recommends the actions with the largest scores.

We found by 5-fold cross-validation that the optimal number of neighbours 
to be used in SKNN and s-SKNN is close to the full cardinality of the data set 
( |N� | = 1200 ). Finally, we observe that since in our data set we have essentially one 
trajectory per user, a pure NN algorithm will not differ essentially from SKNN.

Finally, we also consider a simple RS named POP: it suggests as next-POIs those 
visit actions that are most frequent in the POI-visits trajectories dataset. This is a 
non personalised RS that we include in our analysis only for better understand-
ing the popularity bias of the considered RSs, that is, in comparison with the most 
biased one that could be used.

It is important to note that the baseline methods that we have introduced are not 
exploiting the knowledge contained in the content and context features that the IRL 
methods are actually using. Hence, as we have already mentioned, the differences 
in the performance of the compared method are influenced by both the learning 
approach and the used knowledge.

5.2  Evaluation procedure and metrics

In order to compare the considered RSs, i.e., the IRL-based ones (Q-POP PUSH 
and Q-BASE) with the baselines (SKNN, s-SKNN and POP), we have split the 
trajectories dataset into training and test sets. The training set contains a random 
sample of 80% of the complete dataset of POI-visit trajectories. In particular, 
the train set contains 80% of the trajectories in a cluster for the IRL-based mod-
els, since these models are learnt separately for each cluster, and 80% of the full 
dataset for the nearest neighbour-based RSs and POP. The test set consists of the 
remaining 20% of the trajectories (either in the cluster or in the full data set). 
Each trajectory in the test set is further split temporally into an initial part (the 

scores−sknn(a, �) =
∑

�n∈N�

w�n
(�) c(� , �n) 1�n (a).
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first 70% of the visited POIs) used for the generation of the recommendations and 
an observed part (the remaining 30% of the trajectory), which is used to com-
pute the performance metrics. Here we refer to the initial part of the test trajec-
tory used to generate the recommendations as � and we denote with Y� the list of 
observed (next) POI-visit that are in the last part of the trajectory.

Let us denote with R� ,s a list of next-POI visit action recommendations for the 
user’s POI-visit trajectory � in the state s, which is the last state in the POI-visit 
trajectory � . In order to evaluate the recommendation performance of the gener-
ated recommendations, R� ,s , as usual, we consider Y� , the observed behaviour for 
the test trajectory � . Let ao ∈ Y� be, in particular, the observed POI-visit action 
that the user has followed immediately after the last state s in the trajectory � . 
Moreover, with 11Y� (a) we denote the indicator function of the set Y� : it is 1 if the 
action a ∈ Y� and 0 otherwise.

We now define the four evaluation metrics that we have used to assess the rec-
ommendation performance of the proposed methods: reward, as defined in Mas-
simo and Ricci (2018), popularity, precision and recommendations’ similarity (to 
SKNN).

Reward: The goal of an RS is to satisfy the user by offering recommendations 
(POIs) that are relevant. Our IRL-based RSs estimate relevance with the reward 
function, hence it is interesting to measure the reward of the recommendations, and 
compare it with the reward of the next POI visit that the user has chosen, i.e., that 
are contained in the user’s observed behaviour ( Y� ). We compute the reward metric 
as following:

A positive score for this metric signals that the recommended POI-visits are more 
rewarding than the user action ao , which is observed in state s, after having per-
formed the initial trajectory � . Whereas a negative score indicates that the observed 
user action is more rewarding than the recommendations.

Popularity: An effective RS, especially in the tourism domain, should help users in 
identifying some novel items. The value of building sophisticated RSs just to rec-
ommend well known POIs is clearly limited. First of all, the user is likely to know 
them already. Secondly, even if sometime it is useful to pinpoint POIs that users may 
know, simple algorithmic solutions can be used for recalling users to visit the most 
popular attractions.

However, understanding that a POI is novel for the user is hard to be deter-
mined without querying the user. Therefore, in the off-line study we measure a 
proxy of novelty, i.e., popularity. We assume that a POI is more likely to be novel 
for a user if it is not popular. Let be pop(a) the frequency of the POI-visit action a 
computed by considering the (training) data and let popmax be the maximum value 

reward(R� ,s, ao) =

∑
a∈R� ,s

Q�∗ (s, a) − Q�∗ (s, ao)

�R� ,s�
.
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of pop in the dataset. We then compute the popularity of a list of recommenda-
tions R� ,s as follows:

A high popularity score (close to 1) indicates that the RS suggests POI-visits that are 
probably not novel. Whereas, a low popularity (close to 0) suggests that the recom-
mended items may be unknown to the user.

Precision: Precision is largely adopted in the off-line evaluation of RSs, and it is 
defined as the fraction of the recommendations that are present in the user test set 
(Ludewig and Jannach 2018), i.e., that can be found in the observed user’s behav-
iour. The precision of a list of next-item recommendations is then computed as 
following:

Similarity to SKNN: An additional and useful evaluation metric is the similarity 
of the recommendations generated by the IRL methods with those suggested by the 
baseline model SKNN. SKNN was shown in previous studies to have high precision, 
but suffers from the popularity bias (Massimo and Ricci 2018). Hence, it is interest-
ing to understand how much the IRL models deviate from SKNN to achieve their 
specific performance: low popularity and high reward.

Let RA
� ,s

 and R����

� ,s
 be two recommendations lists of the same size that are gener-

ated for the same observed POI-visit trajectory � and current user state s, by the rec-
ommendation model A (e.g., one among the proposed models) and by SKNN, respec-
tively. We compute the similarity of the two lists by using the Jaccard index:

5.3  Off‑line study results

We now address the first research question RQ1, i.e., whether the better precision of 
SKNN with respect to Q-BASE, is determined by the popularity bias of the first and 
if Q-BASE can obtain the precision of SKNN with a modification that will bias it to 
recommend more popular items (Q-POP PUSH). Table 7 shows the quality of the 
Top-1, Top-5 and Top-10 recommendations of the considered RSs. Here, the effect 
of the � parameter on Q-POP PUSH is shown. We recall that when � is approaching 
0, Q-POP PUSH behaves like Q-BASE, while for � approaching 1, Q-POP PUSH 
tends to recommend more popular items.

popularity(R� ,s) =
1

|R� ,s|
∑

a∈R� ,s

pop(a)

popmax
.

precision(R� ,s) =
1

|||R� ,s
|||

∑

a∈R� ,s

11Yu
(a).

simKNN(R
A
� ,s
,R����

� ,s
) =

|RA
� ,s

∩ R����

� ,s
|

|RA
� ,s

∪ R����

� ,s
|
.
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Clearly, SKNN and s-SKNN have the largest precision in all the three considered 
recommendation tasks (Top-1, Top-5 and Top-10), whereas Q-BASE suggests much 
less popular and higher reward items. The two nearest neighbour based RSs perform 
similarly, hence, in this dataset, the sequence-aware extension of SKNN seems not 
to offer an advantage. It is interesting to compare these two nearest neighbour based 
RSs with POP, i.e., a non personalised RS that simply recommends the most popular 
POIs. In the Top-1 recommendation task POP performs very poorly, with zero pre-
cision and very negative reward. But, interestingly, when the recommendation size 
grows (Top-5 and Top-10) POP produces recommendations that have a good overlap 
with SKNN (see the SimKNN metric) and it approaches the precision of SKNN. It is 
also interesting to note that the popularity metric of POP is equal to 1 in the Top-1 
recommendation task and goes to 0.594 for the Top-10 task. This is due to the fact 
that less and less popular POIs can be included in longer recommendation lists. In 
conclusion, while the two nearest neighbour based RSs produce recommendations 
with large popularity, their behaviour, especially in the Top-1 and Top-5 tasks is 
quite different from a simple non personalised purely popularity based method, such 
as POP. But, when more recommendations are generated, as in the Top-10 task, the 
performance of the two approaches are very close.

Focusing now on Q-POP PUSH, we can complete our discussion of the first 
research question. In fact, when a popularity bias is added to Q-BASE, as it is 
done in Q-POP PUSH, the model generates recommendations that are more sim-
ilar to SKNN, according to the SimKNN metric. By increasing � , the popularity 
of the recommendations produced by Q-POP PUSH increases and it becomes 
even larger than that of SKNN and s-SKNN. However, the best precision (in the 

Table 7  Recommendation performance of the considered RSs

Best value for each metric is shown in boldface
*There is a significant difference ( p < 0.05 ) between the best performing model and SKNN (two-tailed 
paired t-test). The test is run for the metrics Rew, Prec and Pop for 5 repeated train-test split
†There is a significant difference (p < 0.1) between the best performing model and SKNN

Q-BASE Q-POP PUSH SKNN s-SKNN POP

� = 0.009 � = 0.1 � = 0.5 � = 0.8

Rew@1 0.073* 0.060 0.015 − 0.002 − 0.002 − 0.007 − 0.009 − 0.310
Prec@1 0.043 0.070 0.105 0.099 0.096 0.109 0.109 0.000
Pop@1 0.397* 0.555 0.846 0.877 0.877 0.728 0.719 1.000
SimKNN@1 0.085 0.150 0.388 0.424 0.420 −  0.791 0.000
Rew@5 0.032* 0.020 − 0.001 − 0.009 − 0.009 − 0.010 − 0.010 − 0.015
Prec@5 0.045 0.062 0.063 0.060 0.060 0.068 0.063 0.050
Pop@5 0.319* 0.517 0.634 0.643 0.643 0.528 0.570 0.733
SimKNN@5 0.061 0.307 0.441 0.451 0.450 −  0.530 0.352
Rew@10 0.015* 0.003 − 0.008 − 0.011 − 0.011 − 0.012 − 0.013 − 0.014
Prec@10 0.036 0.054 0.058 0.058† 0.058† 0.052 0.055 0.050
Pop@10 0.259* 0.488 0.536 0.538 0.538 0.489 0.516 0.594
SimKNN@10 0.038 0.455 0.559 0.560 0.560 −  0.354 0.464
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Top-1 task) of Q-POP PUSH, namely 0.105, which is essentially the precision 
of SKNN and s-SKNN (0.109), is not obtained with the largest popularity bias, 
i.e., � = 0.8 , but with � = 0.1 . With this setting Q-POP PUSH has still a positive 
reward (0.015), while SKNN and s-SKNN have negative rewards. This means that 
the popularity bias in Q-BASE could be beneficial, but in order to improve the 
system’s precision, the right amount of this bias must be identified. We must also 
note that with larger values of � the reward of Q-POP PUSH is becoming smaller 
and smaller, and approaching that of the two nearest neighbour methods. This 
also shows that Q-POP PUSH can be tuned to balance two objectives: precision 
and reward.

Regarding Top-5 and Top-10 task, Q-POP PUSH shows (essentially) the same 
behaviour discussed above. Interestingly, Q-POP PUSH in the Top-10 task is 
even more precise than the SKNN RSs.

Figure 4 precisely shows how the popularity, precision and reward of Q-POP 
PUSH (top-5 task) depend on the parameter �.

For � ∈ (0, 0.13] popularity quickly increases. Then it still grows in the inter-
val (0.13, 0.46] reaching a plateau at the maximal popularity score for 𝛼 > 0.46 
( � ≤ 1 ). The second chart clearly shows that one can optimise precision with a 

Fig. 4  Performance of Q-POP PUSH for different values of its � parameter—Top-5 recommendations
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careful selection of the � parameter. In particular, there is a steep increase of pre-
cision for � ∈ (0, 0.13] . Then, for 𝛼 > 0.13 the precision of the recommendations 
decreases, with an exception for � = 0.34 ( � = 1.39 ) for which we have a second 
peak. Subsequently, for 𝛼 > 0.71 there is a further drop in precision. Finally, the 
last chart shows that the reward of the recommendations monotonically decreases 
for increasing values of �.

6  On‑line user study

To answer the second research questions RQ2 we designed an on-line user study 
aimed at measuring the user perceived novelty and appreciation of the recommenda-
tions. We recall that in RQ2 we ask if on-line users will like the precise recommen-
dations of SKNN more than those generated by Q-BASE, which are more novel and 
yet relevant. In order to answer this question we have executed an on-line study and 
have compared Q-BASE, the hybrid model Q-POP PUSH, with parameter � = 0.5 , 
to the SKNN baseline. The choice of the parameter � = 0.5 is motivated by the desire 
to give equal importance to the popularity of POIs and the reward of the next-POI 
visit, rather than to optimize Q-POP PUSH, e.g., with respect to precision. In fact, 
in the previous section we saw that the largest precision and reward is obtained with 
a smaller value of � = 0.13.

We have developed an on-line system to assess the quality of next-POI recom-
mendations offered to a user that has already visited some POIs. The system initially 
asks the user to enter as many as possible previously visited POIs (in Florence). 
These are used to associate her with a cluster of similar users’ trajectories and to 
generate an hypothetical itinerary of five POIs that the user must assume she has 
already visited. Then, the system generates next-POI recommendations with the 
three tested RSs, combines them in a unique list, and asks the user to evaluate them. 
The user does not know which algorithm recommends each single displayed recom-
mendation. The training data of the on-line system is the same previously used in 
the off-line study, i.e., the RSs are trained on five clusters of trajectories obtained 
from the original 1663 POI-visit trajectories over 532 POIs.

Fig. 5  Preference elicitation UI detail
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6.1  On‑line system

The user-system interaction consists of five steps: (1) landing phase; (2) introduction 
to the experiment and start-up questions; (3) preference elicitation phase; (4) recom-
mendations generation; and (5) evaluation of the recommendations.

Once the user accesses the on-line system (landing phase) she can select the pre-
ferred language (Italian or English). Afterwards, if the user accepts to participate 
in the experiment, the system asks whether the user has already been in Florence. 
If she replies “no” the procedure ends, because we believe that in this case the user 
cannot properly evaluate next-POI recommendations that extend a previously initi-
ated itinerary. If the user has instead already visited Florence, the user is considered 
to have some experience of the city, and she can declare which POIs has previously 
visited. This is done in the next interaction phase. In Fig.  5 we show a detail of 
the user interface designed to support this phase. The selection of POIs can be per-
formed in a mixed modality: the user can either seek for POIs utilizing a search-bar 
with auto-completion or by interacting with a selection pane that contains the 50 
most popular POIs in the POI-visit trajectories dataset. To help the user to recognise 
or remember a visited POI is offered the possibility to tap/click on an entry of the 
selection pane and visualise a media card that provides information about the POI in 
the form of a picture together with a textual description. POI specific data has been 
extracted from Wikipedia. Each POI the user selects (visited) is added to an editable 
list that is considered to be the profile of the user. We note that the POIs added to 
the user profile are describing the user past behaviour, not the items liked in the past, 
exactly as in the trajectories data that is used to train the RS. In other words we tried 

Fig. 6  Evaluation UI. From top to bottom: itinerary detail; info box; recommendations and item details
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to match in this experimental design a feature of the proposed approach, i.e., lever-
aging only implicit feedback data.

Once the user has indicated the previously visited POIs, the system associates the 
user to one of the clusters of users’ trajectories showing similar interests and gener-
ates a short itinerary composed of at most 5 POIs, among those in the user profile. 
An example of such an itinerary is shown on the top part of Fig. 6. The user should 
imagine having followed the composed itinerary and, at that point, to request next-
POI recommendations. The system proposed next-POI recommendations are meant 
to complete the current visit itinerary of the user.

We note that we generate a fictitious itinerary because we do not want to ask 
the user to remember exactly any previous visit itinerary. However, by including in 
the itinerary POIs that are in the user profile, we also tried to generate a trajectory 
that the user is likely to have followed. By showing a hypothetical itinerary to the 
user we want to reinforce in the user’s mindset the specific setting of the supported 
recommendation task: next-POI recommendation. Besides, to simplify the user’s 
assessment of the recommendations, the context variables (time and weather) were 
not shown and not used in the recommendation generation process.

When finally the user evaluates the received recommendations she is presented 
with the GUI shown in Fig.  6. At the top of the page is shown the hypothetical 
(5-POIs) itinerary generated by the system and that the user should assume has fol-
lowed so far. Finally, the participant is informed that in the bottom-left box there are 
next-POI recommendations that she could visit now. The user evaluates each POI by 
marking it with one or more of the following labels: “I already visited it” (eye icon), 
“I like it” for a next visit (thumb up icon) and “I didn’t know it” (exclamation mark 
icon).

6.2  Recommendation list generation

In this section, we give additional details on the recommendation generation pro-
cess. We recall that in our proposed approach, to generate recommendations with 
Q-BASE and Q-POP PUSH, a user-study participant must be associated with one 
of the 5 existing POI-visit trajectories clusters.

User-cluster pairing: To assign a user study-participant to one of the 5 existing 
clusters the system leverages the user profile. In fact, a k-nearest neighbour clas-
sifier (Hastie et al. 2001) is built by using as training data the tf-idf vectors of the 
POI-visit trajectories in the 5 clusters. This classifier takes as input the tf-idf vector 
representation of the user-study participant’s profile and outputs the cluster with the 
highest probability to contain the user-study profile.

The optimal number of neighbours of the classifier has been identified by 10-fold 
cross validation grid search, in the range of k ∈ {1,… , 20} . The data was the split by 
allocating 80% of the dataset for training the classifier and the remaining 20% was 
used as the test set. The classifier’s best configuration showed an accuracy of 67%. 
We note that the low performance of the classifier may have penalised Q-BASE and 
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Q-POP PUSH in the on-line study; in fact, the participant’s user profile may have 
not been associated to the best cluster.

Recommendations: The next POI-visit recommendations are generated by leverag-
ing Q-BASE, Q-POP PUSH and SKNN. In particular, the three RSs take as input 
the POI itinerary that is shown to the user and is assumed to be followed so far, 
and generate 3 recommendations each. Then, from the recommendations generated 
by the three algorithms, the POIs already present in the user profile are discarded. 
In fact, we do not want to suggest as next-POI any item that the user has already 
visited. Despite this, it is important to highlight that the user may still find in the 
recommendations some POIs that she has already visited, because she may have not 
indicated in the first phase of the user-system interaction all the POIS that she vis-
ited in the past (Smith et al. 1996; Perentis et al. 2015).

The top-3 recommendations generated by each RS are combined in order to 
produce the shown recommendation list. We have decided to use this evaluation 
approach, instead of implementing a between-group experimental design, where 
each user is testing a different RS, because it enables to acquire more evaluation 
data, without incurring into the limitations of a within-group experiment where a 
user evaluates, one after the other, the competing RSs. Moreover, it is worth noting 
that the adopted approach is very common in search engine evaluation  (Joachims 
2002).

To avoid biases in the recommendation evaluation phase, we do not reveal to the 
user which recommendation algorithm has produced which POI recommendation. 
To combine the three recommendation lists produced by the RSs, first, for each of 
the user-study participant, we generate a random order that we follow to pick items 
from the three lists of top-3 suggestions. Then, by following that order we aggre-
gate the ranked lists by picking up, in turn, the items from the top to the bottom of 
the sorted lists. For instance, if the aggregation order is Q-POP PUSH SKNN and 
Q-BASE, then, the aggregated list of recommendations that is shown to the user, 
contains in the first position the top recommendation of Q-POP PUSH, then the top 
item suggested by SKNN and then that suggested by Q-BASE. The same procedure 
is applied for the remaining positions. In case a POI is suggested by more than one 
algorithm, the item is shown only once in the final list. Therefore, the list of next-
POI visit recommendations shown to the user study participant contains at most 9 
entries, if all the algorithms generate different POI-visit recommendations, and at 
least 3 items, if all the algorithms generate all the same POI-visit recommendations.

7  Results of the on‑line user study

The on-line user study participants were recruited via social media and mailing 
lists. Over 300 subjects took part in the study; 202 of them declared to have pre-
viously visited Florence, hence only their data was finally used. We did not ask to 
the subjects any information (e.g., sex, age, citizenship, etc.); the participation to 
the experiment was totally anonymous. We then excluded unreliable replies, i.e., 
those surveys completed in less than 2 min, which was estimated as the minimum 
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time to carefully complete the experiment. Finally, 158 subjects’ data was kept. 
These users examined in total 1119 next-POI visit recommendations, computed 
by the three RSs SKNN, Q-POP PUSH and Q-BASE. A subject was exposed on 
average to 7.1 recommendations.

To give an idea of the recommendations offered to a user and her correspond-
ing evaluation we illustrate an example of recommendation list in Table 8. The 
suggested POIs are listed on the rows of the table in the same order they were 
shown in the user interface at evaluation time. The table columns are: the POI 
name; the POI popularity; the model that produced the recommendation; and 
the user study participant’s feedback, among “visited”, “liked” and “novel”. The 
next-POI recommendations shown in this example have been offered to a user 
that at recommendation time was supposed to have completed the following 5 
POIs itinerary: Giotto’s Bell Tower, Old Bridge, Cathedral of Santa Maria del 
Fiore, Piazza della Signoria, Fountain of Neptune.

The order used to aggregate the recommendations of the three RSs is: SKNN, 
Q-POP PUSH and Q-BASE. The first (top-ranked) item in the list is suggested 
by both Q-POP PUSH and SKNN. That item is marked as already visited and 

Table 8  Example of a recommendation list and the collected user’s evaluations  (Source: authors)

Recommendations Models User feedback

Nr. POI name POI pop. Q-BASE Q-POP P. SKNN Visited Liked Novel

1 Baptistery of San Giovanni 0.53 ✓ ✓ ✓ ✓

2 Spedale degli Innocenti 0.05 ✓ ✓ ✓

3 Basilica of Santa Croce 0.47 ✓ ✓ ✓

4 Torre dei Pulci 0.60 ✓ ✓

5 Statue of Ferdinando I de 
’Medici

0.08 ✓ ✓ ✓

6 Door of the Mandorla 0.55 ✓ ✓

7 Brunelleschi’s dome 0.43 ✓ ✓ ✓

8 Santa Croce’s Square 0.34 ✓ ✓

Fig. 7  Probability that a user study participant evaluates as “liked”, “visited” and “novel” an item ranked 
at a specific position  (Source: authors)
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also liked by the user study participant. The second item instead is recommended 
by Q-BASE and is assessed as novel and liked by the user. We can observe that, 
for this specific subject, all the next POIs suggested by Q-POP PUSH and SKNN 
have rather large popularity, and almost all of them are actually marked as “vis-
ited”. For instance, Torre dei Pulci has popularity 60%. The recommendations 
generated by the Q-BASE recommendation algorithm are much less popular, 
e.g., Spedale degli Innocenti has popularity 5%. Moreover, we observe that this 
user liked more the items suggested by Q-POP PUSH and SKNN. Interestingly, 
among the POIs that the user marked as “novel” she liked only the least popular, 
which is suggested by Q-BASE.

Figure 7 shows how the assessment of the user study participants varies at the 
various ranking positions of the recommendations. In particular, we compute the 
probability that a user marks the POI shown at the i-th position of the recommenda-
tion list with the three types of feedback: “liked”,“visited” and “novel”. The prob-
ability that a user marks an item as “liked” is around 40% at all the first six posi-
tions of the next-POI recommendation list. Then, this probability drops. Instead, the 
probability to mark an item as visited decreases more uniformly as the rank posi-
tion increases. Finally, the probability that a user marks an item as novel mirrors the 
“visited” feedback, so, while the probability to be “visited” decreases with the rank-
ing, the probability to be “novel” increases.

In Table 9 we show the main results of our analysis. We recall that we are inter-
ested in addressing the research question RQ2, namely, to discover if the users, in a 
real next-POI selection task, will like the precise and popular recommendation more 
than those generated by Q-BASE, which are more novel and with higher estimated 
relevance (reward).

Here the probabilities that a user marks a next-POI recommendation as “visited”, 
“novel”, “liked” or both “liked” and “novel” are shown. These probabilities are esti-
mated by dividing the total number of next-POI recommendations assessed as, “vis-
ited”, “liked”, “novel” and both “liked and novel”, for each algorithm, by the total 
number of recommendations shown and produced by the algorithm. We recall that 
a user marked as “liked” a recommendation that she judged as a good candidate to 
perform next (given the current itinerary followed by the user). Therefore, here a 
“like” is not a generic appreciation of the item, but should also take into account 
the context of the hypothesised itinerary of the user study participant, and the “like” 
feedback is likely to be provided by considering what items the user has already vis-
ited. By looking at these results we note that the POIs recommended by SKNN and 
Q-POP PUSH have the highest probability (24%) of being already visited, and the 

Table 9  Probability to evaluate 
a recommendation of an 
algorithm as visited, novel and 
liked

Q-BASE Q-POP PUSH SKNN

Visited 0.165 0.245 0.238
Novel 0.517 0.376 0.371
Liked 0.361 0.464 0.466
Liked and novel 0.091 0.076 0.082
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lowest probability to be marked as novel. Q-BASE instead has the lowest probability 
to recommend items that have been already visited (16%) and the highest probability 
that a user marks the recommended items as novel (52%). Hence, these results are 
consistent with those obtained in the off-line study (see Sect. 5) where Q-BASE was 
shown to recommend less popular items.

Considering the user “likes” for the recommendations, our conjecture was that 
an RS with high relevance, estimated off-line by the reward metric, should also col-
lect a large number of likes in the on-line user study. But, by looking at the results 
reported in Table 9 we note that the outcome is not confirming that conjecture. In 
fact, Q-BASE, which has the largest off-line-measured reward, suggests POI-vis-
its that on-line users liked with the lowest probability (36%). Conversely, Q-POP 
PUSH and SKNN tend to generate next POI-visit recommendations that are more 
liked by the user (46%). Therefore, one could answer the research question RQ2 
by stating that users like more the precise next-POI recommendations of SKNN 
and Q-POP PUSH than the more novel and yet relevant ones that are offered by 
Q-BASE. Our explanation of this is related to the difference between a relevant and 
“like” recommendation. The first is estimated by observing real users’ behaviour, 
while the second is measured by observing users’ reactions to POI descriptions. 
Hence, a “like” is measuring the expectation of the user for an item (expected util-
ity), while the reward is estimating the experienced utility: a picture of a visited POI 
is surely a signal of rewarding experience made with an item. Moreover, users are 
not able to perfectly estimate the satisfaction that could be obtained by visiting a rec-
ommended POI unless the user is in some way familiar with that POI. Hence, novel 
POIs will tend to receive lower likes independently from their actual relevance.

We show in Table 9 also the probability of an item to be judged “Liked & Novel”; 
this is the probability that a user likes a novel POI that the RS presents for the first 
time to the user. Q-BASE, which showed in the off-line analysis the highest reward 
and lower popularity, in the on-line user study is suggesting with the highest prob-
ability (0.09%) next POI-visits that are both novel and liked. This is a valuable prop-
erty of Q-BASE.

We used a two-proportion z-test with a significance level of 0.05 to check if the 
RSs are equally perceived by the user study participants (null hypothesis). In par-
ticular, we test if the RSs perform equally in producing liked, novel and visited next 
POI suggestions. We have found that for the RSs SKNN and Q-POP PUSH we can-
not reject the null hypothesis, hence we accept that they are perceived having the 
same performance ( p > 0.93 for all tests). Conversely, we reject the null hypoth-
esis when comparing Q-BASE and SKNN (all p < 0.04 ) and Q-BASE and Q-POP 

Table 10  Probability that a 
user study participant likes a 
recommended POI-visit given 
that she visited, knew or is 
unaware of it

Q-BASE Q-POP PUSH SKNN

P(Liked | novel) 0.176 0.202 0.222
P(Liked | visited) 0.256 0.310 0.283
P(Liked | known and 

not visited)
0.717 0.810 0.806
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PUSH (all p < 0.03 ), for all of the three types of feedback. Hence, users are not per-
ceiving Q-BASE as equally performing as SKNN and Q-POP PUSH.

In Table 10 we show the probability that a user will like a recommendation given 
that: she knows the item but has not yet visited it (“Known & Not Visited”); she 
visited it (“Visited”); or the item is “Novel” for her. We first note that the novel POI-
visit suggestions generated by the recommendation algorithms SKNN and Q-POP 
PUSH are liked more (20 and 22% respectively) than those produced by Q-BASE 
(17%). In fact, often Q-BASE suggests items that are both novel and, even if esti-
mated to be relevant, are rather specific, hence harder to evaluate. For instance, 
Q-BASE suggests Porta della Mandorla which is a door of the Duomo. This POI 
can be perceived as a very specific item, many will not know that POI, and surely 
much less attractive than the Duomo itself. In fact, few participants, after the execu-
tion of the experiment, left a note declaring that it is difficult to like something that 
is unknown.

This is clearly shown by the fact that, for all the three RSs, the probability that 
a user likes a recommended next-POI that she visited tends to be much larger than 
the probability to like a novel one. More specifically, the probability of liking a POI 
given that it was visited is: 31% for Q-POP PUSH ; 28% for SKNN; and 26% for 
Q-BASE. We believe that the performance difference is again due to the fact that 
both SKNN and Q-POP PUSH tend to recommend known (not novel) POIs, i.e., 
which are easier to judge because users may have already heard them, whereas 
Q-BASE recommends relevant but niche items.

Finally, we discuss the probability that a user study participant will like an item 
that she knows but has not yet visited. In Table 10 we find a similar pattern as that 
observed before. Q-POP PUSH and SKNN suggest items that will be liked with a 
higher probability, respectively 81% and 80%, than Q-BASE (71%). It is interesting 
to note that these probabilities are very large. This clearly shows that knowing a POI 
is an important condition to like an item. In this case, the user can more reliably esti-
mate the potential utility of visiting the POI, compared with an item for which the 
user has not information.

8  Discussion and future work

8.1  Summary of the obtained results

We have analysed the performance of new recommendation techniques, based on 
Inverse Reinforcement Learning (IRL), especially designed to solve the next-POI 
recommendation problem. At first, we have analysed the impact of the popularity 
bias on system performance  (Abdollahpouri et  al. 2019, 2020; Park and Tuzhilin 
2008; Jannach et  al. 2015; Massimo and Ricci 2018). We have formulated a spe-
cific research question, namely: “If SKNN achieves high precision by being biased 
towards popular items, can Q-BASE be modified, by biasing the recommendations 
towards more popular items, to achieve similar precision as SKNN?”. We have then 
developed a new hybrid IRL-based RS, Q-POP PUSH, that combines the Q-BASE 
POI scoring with a second score, which is proportional to the POI popularity. This 
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hybrid model tends to recommend more popular items than Q-BASE. We have 
shown, with an off-line experiment, that Q-POP PUSH can actually obtain better 
precision than Q-BASE, and reach the same precision of SKNN. Moreover, we have 
shown that Q-POP PUSH can actually be tuned to balance contrasting goals: preci-
sion, popularity and relevance of the recommended items. Hence Q-POP PUSH can 
be effectively used in an operational scenario.

Then, we have formulated a second research question, namely: “Will on-line 
users like the precise recommendations of SKNN more than those generated by 
Q-BASE, which are more novel and yet relevant?”. In order to reply to this question 
we have designed and conducted a user study that simulates the planning of a visit 
to the city of Florence (Italy). We show that Q-BASE generates next POI-visit sug-
gestions that the users perceive as novel, but, also for this reason, not as liked as the 
competing RSs: SKNN and Q-POP PUSH. However, we show that Q-BASE gener-
ates more recommendations that are both liked and novel. Hence, Q-BASE may bet-
ter accomplish an objective of tourism RSs, which is, recommending venues (POIs) 
that are novel and yet relevant for a user.

We also identified a reason why Q-BASE does not produce the recommendations 
that are liked the most. Q-BASE is designed to produce relevant recommendations 
by optimising the reward obtained by a user when visiting a POI (experienced util-
ity), while the on-line study measured the perception of the user at the choice time 
(expected utility). Hence, when the POI is not known by the users, it is hard for 
them to assess the POI value and express a “like”. As other researchers have already 
noted in other application domains (Loepp et al. 2018), for a user, estimating how 
good (or bad) can be a future visit to a POI, which is not yet known, is a cognitively 
difficult task. This result has been supported by the analysis of the users’ reaction to 
POIs that were known, compared to those that were not known, before the system 
showed them.

8.2  Limitations and future works

The research described here has a number of limitations that it is important to dis-
cuss. First of all, we must stress that the technology and the evaluation conducted 
here relate to a system prototype that is surely not yet mature enough to be deployed 
in a operational system. Hence, our analysis focused on addressing general research 
questions on the performance of a class of technologies, such as nearest neighbor 
methods and inverse reinforcement learning approaches, by means of the analysis of 
the considered technology in the lab, i.e., not in a real operational environment.

We must then immediately observe that even in this restricted context, nowadays 
there are other recommendation technologies that can be applied to this task. In par-
ticular it will be important to consider in a future analysis especially Deep Neural 
Network models that have shown excellent performance in many domains. It will 
be important to understand if DNN models suffer from the same popularity bias and 
also if these models can, better than KNN, identify less popular items that are yet 
relevant for the user.
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A second important limitation of our work is related to the mismatch between 
the optimisation procedure, which determines the optimal policy and the estimated 
reward function of Q-BASE, and the actual recommendation task, i.e., next-POI rec-
ommendation. In fact, Q-BASE, given a tourist in a state, is suggesting the POI visit 
actions a with the largest Q�∗ (s, a) values (Massimo and Ricci 2018). Here �∗ is the 
optimal policy for the users in the cluster. Hence, if the tourist will make this choice 
and will continue to make successive POI visits by choosing the actions with the 
largest Q values, which are recommended by Q-BASE, then the obtained cumulative 
reward will be maximised. Q-BASE is therefore a recommendation strategy that not 
only tries to suggest the most satisfying immediate next POI visit, but also the visits 
that the tourist will be able to make after that immediate next. We have not evaluated 
the quality of a succession of POIs that Q-BASE can actually recommend and which 
is it optimised for. This is an important assessment that should be completed; it may 
be the case that Q-BASE is not recommending the best next POI because is also 
considering the successive choices that the user can make in order to achieve a high 
cumulative reward in a complete itinerary.

Another important limitation of our analysis resides on the trajectory data. We 
derived this information from pictures, taken by tourists, and uploaded in a social 
network. The considered data set is not very large, it contains less than 2000 tra-
jectories, and is focused on a particular city, and on a particular type of POIs (cul-
tural attraction). It is worth noting that social network users do not represent the full 
spectrum of tourists, and the core problem of acquiring unbiased and representa-
tive behavioural data remains. Moreover, while we cluster the trajectories to deter-
mine distinguished groups of tourists we do not explicitly try to understand who 
these tourists are, i.e., for instance if they are local citizens or visitors. In fact, it has 
been recently shown that different groups (tourists and locals) can be better served 
by completely different RSs and that tourist behaviour data in another city can be 
used to improve the performance of the RS in the target city (Sanchez and Bellogín 
2021).

Related to the previous topic, we observe that the state model that we have 
adopted and the POIs that we have considered may strongly influence the outcome 
of the evaluation. A more detailed description of the POIs, i.e., by using a larger 
number of features, and consequently a lager state space, should be evaluated. From 
one side it could help to estimate a more precise reward function, but at the same 
time one must cope with the growth of the state space and the increased complex-
ity to learn the optimal policy and reward function. In fact, to limit the time and 
memory complexity of the model learning algorithm it is important to consider only 
a small set of relevant features. We note that the larger is the set of features which 
are used to define a POI visit, the harder it is for the learning algorithm to converge 
to a solution in a short time. Besides, the number of context features impacts directly 
on the memory complexity of the algorithm. In fact, the state space size of the MDP 
increases proportionally to the number of considered context features. In addition 
to that, the selection of the POIs is here determined by matching the geo-referenced 
pictures taken by tourists to POIs listed in Wikipedia. We may have erroneously 
matched pictures to POIs, i.e., we may have considered POIs that were not actually 
visited by the tourist that took the picture. This can explain the presence of rather 
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niche POIs that we have identified and considered in our study; these POIs may have 
a (Wikipedia) position close to that of the picture, but the picture may show another 
POI.

Finally, it is worth stressing here that the ultimate objective of this study is 
the development of an effective next-POI RS that employs a generalised tourist 
behaviour model learned from implicit data, i.e., observations of POI-visit action 
sequences. While in this work we have shown the benefits and limitations of such 
recommendation technology through an off-line analysis, and an on-line study based 
on an RS designed for these experiments, we have also understood the importance 
to conduct further user studies involving tourists while visiting a destination: this 
is necessary to test if the users will like the experience of the POI and not only the 
prospect to visit them.
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