Int J Artif Intell Educ (2013) 23:71-93
DOI 10.1007/540593-013-0005-5

RESEARCH ARTICLE

Problem Order Implications for Learning

Nan Li - William W. Cohen - Kenneth R. Koedinger

Published online: 12 October 2013
© International Artificial Intelligence in Education Society 2013

Abstract The order of problems presented to students is an important variable that
affects learning effectiveness. Previous studies have shown that solving problems in
a blocked order, in which all problems of one type are completed before the student
is switched to the next problem type, results in less effective performance than does
solving the problems in an interleaved order. However, we have no precise under-
standing of the reason for this effect. In addition to existing theoretical results, we
use a machine-learning agent that learns cognitive skills from examples and problem
solving experience, SimStudent, to provide a computational model of the problem
order question. We conduct a controlled simulation study in three different math and
science domains (i.e., fraction addition, equation solving and stoichiometry), where
SimStudent is tutored by automatic tutors given problems that have been used to
teach human students. We compare two problem orders: the blocked problem order,
and the interleaved problem order. The results show that the interleaved problem
order yields as effective or more effective learning in all three domains, because the
interleaved problem order provides more or better opportunities for error detection
and correction to the learning agent. Examination of the agent’s performance shows
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that learning when to apply a skill benefits more from interleaved problem orders,
and suggests that learning sow to apply a skill benefits more from blocked problem
orders.

Keywords Learning transfer - Learner modeling - Interleaved problem order -
Blocked problem order

Introduction

One of the most important variables that affects learning effectiveness is the order of
problems presented to students. While most existing textbooks organize problems in
a blocked order, in which all problems of one type (e.g., learning to solve equations
of the form S;/V = §,) are completed before the student is switched to the next
problem type, it is surprising that problems in an interleaved order often yield more
effective learning.

A considerable amount of research has demonstrated the effectiveness of inter-
leaved problem orders. Shea and Morgan (1979) were the first that showed
problems of a random order yields better performance in retention and trans-
fer tests than students trained on problems of a blocked order, and named this
effect as the contextual interference (CI) effect. The CI effect compares ran-
dom problem orders and blocked problem orders, not interleaved problem orders
and blocked orders, but the results should be similar since the main point is
whether consecutive problems should be of the same or different types. That
is, random problem orders have lots of interleaving. After that, a growing
number of studies (e.g., Gabriele et al. 1987; Carnahan et al. 1990; Lee and
Magill 1983; Young et al. 1993; Del Rey 1982; Sekiya et al. 1996; Jelsma and
Pieters 1989) have repeatedly observed the CI effect in different tasks. Other
studies on relatively complex tasks (e.g., Tsutsui et al. 1998) or novices (e.g.,
French et al. 1990) have yielded mixed results. To explain the CI phenomenon,
researchers have proposed several hypotheses including the elaboration hypoth-
esis (Shea and Morgan 1979), the forgetting or reconstruction hypothesis (Lee
and Magill 1983), etc. More details on these hypotheses are available in Wulf
and Shea (2002). Research on task switching (Monsell 2003) shows that sub-
jects’ responses are substantially slower and more error-prone immediately after
a task switch, but not within the context of learning tasks. More generally, all
of the above hypotheses are described in fairly ambiguous language and none
have the precision of a computational theory. A computational model that demon-
strates such behavior would be a great help in better understanding this widely-
observed phenomena, and might reveal insights that can improve current education
technologies.

In this paper, to better explain the theoretical results gathered from previous stud-
ies, we conducted a controlled-simulation study using a machine-learning agent,
SimStudent, as a computational model. It provides a precise, unambiguous imple-
mentation of how and why interleaving may be effective. SimStudent was tutored
by automatic tutors that simulate the ones used by human students in in classroom
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studies, and was trained on real-student problems that were of blocked orders or
interleaved orders. We then tested whether the advantages of interleaved problem
orders over blocked problem orders are exhibited in all three domains. After that, we
carefully inspected what causes such effect by inspecting SimStudent’s learning pro-
cesses and learning outcomes, which are not easily obtainable from human subjects.
Other research on creating simulated students (VanLehn 1990; Chan and Chou 1997,
Pentti Hietala 1998) and simulating expert memory (Richman et al. 1995) share some
resemblance to our work. VanLehn (1990) created a learning system and evaluated
whether it was able to learn procedural “bugs” like real students. To the best of our
knowledge, none of the above approaches made use of the models to simulate the
advantage of interleaved or random problem orders over blocked problem orders.

Additionally, there are several fruitful future steps. As we will discuss in later sec-
tions, despite the fact that SimStudent has been shown to find high-quality models
of student learning across domains (Li et al. 2011), there are limitations of Sim-
Student as a model of student learning. In future studies, we would like to carry
out more extensive experiments in response to these limitations. First, SimStudent
does not assume a memory limitation, which differs from human students. It would
be interesting to carry out more studies in which SimStudent has limited mem-
ory, and validate which type of learning (e.g., “how” learning or “when” learning)
gains more from blocked problem orders in this case. SimStudent’s learning mecha-
nism also presents a bias towards more generalized skills over specific ones without
considering computational cost. A controlled study that uses a more advanced skill
selection mechanism would help us in getting a better understanding how this bias
affects the learning effectiveness achieved through different problem orders. Besides,
there are various aspects in human learning such as motivation that are not mod-
eled in SimStudent. To validate our hypothesis, future studies are needed on human
subjects. For example, future research could design a controlled study on human
students that focuses on “when” or “how” learning, and evaluate how different prob-
lem orders affect the different learning aspects. Last, the current study shows results
in well-defined domains. The content of the problems is explicitly represented in
forms that do not need further interpretation. A worthy future step is to incorpo-
rate a natural language processing component into SimStudent so that SimStudent
also supports problems stated in natural language. In addition, in current domains,
there is a known set of rules to follow in solving the problems. We would like to
extend SimStudent to less well defined domains in the future, where there is no
clear definition of what is the correct solution, and test whether the same results
still hold.

A Brief Review of SimStudent

SimStudent is a machine-learning agent that inductively learns skills to solve
problems from demonstrated solutions and from problem solving experience. It
is an extension of programming by demonstration (Lau and Weld 1998) using a
variation of the version space algorithm (Mitchell 1982), inductive logic program-
ming (Muggleton and de Raedt 1994), and iterative-deepening depth-first search
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Fig. 1 The interface where SimStudent is being tutored in an equation solving domain. The given problem
was —3x + 2 = 8, and SimStudent has been tutored to subtract both sides by 2. After entering divide
3, SimStudent asks the author user/tutor whether this step is correct. If SimStudent has not learned an
applicable production rule, it asks the author to demonstrate a good next step and then learns a production
rule to reproduce steps like this

as underlying learning techniques. Figure 1 shows a screenshot of the interface
used to tutor SimStudent to solve algebra equations. Figure 2 presents how Sim-
Student traces each demonstrated step to learn skill knowledge. We have recently
integrated representation learning (Li et al. 2010) to SimStudent’s skill learning
mechanisms, and have shown that the extended SimStudent learns skills that are
comparable to or better than the skills acquired by the original SimStudent, with
minimal manual construction of prior knowledge (Li et al. 2012a). Moreover, the
extended SimStudent can be used to discover student models that predict human
student behavior better than human-generated student models (Li et al. 2011).
This suggests that SimStudent is a good model of human learning, since it is
able to pick up important instructional details that may be overlooked by domain
experts.

As representation learning is not the key to this paper, in the rest of this section, we
will focus on reviewing the skill learning mechanisms of the extended SimStudent.
For full details on both the representation learning and skill learning mechanisms,
please refer to Li et al. (2012c).

Production Rules

SimStudent learns production rules as skills to solve problems. During the learning
process, given the current state of the problem (e.g., —3x = 6), SimStudent first tries
to find an appropriate production rule that proposes a plan that generates an action
for the next step (e.g., (coefficient —3x ?coef) (divide ?coef)). If it finds a plan and
receives positive feedback, it continues to the next step. If the proposed next step is
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Fig.2 CTAT’s (Aleven et al. 2009) behavior recorder is used to show how SimStudent traces each demon-
strated step. Each entry in a GUI element is traced. In this example, the state changes (steps) are the four
entries in the table cells shown in Fig. 1. These are either traced by an existing production rule or used to
learn a new production rule. The conflict tree panel in the figure shows that SimStudent applied the skill
“divide” incorrectly (i.e., dividing both sides by 3 instead of —3)

incorrect, negative feedback and a correct next step demonstration are provided to
SimStudent. The learning agent will attempt to learn or modify its production rules
accordingly. If it has not learned enough skill knowledge and fails to find a plan,
a correct next step is directly demonstrated to SimStudent for later learning. While
other feedback mechanisms such as a human tutor are possible, in this paper, we
use automated tutors to provide positive and negative feedback, and demonstrate the
correct next step to SimStudent.

Figure 3 shows an example of a production rule learned by SimStudent in LISP
format. A production rule indicates “where” to look for information in the interface,
“how” to change the problem state, and “when” to apply a rule. For example, the
perceptual information part of the production shown in Fig. 3 shows three paths that
point to three cells in the interface, the two input cells (i.e., the left-hand side and
the right-hand side), and the output cell. The rule to “divide both sides of —3x = 6
by —3” shown in Fig. 3 would be read as “given a left-hand side (—3x) and a right-
hand side (6) of the equation, when the left-hand side does not have a constant term,
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(defrule divide Skill divide (e.g. -3x = 6)
Perceptual information:
~ ?var518 <- (problem (interface-elements ? ? ? ? ?var522 ?) )
?var522 <- (table (columns $?m557 ?var523 $?)) .
2var523 <- (column (cells ? 2var5252 222222 7) ) W Left side (-3x)
?var525 <- (cell (name ?foa0) (value ?valO&~nil) )

?var518 <- (problem (interface-elements ? ? ? ? ?var522 ?) )
?var522 <- (table (columns $?m569 ?var534 $?))
™ ?var534 <- (column (cells ? ?var536? 22?2 ??2?7?) )

Perceptual ?var536 <- (cell (name ?foal) (value ?val1&-~nil) ) Right side (6)
Information
?var518 <- (problem (interface-elements ? ? ? ? ?var522 ?) )
?var522 <- (table (columns ? ? ?var545))
?var545 <- (column (cells ? 2var547 2?2?2772 °27?) )
?var547 <- (cell (name ?selection) (value ? input&nil ) ) Precondition:
Precondition { (test (not (has-constant-term?val0 )) ) Le}:t side (-3>t<) dtotes not
4 ave constant term
=> =>
Operator sequence:
Operator (bind ?val2 (coefficient ?val0))
Function { o IS Get coefficient (-3) of left
Sequence ;blnd ?input (skill-divide ?val2)) 14 side (-3x)

Divide both sides with the
coefficient (-3)

Fig. 3 A production rule for the skill divide in JESS (Forgy 1982), a LISP-like production rule represen-
tation implemented in Java, on the left and in English on the right. Notice the three parts of the production
rule, the perceptual information (where), the precondition (when), and the operator function sequence
(how), which correspond with different learning mechanisms

then get the coefficient of the term on the left-hand side and divide both sides by the
coefficient.”

Note that besides the common if-part and then-part in traditional production rules
(i.e, the when-part and how-part), there is a separate where-part in the problem-
solving skill. This is one of the distinctive elements of SimStudent, which is the
emphasis on perceptual information retrieval. This emphasis on perceptual learning
has been shown to be one essential component in human knowledge acquisi-
tion (Chase and Simon 1973; Koedinger and Anderson 1990). It is different from
other cognitive architectures as most of the existing cognitive architectures (e.g.,
Laird et al. 1987; Anderson 1993) do not distinguish perceptual knowledge from con-
ceptual knowledge. One exception comes from ICARUS (Langley and Choi 2006),
which does have a perceptual memory and a conceptual knowledge base, but focuses
more on concept knowledge learning (Li et al. 2012b), and does not model perceptual
learning.

Skill Learning Mechanisms

Ohlsson’s (2008) argues that there should be multiple learning models employed dur-
ing different learning phases in intelligent systems. We follow this line of research,
and model how one learning mechanism is able to aid other learning processes in an
intelligent system. As there are three main parts in a production rule, SimStudent’s
learning mechanism also consists of three parts: a “where” learner, a “when” learner,
and a “how” learner.

Before learning, SimStudent is given a perceptual hierarchy, a set of (ideally
simple) feature predicates and a set of (ideally simple) operator functions as prior
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knowledge. A perceptual hierarchy specifies the layout of the elements in the graph-
ical user interface (GUI) that SimStudent is interacting with. The elements in the
interface are typically organized in a tree structure. For example, in the equation solv-
ing domain, interface elements can be of type table, column and cell. In Fig. 1, the
interface contains one table node as the root of the tree. This table node links to three
column nodes. For each column node, it has multiple cells as its children, which are
also leaves of the tree.

Each feature predicate is a boolean function that describes relations among
objects in the domain. For example, (has-coefficient —3x) means —3x has a coeffi-
cient. SimStudent uses these feature predicates to understand the state of the given
problems.

Operator functions specify basic functions (e.g., add two numbers, get the coeffi-
cient) that SimStudent can apply to aspects of the problem representation. Operator
functions are divided into two groups, domain-independent operator functions and
domain-specific operator functions. Domain-independent operator functions can be
used across multiple domains, and tend to be simpler (like standard operations on
a programming language). Examples of such operator functions include adding two
numbers, (add I 2) or copying a string, (copy —3x). These operator functions are
not only useful in solving equations, but can also be used in other domains such
as multi-column addition and fraction addition. Because these domain-general func-
tions are involved in domains that are acquired before algebra, we can assume that
real students know them prior to algebra instruction. Because these domain-general
functions can be used in multiple domains, there is a potential engineering bene-
fit in reducing or eliminating a need to write new operator functions when applying
SimStudent to a new domain.

Domain-specific operator functions, on the other hand, are more complicated
functions, such as getting the coefficient of a term, (coefficient —3x), or adding two
terms. Performing such operator functions implies some domain expertise that real
students are less likely to have. Domain-specific operator functions tend to require
more knowledge engineering or programming effort than domain-independent opera-
tor functions. For example, compare the “add” domain-independent operator function
with the “add-term” domain-specific operator function. Adding two numbers is one
step among the many steps in adding two terms together (i.e., parsing the input terms
into sub-terms, applying an addition strategy for each term format, and concatenating
all of the sub-terms together).

Note that operator functions are different from operators in traditional planning
systems, operator functions have no explicit encoding of preconditions and may not
produce correct results when applied in context. Thus, SimStudent is different from
traditional planning algorithms, which can engage on speed-up learning. SimStu-
dent engages in knowledge-level learning (Dietterich 1986), and inductively acquires
complex reasoning rules represented as production rules.

The “where” learner acquires knowledge about where to find useful information in
the GUI. For example, for the step divide —3, —3x and 6 are the useful information,
the GUI elements associated with them are Cell2] and Cell22. The learning task
is to find paths that identify such elements. Recall that all of the elements in the
interface are organized in a tree structure. For each cell, SimStudent uses a deep
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feature representation learning mechanism that acquires knowledge on how to further
parse the content in each cell into a cell parse tree Li et al. (2010). The representation
learner extends an existing grammar induction algorithm to support feature learning
and transfer learning from unlabeled or lightly annotated input (e.g., —3x = 6).!

When given a set of positive examples (i.e., GUI elements associated with useful
information in the steps), the learner carries out a specific-to-general learning process
(e.g., from Cell2] to Cell?] to Cell??). It finds the most specific paths that cover all
of the positive examples. There are two ways to reach a percept node in the interface:
1) by the exact path to its exact position in the tree, or 2) by a generalized path to
a set of GUI elements that may have a specific relationship with the GUI element
where the next step is entered (e.g., cells above next step). A generalized path has
one or more levels in the tree that are bound to more than one node. For example, a
cell in the second column and the third row, Cell23, can be generalized to any cell
in the second column, Cell2?, or any cell in the table, Cell??. In the example shown
in Fig. 3, the where-part of the production rule, i.e., ?var525 and ?var536, specifies
two cells in row two, and is thus overly-specific. The production produces a next step
only when the left-hand side and right-hand side of the current step are in row two.
The learner searches for the least general path in the version space formed by the set
of paths to training examples (Mitchell 1982). This process is done by a brute-force
depth-first search. For example, if only given the example —3x = 6 in row two, the
production rule learned as shown in Fig. 3 has an over-specific where-part. If given
more examples in other rows (e.g., 4x = 12 in row three), the where-part will be
generalized to any row in the table.

The “when” learner acquires the precondition of the production rule that describes
the desired situation to apply the rule (e.g., (not (has-constant ?var0))) given a set
of feature predicates. Each predicate is a boolean function of the arguments that
describes relations among objects in the domain. For example, (has-coefficient —3x)
means —3x has a coefficient. The “when” learner utilizes FOIL (Quinlan 1990) to
acquire the precondition as a set of feature tests. FOIL is an inductive logic pro-
gramming system that learns Horn clauses from both positive and negative examples
expressed as relations. For each rule, the feature test learner creates a new predicate
that corresponds to the precondition of the rule, and sets it as the target relation for
FOIL to learn. The arguments of the new predicate are associated with the percepts.
If a step is either demonstrated to SimStudent or receives positive feedback, that
step is a positive example for FOIL; otherwise, a negative example. FOIL carries out
an iterative learning process, where it acquires clauses that separate positive exam-
ples from negative examples. For example, (precondition-divide ?percept| ?percepts)
is the precondition predicate associated with the production rule named “divide”.
(precondition-divide —3x 6) is a positive example for it. The feature test learner
computes the truthfulness of all predicates bound with all possible permutations of
percept values, and sends it as input to FOIL. Given these inputs, FOIL will acquire
a set of clauses formed by feature predicates describing the precondition predicate.

! An example of lightly annotated input would be the expression “3x = —6” with the substring “3” labeled
as salient.
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The learning process is from general to specific. When FOIL only has positive exam-
ples, it starts with the most general condition, in which any situation is considered
to be desirable. Later, it gradually narrows its condition based on negative exam-
ples. Hence, negative examples are important in avoiding to learn overly general
skills.

The last component is the “how” learner which acquires knowledge about how
to change the problem state. Given all of the positive examples and a set of basic
operator functions (e.g., (divide ?var)), the “how” learner attempts to find a shortest
operator function sequence that explains all of the training examples using iterative-
deepening depth-first search. For each positive example action record, R;, the learner
takes the percepts, R;.percepts, as the initial state, and sets the step, R;.step, as
the goal state. We say an operator function sequence explains a percepts-step pair,
(R;.percepts, R;.step), if the system takes R;.percepts as an initial state and yields
step; after applying the operator functions. For example, if SimStudent first receives
a percepts-step pair, ((2x, 2), (divide 2)), both the operator function sequence that
directly divides both sides with the right-hand side (i.e., (bind ?output (divide 2))),
and the sequence that first gets the coefficient, and then divides both sides with the
coefficient (i.e., (bind ?coef (coefficient 2x ?coef)) (bind ?output (divide ?coef)))
are possible explanations for the given pair. Since we have multiple example action
records for each skill, it is not sufficient to find one operator function sequence for
each example action record. Instead, the learner attempts to find a shortest operator
function sequence that explains all of the (percepts, step) pairs using iterative-
deepening depth-first search within some depth-limit. As in the above example, since
(bind ?output (divide 2)) is shorter than (i.e., (bind ?coef (coefficient 2x ?coef)) (bind
?output (divide ?coef))), SimStudent will learn this operator function sequence as
the how-part. Later, it receives another example, —3x = 6, and another percepts-
step pair, ((—3x, 6), (divide —3)). The operator function sequence that divides both
sides with the right-hand side is not a possible explanation any more. Hence, SimStu-
dent modifies the how-part to be the longer operator function sequence (bind ?coef
(coefficient ?rhs)) (bind ?output (divide ?coef)).

Problem Order Study

To get a better understanding of how and why problem orders affect learning effi-
ciency, we carried out a controlled simulation study on SimStudent given different
problem orders.

Methods

To ensure the generality of the results, we selected three different math and science
domains: fraction addition, equation solving, and stoichiometry, all of which have
associated cognitive tutors and student data in Datashop (Koedinger et al. 2010). Both
the training and testing problems were selected from problems solved by human stu-
dents in prior classroom studies. In these prior studies, human students were taught by
automated tutors in the three domains. In order to get a more precise computational
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model, in this study, we replaced human students with a learning agent, SimStudent,
and tutored SimStudent with automatic tutors that simulate the automatic tutors used
by human students. The set of feature predicates and the set of operator functions
provided to SimStudent as prior knowledge were sufficient to solve the problems.

Fraction Addition

In the fraction addition domain, SimStudent was given a series of fraction addition
problems of the form

numeratory numeratory

denominator denominatory

All numerators and denominators are positive integers. The problems are of three
types in the order of increasing difficulty:

1. Easy problems, where the two addends share the same denominators (i.e.,
denominator) = denominatory, e.g., 1/4+3/4).

2. Medium problems, where one denominator is a multiple of the other denominator
(i.e., GCD(denominator,, denominatory) = denominator; or denominator,
e.g., 1/2+3/4).

3. Hard problems, where no denominator is a multiple of the other denominator
(e.g., 1/3 + 3/4). In this case, students need to find the common denominator
(e.g., 12 for 1/3 + 3/4) by themselves.

Both the training and testing problems were selected from a classroom study of 80
human students using an automatic fraction addition tutor (Stampfer et al. 2011). The
number of training problems is 20, and the number of testing problems is 6. Among
the 20 training problems, there were 5 problems of type 1, 5 problems of type 2, and
10 problems of type 3. Among the 6 testing problems, there were 3 problems of type
1, 1 problems of type 2, and 2 problems of type 3, as shown in Table 1.

Equation Solving
The second domain in which we tested SimStudent is equation solving. Equation

solving is a more challenging domain since it requires more complicated prior knowl-
edge to solve the problem. For example, it is hard for human students to learn what

Table 1 Number of problems used for each domain

Domain # of problems in training phase # of problems in testing phase
Type 1 Type2  Type3 Type 1 Type2  Type3
Fraction Addition 5 5 10 3 1 3
Equation Solving 6 4 2 9 1 1
Stoichiometry 4 2 2 1 1 1
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is a coefficient, and what is a constant. Also, adding two terms together is more
complicated than adding two numbers.

In this experiment, we evaluated SimStudent based on a dataset of 71 human stu-
dents in a classroom study using an automatic tutor, CTAT (Aleven et al. 2009). The
problems are also in three types:

1. Problems of the form S; + S,V = §3,
2. Problems of the form V /S| = S,
3. Problems of the form S;/V = S,

where S; and S, are signed numbers, and V is a variable. Note that the terms in the
above problem forms can appear in any order, and may be surrounded with paren-
thesis. As summarized in Table 1, there were 12 training problems, and 11 testing
problems in the experiment. Among the 12 training problems, there were 6 problems
of type 1, 4 problems of type 2, and 2 problems of type 3. Among the 11 testing prob-
lems, there were 9 problems of type 1, 1 problems of type 2, and 1 problems of type
3.

Stoichiometry

Lastly, we evaluated SimStudent in a chemistry domain, stoichiometry. Stoichiom-
etry is a branch of chemistry that deals with the relative quantities of reactants and
products in chemical reactions. We selected stoichiometry because it is different in
nature from equation solving and fraction addition. In the stoichiometry domain,
SimStudent was asked to solve problems such as “How many moles of atomic
oxygen (O) are in 250 grams of P4O¢? (Hint: the molecular weight of P4Oqg is
283.88 g P4O19 / mol P4Oj¢.)”. Eight training problems and three testing problems
were selected from a classroom study of 81 human students using an automatic
stoichiometry tutor (McLaren et al. 2008).
To solve the problems, SimStudent needs to acquire three types of skills:

1. Unit conversion (e.g., 0.6 kg H,O = 600 g H,0). An example of a type 1
problem is “How many grams (g) are in 10.6 milligrams (mg) of wood alcohol
(COH4)?”.

2. Molecular weight (e.g., There are 2 moles of P4O1¢ in 283.88 x 2 g P4Oqy).
A type 2 problem is “What is the number of moles of alcohol / kg of H20 in
a solution of 6.00 g COH4 in 100.0 g of H20? (Hint: the molecular weight of
COH4 is 32.04 g COH4 / mol of COH4)”.

3. Composition stoichiometry (e.g., There are 10 moles of O in each mole of
P4O19). A type 3 problem is similar to “How many grams of Ba are in exactly
3.00 moles of YBa2Cu307 (a superconductor)? (Hint: the molecular weight of
Bais 137.33 g Ba/ mol Ba.)”.

The problems are of three types ordered in increasing difficulty, where each later
type adds one more skill comparing with its former type.? As presented in Table 1,

2 Although the problems are written in natural language here, when SimStudent being tutored, the problems
are transformed into machine readable format.
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there were 8 training problems, and 3 testing problems in the experiment. Among the
8 training problems, there were 4 problems of type 1, 2 problems of type 2, and 2
problems of type 3. Among the 3 testing problems, there were 1 problems of type 1,
1 problems of type 2, and 1 problems of type 3.

To test the generality of our computational model, the three selected domains
represent skill knowledge of different types. In the fraction addition domain, the pro-
duction rules of higher order are more general and can replace the production rules of
lower order (i.e., the production rules acquired from problems of type 3 are enough
to solve the problem in every case). In the equation solving domain, some produc-
tion rules acquired from one type of problems are separate from the other production
rules and can only be applied to this specific type of problems. In the stoichiometry
domain, production rules learned from problems of lower order can be used to par-
tially solve problems of higher order, but new production rules need to be acquired to
solve problems of higher order. The different nature of the three domains presents dif-
ferent challenges to the when-part and how-part learning. As we will see in later parts
of this paper, this difference causes distinctive behaviors of SimStudent in the learn-
ing procedure. More specifically, in fraction addition, the key to success of learning is
the how-part learning. On the contrary, in the other two domains, when-part learning
is more essential in the learning procedure than the how-part learning. The question
we ask in this experiment is that despite the differences among the domains, whether
interleaved-order curricula yield more effective learning than blocked-order curricula
across these three domains.

Blocked vs. Interleaved Problem Orders

To manipulate the order of problems given to SimStudent, for each domain, we first
grouped the problems of the same type together. Since there were three types of prob-
lems, we had three groups in each domain: groupl, group2, and group3. Although
textbooks often start with easier problems followed by hard problems, to carry out
a more extensive study, we also included curricula that start with harder problems.
There were six different orders of these three groups. For each order (e.g., [groupl,
group?2, group3]), we generated one blocked-ordering curriculum by repeating the
same problems in each group right after that group’s training was done (e.g., [group1,
groupl’, group2, group2’, group3, group3']). To generate the interleaved-ordering
curriculum, the same problems will be repeated once the whole set of problems were
done (e.g, [groupl, group2, group3, groupl’, group2’, group3']). For example, as
shown in the first row of Fig. 4, in the fraction addition domain, the blocked order
curriculum would be of the form, [1/4 4+ 3/4, 1/4 +3/4, 1/2 4+ 3/4, 1/2 +
3/4, 1/3+3/4, 1/3 + 3 /4], but with more problems. For the interleaved order cur-
riculum, the problems would be shown in the order presented in the second row of
Fig. 4,[1/4+3/4, 1/2+3/4, 1/34+3/4, 1/4+3/4, 1/2+3/4, 1/3+3/4]. Since
we repeated the problems in different orders, the total number of training problems
shown to SimStudent is double of the number of the original training problems given
to human students.

After this manipulation, we ended up having 12 curricula of different orders for
each domain as shown in Table 2. Six of them were blocked-ordering curricula,
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Blocked-Ordering
Curriculum

Va+% | s+ %

Fig. 4 Example blocked-ordering curriculum and interleaved-ordering curriculum in fraction addition.
Problems in cells of the same pattern are of the same type

Interleaved-
Ordering Curriculum

Yo+ %

whereas the other six were interleaved-ordering curricula. SimStudent was trained on
all these curricula, and tested by the set of testing problems. In the training phase, we
record the current set of production rules SimStudent acquired every time SimStu-
dent finishes a new training problem. Then, in the testing phase, we test the sequence
of production rule sets by all of the testing problems, and report the progression of
the step scores by number of training examples. Note that during the testing phase,
no new production rules are acquired, and thus the order of the testing problems pre-
sented to SimStudent does not affect the step score. The results are the step scores
averaged over the 6 curricula of the same type (blocked or interleaved).

Measurement

To measure learning gain, the production rules learned by SimStudent were evaluated
on the set of testing problems. More specifically, during the training phase, SimStu-
dent recorded the production rules it learned. Then, SimStudent was asked to solve
problems in the test phase without resorting to any external help. In math and science
problems, there is often more than one way to solve one problem. Hence, at each step,
there is usually more than one production rule that is applicable. Using the knowl-
edge it acquired in the training phase, SimStudent proposed all possible next steps in
solving the problem. For each step in the testing problems, we measure a step score
for all of the next steps proposed by SimStudent. Even if SimStudent cannot solve
the whole problem, partial credit is given to the steps where SimStudent knows how
to proceed. Among all possible correct next steps, we count the number of correct
steps that are actually proposed by some applicable production rule, and report the
step score as the number of correct next steps covered by learned rules divided by the

Table 2 12 Curricula of different orders for each domain

Blocked-ordering curricula Interleaved-ordering curricula
1,1,2,2/,3,3 1,2,3,1,2,3
1,1,3,3,2,2 1,3,2,1,3,2
2,2,1,1,3,3 2,1,3,2,1,3%
2,2,3,3, 1,1 2,3,1,2,3,1
3,3,1,1,2,2 3,1,2,3,1,2
3,3,2,2, 1,1 3,2,1,3,2,1
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total number of correct next steps plus the number of incorrect next steps proposed
by SimStudent, i.e.,

# of Correct Next Steps Proposed
Total # of Correct Next Steps + # of Incorrect Next Steps Proposed

For example, if there are four possible correct next steps, and SimStudent proposes
three, of which two are correct, and one is incorrect, then only two correct next steps
are covered, and thus the step score is 2/(4 + 1) = 0.4. In other words, SimStudent
gets a step score 1 only if it knows all correct ways of solving the problem, and does
not propose any incorrect next step. Since all possible next steps proposed by Sim-
Student are considered, this measurement is not sensitive to the order that production
rules are applied. We report the step score averaged over all testing problem steps for
each curriculum.

In addition, to better understand the cause of the difference between two problem
orders, we further measured the amount of negative feedback received by SimStu-
dent. In a previous study (Matsuda et al. 2008), it has been shown that more negative
feedback often leads to more effective learning. The amount of negative feedback is
evaluated by the average number of times SimStudent received negative feedback for
each skill.

Results

Figures 5, 6, and 7 show the learning curves of SimStudent trained on blocked-
ordering or interleaved-ordering curricula. As we can see in the graph, in all three
domains, the interleaved-ordering curricula yielded as effective or more effective
learning than the blocked-ordering curricula.

Learning Curve in Stoichiometry

Step score

0.1 = ® = Blocked

=—¥— Interleaved

) . . n
0 5 10 15

Number of training problems

Fig. 5 Learning curves of blocked-ordering curricula vs. interleaved-ordering curricula in stoichiometry
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Learning Curve in Equation Solving
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Fig. 6 Learning curves of blocked-ordering curricula vs. interleaved-ordering curricula in equation
solving

In all three domains, the SimStudent trained on interleaved-ordering curricula
got faster learning curves than the SimStudents given blocked-ordering curricula.
This is not surprising, since the SimStudent trained on interleaved-ordering cur-
ricula got to see problems of different types sooner than the SimStudent given
blocked-ordering curricula. In addition, as we will explain later, SimStudent given

Learning Curve in Fraction Addition

0.5 [

Step score

0.4 |
0.3
0.2

0.1 - @ = Blocked
=—3¥— Interleaved

o . . . . .
0 5 10 15 20 25 30 35 40

Number of training problems

Fig. 7 Learning curves of blocked-ordering curricula vs. interleaved-ordering curricula in fraction
addition
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Fig. 8 The average number of times SimStudent receives negative feedback for each skill across three
domains

interleaved-ordering curricula also received more negative feedback than SimStu-
dent given blocked-ordering curricula, which assisted it in achieving more efficient
learning.

More interestingly, after both SimStudents have been trained on the same set of
problems, SimStudent given the interleaved-ordering curricula achieved higher or
equal step scores than SimStudent given blocked-ordering curricula. In the domain
of stoichiometry, the step score of the interleaved-ordering curricula was 0.944
(SD = 0.045), whereas the step score of the blocked-ordering curricula was 0.813
(SD = 0.057). A sign test between pairs of step scores achieved by the associated
interleaved-ordering and blocked-ordering curricula (e.g., [groupl, group2, group3,
groupl’, group2’, group3'] vs. [groupl, groupl’, group2, group2’, group3, group3'])
showed that, after trained on 40 problems, the interleaved-ordering curricula is
significantly (p < 0.05) more effective than the blocked-ordering curricula.

Similar results were also observed in the equation solving domain. The
interleaved-ordering curricula again showed a benefit (mean = 0.955, SD < 0.001
vs. mean = 0.858, SD = 0.056) over blocked-ordering curricula. The sign test also
demonstrated significant (p < 0.05) advantages of interleaved-ordering curricula
over the blocked-ordering curricula.

In fraction addition, SimStudent got a step score of 0.995, SD = 0.008 when
trained with interleaved-ordering curricula, which is slightly higher than the step
score SimStudent received (0.993, SD = 0.007) when trained with blocked-
ordering curricula. There was no significant difference (p = 0.50) between the two
conditions.
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Implications for Instructional Design

We can inspect the data more closely to get a better qualitative understanding of
why the interleaved ordering seems better and what implications there might be for
improved instruction. In two of three of our domains, interleaved-ordering curricula
are more advantageous than blocked-ordering curricula. Since previous studies have
suggested that SimStudent is a good model of student learning (Li et al. 2011), these
results can potentially provide theoretical support for the hypothesis that when teach-
ing human students in math and science domains, an interleaved problem order yields
better learning than a blocked problem order.

Impact of Negative Feedback

To better understand the cause of the advantages of interleaved ordering, we fur-
ther measured the amount of negative feedback received by SimStudent, as it
is one of the important factors in achieving effective learning (Matsuda et al.
2008). The amount of negative feedback is assessed by the average number
of times SimStudent received negative feedback for each skill. As presented in
Fig. 8, the SimStudent given interleaved-ordering problems receives significantly
(p < 0.05, 31.5 %) more negative feedback than the SimStudent trained on blocked-
ordering problems in stoichiometry, and 10.0 % more negative feedback in fraction
addition.

One possible explanation for this result is when problems are of an interleaved
order, SimStudent may incorrectly apply the production rules learned from previ-
ous problem types to the current problem, even if the current problem is of another
type. In this case, SimStudent receives explicit negative feedback from the tutor. In
contrast, when trained on blocked-ordering curricula, SimStudent has fewer oppor-
tunities for incorrect rule applications, and thus receives less negative feedback.
Since the negative feedback serves as negative training examples of the “when”
learning, more negative feedback in the interleaved problem order case enables
SimStudent to yield more effective “when” learning compared to blocked problem
orders.

For example, in stoichiometry, since the skill composition stoichiometry was only
taught in problems of type three, if SimStudent was given the blocked-ordering cur-
riculum [groupl, groupl’, group2, group2’, group3, group3'], all of the negative
examples explained for composition stoichiometry production rules were from prob-
lems of type three. In fact, one of the skills, which decides O is a substance in P4O1g
and outputs 1 mol P4O1g, does not receive any negative feedback, since it works as
originally acquired throughout group3 and group3’. In this case, the when-part of the
acquired skill is simply empty, which considers all situations applicable to the skill,
and thus the skill was overly general. When given the interleaved-ordering curricu-
lum [groupl, group2, group3, groupl’, group2’, group3'], SimStudent incorrectly
applied this composition stoichiometry skill to problems that need unit conversion
(in groupl’). Given the problem of how many grams (g) of COHy are in 10.6 mg
COHy, SimStudent returned 1 mg COHy, which was incorrect. Given this negative
feedback, SimStudent updated its overly-general production rule, and learned that to
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apply this composition stoichiometry rule, the unit of the given value (e.g., mg) and
the targeted unit (e.g., g) should not be convertible.

In equation solving, SimStudent received approximately the same amount of neg-
ative feedback (p = 1, —1.9 %) in the blocked problem order case and interleaved
problem order case. However, a careful inspection shows that negative examples from
other problem types, which one experienced more often in interleaved ordering, are
sometimes more informative than those from the same problem type. Consider the
blocked-ordering curriculum [groupl, groupl’, group3, group3’, group2, group2’]
and its associated interleaved-ordering curriculum [groupl, group3, group2, groupl’,
group3’, group2’]. During the acquisition of the skill “subtract”, the SimStudent
given blocked-ordering problems was first trained in group! to solve problems of the
form §1V +S8, = §3. It learned that when there is a constant term in the left-hand side
of the equation (e.g., term §; is a number in S|V + S, = S3), subtract both sides with
that number (e.g., (subtract S;)). But it failed to learn that there must be more than
one term in the left-hand side connected by a plus sign (e.g., S1V + S2). In the inter-
leaved condition, SimStudent received negative feedback from problems of group3
(i.e., problems of the form S; = S,/ V). It tried to subtract both sides with S; when
given problems of type S; = S>/V. SimStudent given interleaved-ordering prob-
lems modified its when-part when given negative feedback on such problems. The
updated production rule became, “when there is a constant term that follows a plus
sign in the left-hand side of the equation, subtract both sides with that number.” Since
this negative feedback was given to SimStudent earlier in the training process, Sim-
Student acquired the skill knowledge faster than the one given the blocked-ordering
curriculum. Thus, in the following problems, the SimStudent given the interleaved-
ordering curriculum received less negative feedback than the SimStudent given the
blocked-ordering curriculum, and had a faster learning curve.

In fraction addition, as we have seen above, although SimStudent given
interleaved-ordering curricula learned faster than SimStudent trained on blocked-
ordering curricula, there was no significant difference between the step scores of
the production rules acquired based on all the training problems. Unlike the two
other domains, SimStudent in fraction addition does not have to learn different sets
of skills to solve problems of different types. Instead, SimStudent learns one set of
rules that handles fraction addition problems of all types. Thus, “when” learning is
less essential in achieving effective learning in this domain. Suppose SimStudent
was trained on the blocked-ordering curriculum [group3, group3’, group2, group2’,
groupl, groupl’]. Having trained on problems of type 3 (e.g., 2/5+1/3), SimStudent
learned that it should first calculate the least common multiple of the two denom-
inators of the addends, and then covert the fractions to get the answer. This set of
skills also applies to problems of type 1 (e.g., 1/2 + 1/2) and 2 (e.g., 1/2 + 3/4).
Therefore, no negative feedback is needed. The interleaved-ordering curriculum is no
more beneficial than the blocked-ordering curriculum. This bias towards more gen-
eralized skills over specific ones without considering computational cost appears to
be a limitation of SimStudent as a model of student learning. In cases where a more
general strategy invokes a more complicated procedure (like calculating the common
denominators), human students may prefer to use a less general but simple strategy
(such as directly copying the addend’s denominator). We have recently developed a
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conflict resolution strategy which could be used to prefer skills of smaller compu-
tational cost (Li et al. 2013). This extension potentially addresses this limitation of
SimStudent as a student model.

Impact of Memory Limitations

We conjecture that the frequent use of blocked examples in textbooks might relate to
perceived memory limitations of students. The version of SimStudent used in these
experiments, currently does not have any severe memory (or retrieval) limitations
(e.g., it remembers all past examples no matter how long ago). SimStudent would
need to have some memory limitations if it were to have a bigger knowledge base
or to better model humans. If it did, the benefits for blocking may go up, and in
particular for “how” learning. There are different models of memory limitations. To
see how memory limitation changes the behavior of SimStudent, consider a fixed
memory size for SimStudent, which means SimStudent is only able to remember a
fixed number of most recent training examples. SimStudent receives positive training
examples of “how” learning only when the current step is demonstrated or SimStu-
dent applies a production rule correctly. Hence, in the blocked problem order case,
SimStudent maintains all the training examples of the current problem type unless the
number of training examples exceeds the memory limit. In contrast, when trained on
interleaved-ordering curricula, SimStudent needs to remember training examples for
multiple problem types. For any specific production rule, the number of stored train-
ing examples within the threshold will be smaller than that given a blocked-ordering
curricula, which could result in less effective learning than the blocked-ordering
case. This suggests that theoretical results may change when memory limitations are
modeled.

“When” learning, on the other hand, is not affected as much by memory limi-
tations because of a different inductive bias. “When” learning starts with the most
general condition and makes the condition more specific when negative examples are
received. In contrast, function operator sequence (how) learning is driven by posi-
tive examples and will create more complex sequences only when multiple positive
examples are received.

This also relates to VanLehn’s work on “learning one subprocedure per lesson”
(VanLehn 1987). If a subprocedure is achieved in the same way, that is, with the same
how-part in the production rule, then as Vanlehn suggested, problems of blocked
orders are more beneficial. However, for production rules/procedures to differentiate
across subgoals, the when-part needs to be acquired and in that case, interleaving
problems of different types is important.

Impact on Error Patterns

Additionally, we have carried out a study of how different problem orders affect
the types of errors SimStudent makes. We analyzed the dataset of the in-classroom
study, in which human-students were taught to add fractions using an automated
tutor. There are 3 most common types of errors: directly copying the denominator of
the addends as the common denominator, directly copying the numerator of addends
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without conversion, and getting the smaller denominator of the addends as the com-
mon denominator. The list of feature predicates and the list of operator functions
provided to SimStudent are shown in Table 3. The feature predicates and operator
functions that are used in the final production rules are in bold. As we can see, the
provided operator functions are basic skills that are often used in maths domains.

During training, both the SimStudent trained on interleaved-ordering curricula
and the SimStudent given blocked-ordering curricula produced human-like errors. In
fact, all of the errors made by SimStudent were among these three types of errors.
The SimStudent trained on interleaved-ordering curricula made mistakes earlier dur-
ing training than the SimStudent given blocked-ordering curricula, since SimStudent
got more opportunities to apply skills to problems of incorrect types in interleaved-
ordering curricula. The blocked order problems yield more errors than the interleaved
order problems. Among the curricula, the ones that start with simpler problems
(e.g., 1/4 + 3/4) yielded more errors than the other curricula, since the production
rules acquired from these problems are overly specific for harder problems such as
1/3 + 1/4. On the other hand, for curricula that start with the hardest problems (i.e.,
problems of type 3), SimStudent directly learned the most general production rules
that apply to the simpler cases as well. In this case, fewer errors were generated in
later segments of the curricula. Interestingly, none of the provided feature predicates
was used in the acquired production rules. We took a closer look at the data and found
out that since the most general set of production rules applies to all fraction addi-
tion problems, the information retrieval paths were sufficient in differentiating which
production rule to apply. Thus, there was no need in acquiring additional feature
tests. The errors produced were mostly caused by the incorrectly acquired how-part
in production rules. Since all of the errors made were human-like errors, there was
no difference between the types of errors made by SimStudent given problems in
different orders.

Summary

In summary, the study provides theoretical support for the claim that learning when
to apply a skill benefits more from interleaved problem orders. We also argued that

Table 3 Prior knowledge provided to SimStudent in fraction addition

Feature predicates Operator functions
is-greater-number(?valO, ?vall) copy(?val0)
is-coprimed(?val0, ?vall) greater-number(?val0, ?vall)
is-multiple-of(?val0, ?vall) add(?val0, ?vall)

subtract(?val0, ?vall)
multiply(?val0, ?vall)
divide(?val0, ?vall)

least-common-multiple(?va0, ?vall)
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learning how to apply a skill benefits more from blocked problem orders. This spe-
cialization of optimal instruction to when vs. how learning may explain why the
differences on step scores of SimStudent between interleaved-ordering curricula and
blocked-ordering curricula in equation solving and stoichiometry were larger than the
difference in fraction addition. “When” learning is more challenging in the equation
solving and stoichiometry domains, while “how” learning is more essential in the
fraction addition domain. Therefore, when tutoring students in domains that are more
challenging in “how” learning, we suggest that the problems presented to students
should start with more blocked orders. If the learning task requires more rigorous
“when” learning, interleaved-ordering problems should be preferred.

Related Work

The main objective of this work is to better understand how and why problem orders
affect learning outcome. A considerable amount of research has demonstrated the
effectiveness of interleaved problem orders. Shea and Morgan (1979) were the first
that showed problems of a random order yields better performance in retention and
transfer tests than students trained on problems of a blocked order, and named this
effect as the contextual interference (ClI) effect. The CI effect compares random prob-
lem orders and blocked problem orders, not interleaved problem orders and blocked
orders, but the results should be similar since the main point is whether consecutive
problems should be of the same or different types. That is, random problem orders
have lots of interleaving. After that, a growing number of studies (e.g., Gabriele et al.
1987; Carnahan et al. 1990; Lee and Magill 1983; Young et al. 1993; Del Rey 1982;
Sekiya et al. 1996; Jelsma and Pieters 1989) have repeatedly observed the CI effect
in different tasks. Other studies on relatively complex tasks (e.g., Tsutsui et al. 1998)
or novices (e.g., French et al. 1990) have yielded mixed results. To explain the CI
phenomenon, researchers have proposed several hypotheses including the elaboration
hypothesis (Shea and Morgan 1979), the forgetting or reconstruction hypothesis (Lee
and Magill 1983), etc. More details on these hypotheses are available in Wulf and
Shea (2002), however, all are described in fairly ambiguous language and none have
the precision of a computational theory. In contrast, SimStudent provides a precise,
unambiguous implementation of how and why interleaving may be effective.

Research on task switching (Monsell 2003) shares a resemblance with our work. It
shows that subjects’ responses are substantially slower and more error-prone imme-
diately after a task switch. Our work differs from this research in that we focus on
learning tasks. During the learning process, switching among problems of different
types also increases the cognitive load, but causes more effective learning.

Other research on creating simulated students (VanLehn 1990; Chan and Chou
1997, Pentti Hietala 1998) and simulating expert memory (Richman et al. 1995) also
share some resemblance to our work. VanLehn (1990) created a learning system and
evaluated whether it was able to learn procedural “bugs” like real students. To the
best of our knowledge, none of the above approaches made use of the models to sim-
ulate the advantage of interleaved or random problem orders over blocked problem
orders.
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Concluding Remarks

In this paper, we carried out a controlled simulation study to gain a better understand-
ing of why interleaved problem orders generate more effective learning than blocked
problem orders. We used a machine-learning agent, SimStudent, which has demon-
strated previous success as a theory of student learning (Li et al. 2011), in the study.
We measured the learning effectiveness of SimStudent in three domains given dif-
ferent problem orders. The results show that given the current implementation of the
intelligent agent, since the interleaved problem order yields more opportunities for
error detection and correction, the SimStudent trained by interleaved-ordering cur-
ricula achieved better performance than the SimStudent trained by blocked-ordering
curricula. We also discussed limitations of SimStudent (e.g., unlimited memory,
bias towards more generalized skills) as a model of student learning, their poten-
tial impacts on learning effectiveness with different problem orders, and how future
extensions can be made in addressing these limitations.
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