
ARTICLE

Example-Tracing Tutors: Intelligent Tutor
Development for Non-programmers

Vincent Aleven1
& Bruce M. McLaren1

&

Jonathan Sewall1 & Martin van Velsen1
&

Octav Popescu1
& Sandra Demi1 &

Michael Ringenberg1 & Kenneth R. Koedinger1

Published online: 10 February 2016
International Artificial Intelligence in Education Society 2016

Abstract In 2009, we reported on a new Intelligent Tutoring Systems (ITS) technology,
example-tracing tutors, that can be built without programming using the Cognitive Tutor
Authoring Tools (CTAT). Creating example-tracing tutors was shown to be 4–8 times as
cost-effective as estimates for ITS development from the literature. Since 2009, CTATand its
associated learning management system, the Tutorshop, have been extended and have been
used for both research and real-world instruction. As evidence that example-tracing tutors
are an effective and mature ITS paradigm, CTAT-built tutors have been used by approxi-
mately 44,000 students and account for 40 % of the data sets in DataShop, a large open
repository for educational technology data sets. We review 18 example-tracing tutors built
since 2009, which have been shown to be effective in helping students learn in real
educational settings, often with large pre/post effect sizes. These tutors support a variety
of pedagogical approaches, beyond step-based problem solving, including collaborative
learning, educational games, and guided invention activities. CTATand other ITS authoring
tools illustrate that non-programmer approaches to building ITS are viable and useful and
will likely play a key role in making ITS widespread.

Keywords Intelligent tutoring systems . Authoring tools . Example-tracing tutors

Introduction

ITS authoring tools aim at making the creation of ITS more efficient and easier to learn.
Also, they often aim at lowering the skill level needed to build a tutor and sometimes

Int J Artif Intell Educ (2016) 26:224–269
DOI 10.1007/s40593-015-0088-2

* Vincent Aleven
aleven@cs.cmu.edu

1 Human-Computer Interaction Institute, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh,
PA 15213, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s40593-015-0088-2&domain=pdf

even at providing design guidance for effective tutors. ITS authoring tools by now have
a long history in ITS research. Important early work was presented in Murray’s (1999)
influential overview paper in IJAIED and in a book edited by Murray et al. (2003).
More recent work appeared in a special issue in IJAIED (Koedinger and Mitrovic
2009) and a series of workshops organized by the Army Research Laboratory and the
University of Memphis (Sottilare et al. 2013, 2014, 2015). There are many ITS
authoring tools, each with its own underlying ITS technology, such as ASPIRE
(Mitrovic et al. 2009), ASTUS (Paquette et al. 2015), ASSISTments Builder (Razzaq
et al. 2009), AutoTutor tools (Nye et al. 2014), CTAT (Aleven et al. 2009b; Koedinger
et al. 2004), GIFT (Sottilare 2012), SDK (Blessing et al. 2009b), SimStudent
(MacLellan et al. 2014; Matsuda et al. 2015), and xPST (Blessing et al. 2011;
Blessing et al. 2009a; Kodavali et al. 2010). These tools have made ITS development
easier and more cost-effective. They have lowered the skill threshold for building
tutors. Some studies have provided estimates of cost savings (Aleven et al. 2009b;
Razzaq et al. 2009) or have empirically evaluated the authoring efficiency of ITS
authoring tools (Aleven et al. 2006b; Blessing and Gilbert 2008; Devasani et al. 2012;
Kodaganallur et al. 2005; MacLellan et al. 2014; Paquette et al. 2010; Razzaq et al.
2009).

Although it is hard to generalize from the current crop of ITS authoring tools,
one broad trend we see is that non-programmer approaches to tutor building
appear to be winning the day. Given that ITS development has traditionally
required specialized programming skill that has hampered widespread develop-
ment and use of tutors, this trend is not surprising. Many tool sets, including
ASPIRE (Mitrovic et al. 2009), ASSISTments (Razzaq et al. 2009), CTAT (Aleven
et al. 2009b), SimStudent (Matsuda et al. 2015), and xPST (Kodavali et al. 2010),
do not require advanced programming or any programming at all. While it is clear
why easy-to-use and easy-to-learn tools are popular, we do need to ask whether
non-programmer ITS authoring tools are capable of capturing sophisticated
tutoring behaviors that are effective in helping students learn in a wide range of
domains.

We focus on a set of authoring tools called CTAT, which stands for Cognitive
Tutor Authoring Tools. The project started in 2002 with the goal of making a
particular type of ITS, namely, Cognitive Tutors, easier to develop. A second goal
was to lower the skill threshold for building these kinds of tutors. At the time, a
substantial number of Cognitive Tutors had been built and were in a use on a
regular basis in many schools in the United States. They had been shown to lead
to substantial increases in students’ learning (Anderson et al. 1995; Koedinger et
al. 1997), a finding that, with a few exceptions, was reproduced in later classroom
studies (Koedinger and Aleven 2007; Ritter et al. 2007), including one conducted
by a third party with 17,000 students in 150 schools (Pane et al. 2013). Although
our initial goal was to facilitate development of Cognitive Tutors (Koedinger et al.
2004), along the way the project took an unexpected turn, described in our 2009
article in IJAIED entitled BA new paradigm for intelligent tutoring systems:
Example-tracing tutors^ (Aleven et al. 2009b). We created a novel tutor type,
together with a novel non-programmer approach to tutor authoring. We called the
new tutor type example-tracing tutors, by analogy to model-tracing tutors
(Anderson et al. 1995). Whereas model-tracing tutors use a generalized rule-

Int J Artif Intell Educ (2016) 26:224–269 225

based cognitive model to interpret student behavior, example-tracing tutors use
generalized examples of problem-solving behavior. This choice sets them apart from
many other ITS, as it is more common to use representations of general domain
knowledge, such as rules (Anderson et al. 1995; Koedinger and Corbett 2006) or
constraints (Mitrovic and Ohlsson 1999). Example-tracing tutors can be created without
programming and – as we argued in our 2009 IJAIED and continue to maintain today –
sophisticated tutoring behaviors can be authored for a broad range of task domains.
Further, we presented evidence that even in relatively small tutor-building projects,
building example-tracing tutors can be 4–8 times as cost-effective as estimates from
tutor building projects reported in the literature. Across projects, we saw roughly a 1:50
to 1:100 ratio of instructional to development time, compared to earlier estimates of
1:200 to 1:300. Additional cost savings come from the fact that tutors can be built
without employing expensive programmers. A similar study with the ASSISTments
Builder, another non-programmer ITS authoring tool, demonstrated development ratios
of 1:28 to 1:40 (Razzaq et al. 2009). (These estimates are not directly comparable across
the two tools sets, because the tools support different types of tutors and because the
CTAT study included a wider range of development activities.) These studies show that
ITS authoring tools for non-programmers can make authoring dramatically more effi-
cient and cost-effective.

In the current article, we first give an overview of example-tracing tutors and of new
extensions added to CTAT since 2009. We then revise and bolster the argument first
presented in our 2009 IJAIED article that example-tracing tutors are ITS, along the way
highlighting the many ways in which they are Badaptive^ to learner needs and
differences. To illustrate the scope of systems built with CTAT, we present 18 examples
of example-tracing tutors, all of which have been used in real educational settings.
(Screenshots of these tutors are shown in the Appendix.) We hope that together these
arguments present a convincing case that example-tracing tutors are a useful and
effective ITS paradigm and, more generally, that non-programmer authoring tools
can be used to develop genuinely sophisticated tutors.

Overview of Example-Tracing Tutors and CTAT

CTAT supports two tutor paradigms: example-tracing tutors (Aleven et al. 2006c,
2009b; Koedinger et al. 2004) and rule-based Cognitive Tutors (Aleven 2010;
Aleven et al. 2006b; Anderson et al. 1995; Koedinger et al. 1997). In this article, we
focus on example-tracing tutors, as they were the focus of our IJAIED 2009 article. The
vast majority of tutors built with CTAT have been example-tracing tutors, because they
are easier to author and debug than rule-based Cognitive Tutors. Using CTAT, example-
tracing tutors can be built and deployed entirely without programming. Table 1 gives an
overview of the functionality supported by CTAT and its associated learning manage-
ment system, the Tutorshop. To give a sense for the scope of this project, we started
building CTAT in 2002. Over the years, at least 54 people have contributed to CTAT
and the Tutorshop; these two systems together represent approximately 60 man years’
worth of work, the large majority of it by professional software engineering staff.
Today, the CTAT/Tutorshop code base comprises 750,000 lines of code (including
white lines and comments).

226 Int J Artif Intell Educ (2016) 26:224–269

Table 1 Overview of CTAT/Tutorshop functionality; all functions are supported without programming,
except where otherwise indicated

Front-end options (tutor interface)

• Java (drag-and-drop interface building)

• Flash/Actionscript (drag-and-drop interface building)

• HTML5/CSS/Javascript (currently requires coding)

• External problem-solving environment or simulator (needs to be integrated using custom programming)

Inner loop (step loop); within-problem guidance by the example-tracing algorithm

• Minimal feedback on steps - classified as correct, incorrect, or suboptimal

○ Immediate feedback

○ On-demand feedback

○ No feedback (quiz mode)

• Error-specific feedback

• Success messages on correct steps

• Student-requested hints on the next step (different policies for selecting hints are supported)

• Assessment of knowledge (i.e., maintaining a student model that captures probabilities of mastery of the
knowledge components (KCs) targeted in the instruction, updated by Bayesian Knowledge Tracing)

• Skill meter (i.e., an open learner model showing mastery of KCs)

• Multiple solution paths within a problem (major and minor strategy/notational variations)

• Dynamic interfaces (i.e., interfaces that can change, under control of the tutor, as a function of the problem
state)

• Collaborative tutors for synchronous, networked collaborative problem solving, with roles and embedded
collaboration scripts tied to the problem state

• Backward fading of worked examples

• Input substitution (tutor can replace correct student input with canonical/evaluated form, corrections, etc.)

Outer loop (task loop); problem selection by the Tutorshop

• Student picks problem (custom versions exist, not part of the standard installation)

• Fixed problem sequence

• Adaptive problem selection (cognitive mastery based on Bayesian Knowledge Tracing)

• Random problem sequence

Delivery options

• Standalone application (Java only)

• Embedded in web pages

• Tutorshop (dedicated ITS-oriented learning managements system)

• Integration in external LMS based on e-learning standards (SCORM, LTI)

• Custom integration in external LMS (OLI, edX by XBlock integration)

Support for research

• Datashop logging of student-tutor interactions

• Support for multiple experimental conditions

• Replay of logged interactions

Int J Artif Intell Educ (2016) 26:224–269 227

Authoring Process

The process of authoring an example-tracing tutor has six key parts, often carried out in
iterative cycles (and not necessarily in sequence). Our 2009 article in IJAIED (Aleven
et al. 2009b) describes the process in greater detail. First, the author or authoring team
investigates student thinking and learning in the given task domain, using cognitive
task analysis (de Baker et al. 2007; Clark et al. 2008; Lovett 1998) and educational data
mining methods. Second, informed by the results of the first step, the author designs
and creates one or more tutor interfaces. These interfaces tend to be specific to the
problem types for which the tutor will provide tutoring; they break down complex
problem solving into steps. Using CTAT, tutor interfaces can be built through drag-and-
drop techniques within an existing interface builder, such as the Flash IDE (Fig. 1,
right). Other options for the tutor front end are supported as well (see Table 1).

Third, the author creates generalized examples needed by the tutor. She demonstrates
problem-solving steps on the interface (Fig. 1, middle), which CTAT’s Behavior Recorder
tool records in a behavior graph (Fig. 1, left); the links in the graph represent problem-
solving steps. During tutoring, the tutor evaluates student actions by comparing them against
the graph. The graph is therefore expected to capture all solution strategies that are
reasonable within the given interface, so that the tutor can recognize all of them as correct
student behavior. Different ways of solving the problem are captured as different paths in the
graph. Once relevant paths have been recorded, the authorgeneralizes the behavior graph, to
indicate the range of student behavior that the graph stands for, beyond just literally the paths
recorded in the graph with steps in the same order as demonstrated. For example, an author
can provide input matchers that specify a range of values or notational variations to be
accepted for a given step. She also can attach formulas (akin to Excel formulas) that specify
how steps depend on each other or can define ordered or unordered groups of steps, nested if
needed, to indicate what step orders are acceptable. Solution paths that involve the same
steps but different values can be captured with a single path with attached formulas, as a way
of keeping the graph manageable.

Fourth, an author annotates the graph. She can attach hints to links in the graph, which
recommend the action on the given link as an appropriate next action to take; hints also
typically explain why that action is a good next action, in terms of the domain’s problem-
solving principles. During tutoring, these hints will be displayed at the student’s request. To
make the tutor display feedbackmessages in response to specific student errors, an author can
insert incorrect action links into the graph, eachwith a feedbackmessage specific to the given
error. To support assessment of student knowledge through Bayesian Knowledge Tracing
(Corbett andAnderson 1995), an authormay attach knowledge component (KC) labels to the
links in the graph.Knowledge components are the smallest units intowhich the knowledge to
be learned can be decomposed (Aleven and Koedinger 2013; Koedinger et al. 2010, 2012).

Fifth, to make it easier to create multiple practice problems of the same type, CTAT
supports a template-based feature called BMass Production.^ To use it, an author first turns
a behavior graph into a template by replacing problem-specific values with variables. She
can then define many problems by specifying their values for the template variables in a
spreadsheet. A final merge step automatically substitutes the spreadsheet values into the
template’s variables and generates a behavior graph for each problem.

Finally, when the interface and behavior graph are ready for initial testing with students,
the author uploads the tutor to a deployment environment, for example, the Tutorshop,

228 Int J Artif Intell Educ (2016) 26:224–269

F
ig
.1

A
ut
ho
ri
ng

an
ex
am

pl
e-
tr
ac
in
g
tu
to
r
w
ith

C
TA

T

Int J Artif Intell Educ (2016) 26:224–269 229

described below. After one or more rounds of pilot testing and revision, preferably with
students from the target population, the author performs the final edits and uploads the tutor
to the final production environment.

Inner Loop: Using a Behavior Graph to Provide Tutoring

At student run time, CTAT’s built-in example-tracing algorithm (Aleven et al. 2009a)
takes care of the tutor’s inner loop (a.k.a. step loop; VanLehn, 2006; this issue). That is, it
provides step-level guidance within each problem, including step-level correctness
feedback, on-demand hints, error-specific feedbackmessages, and assessment of knowl-
edge based on Bayesian Knowledge tracing (Corbett and Anderson 1995) (see Table 1).
Essentially, the example tracer algorithm evaluates whether the student’s solution steps
conform to one or more solution paths implied by the generalized behavior graph. CTAT
now provides a number of feedback policies, including on-demand feedback and no-
feedback (for implementing online tests). At the student’s request, the algorithm pro-
vides hints by looking for an appropriate choice of next step within the graph, taking into
account the solution path(s) the student may be on. CTATalso supports a number of hint
selection policies, which give an author some control over how the tutor decides which
of multiple possible next steps to recommend in a hint. It provides an error feedback
message when the student’s action matches one of the incorrect action links in the graph.
Finally, CTAT supports input substitution, meaning that the tutor can transform student
input in an author-specified way and echoes the transformed version back to the student;
this feature is useful for arithmetic calculations, spell checking, etc.

Beyond these basic behaviors CTAT’s example-tracing technology supports a range of
additional inner loop behaviors (see Table 1). Whereas CTAToriginally supported tutors
for individual learning only, we recently added support for authoring collaborative
example-tracing tutors (Olsen et al. 2014b), described in more detail below. We also
added support for gradually fading worked examples, based on research that demonstrat-
ed the effectiveness of this way of transitioning from examples to problem solving (e.g.,
Atkinson et al. 2003; Renkl et al. 2003; Salden et al. 2010a). Further, an author can create
dynamic interfaces whose components change depending on the problem state or in
response to specific student actions. An author can do so by inserting links in the behavior
graph that represent tutor-performed actions such as updating, showing, moving, or
hiding interface components. This basic functionality can be used to craft a wide range of
interface behaviors, such as revealing steps gradually as the student progresses through
the problem, creating dynamically linked representations, or breaking down the problems
into steps when the student makes an error (cf. Heffernan and Heffernan 2014).

Learner Modeling

CTATand the Tutorshop support a learner model that records probabilities that the given
student masters the KCs targeted in the given problem set. An author defines a KC
model for an example-tracing tutor by annotating the links of a behavior graph with KC
labels, as described above. The learner model is updated (in the inner loop) through
Bayesian Knowledge Tracing (Corbett and Anderson 1995) and is used (as one of the
outer loop options) for adaptive problem selection and cognitive mastery. As a form of
open learner modeling (Bull and Kay 2010), CTAT provides an interface component that

230 Int J Artif Intell Educ (2016) 26:224–269

displays the learner model in the form of a skill meter (see Fig. 1, middle, in the bottom
right corner of the tutor interface). An author can define an initial KC model based on
cognitive task analysis and refine it later based on analysis of tutor log data, for example
using tools for learning curve analysis made available in the DataShop (Koedinger et al.
2010). Refined KC models can lead to more effective or efficient instruction (for an
overview, see Aleven and Koedinger 2013). As a way of generalizing CTAT, we are
looking into the possibility of supporting the plugging in of custom student models.

Outer Loop

The Tutorshop supports a number of outer loop (a.k.a. task loop) options. First, it supports
cognitive mastery learning based on Bayesian Knowledge Tracing, a form of personalized
problem selection that has proven to be very effective (Corbett et al. 2000). It also supports
randomized problem selection, which is sometimes useful for research purposes. For
example, when problems are presented in random order (randomized separately for each
student), then in offline analyses of tutor log data, the difficulty of problem steps can be
assessed without being confounded by the order in which the problemswere presented. One
of our goals for the near future is to extend CTAT so it can support the easy plugging in of
custom problem selection policies and mastery criteria.

Tutor Front End

CTATcurrently supports three options for the tutor front-end (i.e., the interface in which
the students solve problems, with the tutor’s guidance), namely, Java, Flash/
ActionScript, and HTML5/Javascript. For the first two options, drag-and-drop interface
building is supported. For the last of these, HTML5/Javascript, interfaces need to be
created by writing code, although we hope to support drag-and-drop interface building
in the near future. A great amount of our effort in recent years went into CTAT’s front-
end technology, mainly to keep up with changes in web-based technologies. Since 2009,
we have revised or re-implemented our interface technologies three times. First, we
updated the look and feel of the tutor interfaces in our ActionScript 2 code base, in line
with the design aesthetic for Mathtutor (Aleven et al. 2009a). Second, we moved to
ActionScript 3, a substantial reimplementation effort, as ActionScript 3 provides im-
portant enhanced functionality but is not backwards compatible. Finally, we completed
an HTML5/JavaScript implementation, which enables us to offer a truly cross-platform
ITS approach.We expect this to become the go-to option for CTAT tutors, with Flash not
supported on all web client platforms and on the decline. Keeping up with changing
interface technology would not have been possible without a factored architecture
strictly separates the tool and tutor modules (Ritter and Koedinger 1996), described
below.

Delivery and Deployment

Much of our effort since 2009 has also gone into supporting ways to deliver CTAT
tutors in a variety of e-learning platforms, including MOOCs. We view this capability
as an important goal for ITS authoring tools and for making ITS technology widespread
(Aleven et al. 2015b).

Int J Artif Intell Educ (2016) 26:224–269 231

So far, the Tutorshop has been the go-to platform for deploying CTAT tutors. The
Tutorshop is a web-based content management and learning management system we
created for tutor use in classrooms and other settings. It is implemented in Ruby on Rails.
Tutorshop’s learning management facilities include management of class lists, student and
teacher accounts, assignments, and a wide range of reports for students and teachers
regarding student progress and learning. Tutorshop has been used inmany research projects.
Also, it functions as the backbone of theMathtutorwebsite (Aleven et al. 2009a) as well as
theGenetics Tutor (Corbett et al. 2010). We currently host the Tutorshop as a service to the
research community. For large-scale studies, we sometimes run Tutorshop in the Amazon
cloud (AWS). Although Tutorshop has not been used to deliver non-CTAT tutors, this
would be a useful way in which the CTATarchitecture could be generalized. We have also
made it possible to embed example-tracing tutors in MOOC and e-learning platforms that
adhere to the SCORM and LTI e-learning interoperability standards, as many do. To this
end, the CTAT/Tutorshop platform now implements the provider/content side of SCORM
and LTI. As evidence of this capability, we have embedded CTAT tutors in Moodle (Rice
2011) and in two edX MOOCs (Aleven et al. 2015b). We have also achieved custom
integration with edX through edX’s XBlock API and with the Open Learning Initiative
(OLI)’s learning management system (http://oli.cmu.edu).

As part of our effort to support tutoring at scale, we havemoved the example-tracing tutor
engine (which takes care of the tutor’s inner loop) from the server to the client, a change of
direction since our 2009 IJAIED paper. Although there are a number of advantages to
having the tutor engine on the server, discussed in the 2009 paper, doing so complicates the
embedding of tutors in external e-learning platforms or learning management systems
(LMSs). With a server-side tutor engine, a tutor is not a fully self-contained learning object.
Further, with very large numbers of users, a server-based tutor engine could incur severe
server load. Therefore, we now support a variety of options for running the tutor engine on
the client, including a Java Web Start option, a Java applet option, and, most recently, a
JavaScript version of the example tracer (Aleven et al. 2015b). We expect the latter to
become the go-to option for example-tracing tutors in a variety of deployment options.

We see this work as an encouraging first step towards tutoring at scale (e.g., in
MOOCs; Aleven et al. 2015b; Cook et al. 2015; Kay et al. 2013), although work
remains to be done. For example, with the current versions of SCORM or LTI, the rich
analytics produced by the tutor cannot easily be sent to a learning management system.
This information is therefore not displayed in the grade book of the online course or
integrated in existing student or instructor dashboards, a lost opportunity to leverage the
advanced capabilities of ITS. Fortunately, newer versions of SCORM and LTI are
moving toward richer data exchange between a tutor and the LMS, so this limitation
may be addressed in the near future. Also, work remains to be done to make CTAT’s
learner model available within a MOOC, as well as adaptive task selection.

Support for Research

CTAT tutors, typically running out of the Tutorshop, have been used in many dozens of
scientific experiments to investigate questions regarding how tutors can most effective-
ly support learning or other desirable educational outcomes. CTAT and Tutorshop offer
some functionality that facilitates the use of tutors in such research. First, CTAT is fully
compatible with DataShop (Koedinger et al. 2010), a large, open repository for

232 Int J Artif Intell Educ (2016) 26:224–269

http://oli.cmu.edu/

educational technology data sets that supports offline analysis of tutor log data. All
CTAT tutors log in DataShop format, without any additional effort from authors.
DataShop supports many analyses geared towards data-driven refinement of the KC
models underlying tutors (see e.g., Aleven and Koedinger 2013). As of July, 2015,
DataShop contains 290 data sets generated by CTAT tutors, approximately 40 % of the
total number of data sets in DataShop, with roughly 48,000,000 transactions by a total
of 44,000 students, working for a total of 62,000 student hours. Second, Tutorshop
supports assigning students to experimental conditions (although not automatically at
this point in time) and recording experimental conditions in the log data. Finally, we are
completing a Log Replayer capability, which will make it possible to replay logs
through (typically) an extended version of the tutor that generated them, so as to write
new information in the logs. This replay will support new analyses of log data not
originally foreseen by the creators of the given tutor, as seems to be commonplace in
educational data mining (e.g., Aleven et al. 2006a; Harpstead et al. 2015).

Architecture

CTAT is conceived not just as a tool, but as a factored architecture for tutoring, with well-
defined components and interfaces between those components (Aleven et al. 2009a, b,
2015a, b). In particular, CTAT and the Tutorshop enforce a strict separation between
Btool^ and Btutor.^ Here Btool^ means the problem-solving interface or environment in
which the student solves problems; Btutor^ means the tutor backend, both the inner and
outer loop (Koedinger et al. 1999; Ritter and Koedinger 1996). In CTAT, the tool and
tutor communicate through a message protocol that derives from the work of Ritter and
Koedinger (1996) (http://ctat.pact.cs.cmu.edu/index.php?id=tool-tutor). This aspect of
the factored architecture has been very valuable. It has made it possible to mix-and-match
options for the tutor engine (example-tracing or model-tracing tutor) with options for the
tutor interface (Java, Flash/ActionScript, or HTML5/Javascript) or problem-solving
environment (e.g., simulators). Also, it has made it possible, critically, to keep up with
interface and web technology changes and has helped make it easier to extend the front-
end technology with new interface components. Finally, the tool/tutor separation has
made it easier to deploy tutors in a wide range of environments, as discussed above.

A second aspect of modularity in the CTAT/Tutorshop architecture is the separation
between inner loop (within-problem tutor guidance) and outer loop (between-problem
tutor guidance). The inner loop and outer loop communicate strictly through the student
model (Aleven et al. 2015a). That is, at the beginning of each problem, the outer loop
passes the learner model to the inner loop. As the student works on the problem, the
inner loop updates the learner model (displaying it as a skill meter, if the author so
chooses). At the end of the problem, it passes the updated student model back to the
outer loop, so it can be used for adaptive problem selection or stored in the TutorShop
database. This separation facilitates the plugging in of different options for student
modeling and task selection, an area where we are just beginning to gain experience.

We see a number of ways in which the CTATarchitecture could be generalized further,
so it can be more versatile and support greater interoperability. For example, the Behavior
Recorder has a range of functionality that supports cognitive task analysis and tutor
testing in a way that is not specific to example-tracing tutors. A generalized behavior
recorder API would make this tool available for use with other tutor types (Aleven et al.

Int J Artif Intell Educ (2016) 26:224–269 233

http://ctat.pact.cs.cmu.edu/index.php?id=tool-tutor

2015a). Likewise, the Tutorshop could be useful for other tutors. A promising direction is
further to make it possible to plug in different student models, different algorithms for
updating the student model, and different policies for task selection. Finally, additional
extensions for supporting research (e.g., A/B testing) would be useful as well.

ITS Authoring Tool Development Philosophy

In developing CTAT we took, and continue to take, a use-driven design approach. We
credit this approach with making CTAT useful and usable. The essence of this approach
is that we have made it a high priority to promote and support use of CTAT by others, to
learn from users’ experiences, and to make sure that what we learned helped shape the
tools. We have regularly solicited feature requests and feedback from users. When
planning for new releases of CTAT, we invariably prioritized features based on the
question: BWho is going to use it?^ If we could not identify specific users, the feature
would not make it into the release. We provide online documentation and tutorials
(http://ctat.pact.cmu.edu). Further, we have made efforts to build a user community, by
setting up an online user forum (http://groups.google.com/groups/ctat-users) and by
holding yearly summer schools where people can learn about ITS with hands-on work
in CTAT. We have also used the tools extensively ourselves to build tutors used in
classrooms, primarily in research projects (Aleven et al. 2009a; Forlizzi et al. 2014;
Long and Aleven 2013a, b; McLaren et al. 2008, 2011a, b, 2012, 2014, 2015a, b, 2016;
Olsen et al. 2014a, b; Rau et al. 2013, 2014, 2015a; Stampfer and Koedinger 2013;
Waalkens et al. 2013;Wylie et al. 2011). BEating our own dog food^ (i.e., using our own
tools for our own ITS research projects) has helped spot opportunities for improvement
and has driven development of a number of new CTAT features. We have always kept
the cost-effectiveness of authoring in mind. Before deciding to implement a new feature,
we typically ask: How often will this feature be used and how much time will it save
authors? Further, to support cost effective authoring, CTAT takes advantage of existing
tools, including Flash and EclipseWindowBuilder for building interfaces andMicrosoft
Excel in CTAT’s Mass Production process, described above.

Should Example-Tracing Tutors be Considered ITS?

In our 2009 paper (Aleven et al. 2009b), we argued that example-tracing tutors should be
viewed as ITS. This argument was based on VanLehn’s (2006, 2011) criterion that what
distinguishes ITSs from other forms of computer tutors is that they have an inner loop (i.e.,
provide step-level guidance to learners, rather than feedback only at the end of each
problem).1 We update and bolster this argument for two reasons: First, a recent chapter by
Pavlik et al. (2013) questioned whether example-tracing tutors should be viewed as
intelligent tutors, on the grounds that they might be similar to Bprogrammed instruction.^
Second, although VanLehn’s (2006) criterion has much going for it, we now more clearly

1 In a more recent framing, VanLehn (this issue) has generalized his conception of the inner and outer loop,
calling them step loop and task loop, respectively. VanLehn now views the inner and outer loop of an ITS as
instances of so-called Bregulative loops^ that repeatedly compare a student’s performance to a gold standard.
This generalization allows for including, for instance, certain types of computer-supported collaborative
learning (CSCL) and other forms of intelligent learning support. It does not affect our argument made here.

234 Int J Artif Intell Educ (2016) 26:224–269

http://ctat.pact.cmu.edu/
http://groups.google.com/groups/ctat-users

recognize the limitations of this criterion. The issue is important, because how we position
our systems vis-à-vis other kinds of learning technologies may influence public perception,
acceptance, and eventual widespread adoption of ITS.

Although experts do not agree about how to define ITS (Woolf 2009, p. 21), the crux
may be how adaptive to student needs and student differences (e.g., in knowledge or
motivation) the tutoring system is in ways that enhance student learning, motivation, or
other desirable outcomes. In defining adaptivity, we believe it is appropriate to look at
the system’s behavior and the effect that the system’s behavior has on the student
experience, in line with how Newell and Simon (1976) view intelligence:

By ‘general intelligent action’ we wish to indicate … that in any real situation
behavior appropriate to the ends of the system and adaptive to the demands of the
environment can occur …

A strength of VanLehn’s (2006, 2011) criterion (i.e., an ITS is a tutoring system that has
an inner loop) is that it emphasizes adaptive behavior as a hallmark of intelligence, in line
with Newell and Simon (1976). Also, it aligns with key empirical evidence, namely, that
systems with an inner loop tend to have a stronger positive effect on student learning than
systems without (VanLehn 2011). On the other hand, this criterion is not without its
shortcomings. Step-based guidance may not be very adaptive if the tutor can recognize
only one particular set of steps for each problem. Also, certain desirable forms of adaptivity
may not easily be viewed as step-level support, such as reacting to student affect or
adaptively selecting problems in the system’s outer loop. Furthermore, a number of systems
that have a legitimate claim to being adaptive and intelligent do not have a very elaborate
inner loop, for example, ASSISTments (Heffernan and Heffernan 2014) and Wayang
Outpost/Mathsprings (Arroyo et al. 2014). Instead they have other features that warrant
viewing them as ITS, such as being designed with a fundamental and sound understanding
of student learning and the specific difficulties that students face in the given task domain, or
that their outer loop is adaptive to student metacognition and affect (Arroyo et al. 2014).

Therefore, we offer an alternative definition (cf. Aleven 2015; Aleven et al. 2013,
forthcoming):

A learning environment is adaptive to the degree that:

a. Its design is grounded in a thorough empirical understanding of learners in the
given task domain;

b. it takes into account, in its pedagogical decision making, how individual learners
measure up along different psychological dimensions; and

c. it is appropriately interactive and responsive to learner actions.

Specific to the concerns of the field of AIED, the first part of this definition
emphasizes (implicitly) the use of cognitive task analysis and data mining to guide
tutor design and cyclical improvement of tutors (Aleven 2010; Aleven and Koedinger
2013; de Baker et al. 2007; Clark et al. 2008; Lovett 1998). The second part emphasizes
adaptive individualization across a host of learner variables both in the inner (or step)
loop and in the outer (or task) loop, consistent with Woolf’s (2009) emphasis on having
a student model and using it to adapt instruction. The third part of the definition
emphasizes interactivity, consistent with VanLehn’s inner loop or step loop.

Int J Artif Intell Educ (2016) 26:224–269 235

Example-tracing tutor technology supports the building of tutors that exhibit all three
factors that make up this definition. Regarding the first factor, example-tracing tutors vary in
the depth of cognitive task analysis and other forms of data analysis that underlies their
design. While the degree of cognitive task analysis depends ultimately on the efforts and
procedures of the designers and developers, we note that CTAT’s Behavior Recorder tool
supports this activity, for it permits designers to model and visualize a solution space and to
rapidly prototype different tutor behaviors (Aleven et al. 2015a). Furthermore, example-
tracing tutors are an offshoot of Cognitive Tutors, which have always been grounded in
cognitive task analysis and cognitive modeling. Therefore, example-tracing tutors can meet
the first requirement. They also meet the second factor: As mentioned, example-tracing
tutors and the Tutorshop support individualized problem selection based on Bayesian
Knowledge Tracing (Corbett and Anderson 1995; Anderson et al. 1989; Corbett et al.
2000; VanLehn 2011).

To see how example-tracing tutors address the third factor, we briefly review how they
can be adaptive in their inner loop. Example-tracing tutors support basic inner loop (or step
loop) functionality (VanLehn 2006) with next-step hints and correctness feedback on steps
and error feedbackmessages for common errors. Step-level feedback is strongly supported
in the empirical ITS and education literature as enhancing student learning (Arroyo et al.
2000; Kleij et al. 2015; McKendree 1990; VanLehn 2011). Beyond basic inner loop
functionality, example-tracing tutors can follow students within a problem with respect to
multiple strategies, regardless of which strategy the student decides to follow. They do so
by virtue of having multiple paths in their behavior graph (Waalkens et al. 2013) or by
virtue of using formulas to capture commonalities among solution paths. By contrast, the
simplest approaches for building interactive e-learning software (e.g., authoring questions
one at a time, independent of each other) do not capture dependencies among steps (i.e., do
not capture multiple paths). Capturing multiple solution paths also supports other adaptive
behaviors. For example, a multi-path example-tracing tutor has the ability to respond
differently to the same student input depending on context, a hallmark of adaptive,
intelligent behavior. That is, whether a certain student step is marked correct depends on
which path(s) the student is deemed to be on, based on the student’s prior steps in the
problem. Similarly, the tutor’s hints can be sensitive to what solution path the student is on,
with different hints being given for the same step, dependent on the student’s prior path
through the problem.When a student revisits a step she previously worked on but without
completing it, an example-tracing tutor may change the hint it gives for this step, given
more information about the student’s solution may be available the second time around
(i.e., upon revisiting the step). The context-sensitity of the tutor’s hint is a form of flexible,
adaptive behavior. It is also possible to create a tutor whose hints depend not only on the
solution strategy the student is following, but also on the steps within the given strategy the
student has completed already, as a way of making hints even more context sensitive. In
sum, many adaptive behaviors are possible in an example-tracing tutor’s inner loop. All
behaviors described above emerge from the basic example-tracing algorithm.

In spite of the many adaptive behaviors that example-tracing tutors can support, Pavlik et
al. (2013) question whether this type of tutor ought to be considered ITS. They view
example-tutors as analogues to Bprogrammed instruction^ or Bbranched instruction^ and
state: BPerhaps these systems [i.e., example-tracing tutors] do not qualify as ITS, considering
the student state space is small and that pedagogical options are few.̂ The analogy between
behavior graphs and branched instruction is problematic, however. Both types of graphs are

236 Int J Artif Intell Educ (2016) 26:224–269

used to provide instruction, but that is where the similarities end. Behavior graphs do not
represent instructional sequences or pedagogical decisions, as do the branches of branched
instruction. Rather, behavior graphs capture problem-solving processes and their variations
(Newell and Simon 1972). More broadly, we reject the notion that only tutoring systems
capable of handling elaborate solution spaces should be viewed as adaptive or intelligent.
(This would also rule out ASSISTments or Mathsprings, for example, whereas we argued
above that they have a number of features that support viewing them as ITS.) In principle,
even within a small solution space, many pedagogical decisions are possible, so there is
room for adaptivity to be effective. Perhaps more fundamentally, even a limited amount of
adaptivity within a small solution space might be just the right amount in order to support an
effective and efficient student experience. Pavlik et al. (2013) may look at the system’s
internal structures as a key criterion for intelligence or adaptivity, while overlooking the
many adaptive behaviors that behavior graphs enable.

We see a number of limitations in example-tracing tutors. First, example-tracing tutors
currently do not have features for responding adaptively to student self-regulation, meta-
cognition, or affect, although individual projects have added various forms of adaptive
support for these aspects, including machine-learned detectors for help avoidance and for
fast actions (Corbett, personal communication), simple support for self-explanation (Rau et
al. 2015a; Wylie et al. 2011), self-assessment (Long and Aleven 2013b; Roll et al. 2011),
and (with custom-programmed softwaremodifications), shared student/system control over
problem selection (Long and Aleven 2013b). Also, one project (AdaptErrEx) added an
external module for adaptively responding to student misconceptions in the outer loop
(Goguadze et al. 2011; McLaren et al. 2012). Other limitations discussed in our 2009
IJAIED paper (and still apropos) are that the example-tracing technology is not particularly
efficient when it comes to authoring simple interactive items (e.g., multiple-choice ques-
tions with feedback). Also, it is not geared toward supporting tutorial interactions in natural
language or toward building systems with large domain ontologies or that draw on large
stores of factual or conceptual knowledge. Also, CTAT provides no support for integrating
(without programming) animated pedagogical agents. Additionally, example-tracing tutors
have been proven only to a limited degree in open-ended domains, where each problem
tends to have its own structure (but see Ogan et al. 2009). However, an example-based
approach to authoring such as that supported by example-tracing tutors may be a good
option when problem solutions differ on a problem-by-problem basis. We look forward to
more work in this area. Finally, example-tracing tutors support tutoring only for problems
with a moderately branching solution space or problems for which the similarity among
different solution paths can be expressed using formulas - otherwise, the behavior graph
becomes unwieldy. As discussed below, this limitation has occassionally, but not frequent-
ly, been an obstacle in practice. We note further that in domains in which problems have
large solution spaces, the second type of tutors supported by CTAT, namely, rule-based
Cognitive Tutors, can be a good option (Aleven 2010; Aleven et al. 2006b).

Evidence of the Effectiveness of Example-Tracing Tutors

To consider whether example-tracing tutors are an effective ITS paradigm and to
illustrate the level of maturity that CTAT has reached, we look at example-tracing
tutors built with CTAT since our 2009 IJAIED paper (Aleven et al. 2009b). In that

Int J Artif Intell Educ (2016) 26:224–269 237

paper, we reported that example-tracing tutors had been used in 26 research studies in
real educational settings. The domains for which example-tracing tutors had been built
included mathematics (at the elementary, middle, and high-school levels), science
(chemistry, genetics), engineering (thermodynamics), language learning (Chinese,
French, and English as a Second Language), and learning of intercultural competence
(references provided in the original paper). Since 2009, a substantial number of new
tutors have been built with CTAT. We review 18 such tutors in this section, all of which
were used in real educational settings, most of them in research studies. For this review
we informally clustered these tutors based on key aspects of their pedagogy. We label
these clusters as problem-solving tutors, tutors that use worked examples or erroneous
examples, tutors that emphasize the use of interactive graphical representations, tutors
that use pedagogical approaches other than standard tutored problem solving, and (in a
singleton cluster), a tutor for language learning. We discuss each cluster, focusing on (a)
the degree to which the tutors could be built entirely Bwithin^ the tools, (b) use in real
educational settings, (c) evidence that students learned from the tutors, and (d) appli-
cability and limitations of example-tracing tutors. Screenshots of the 18 tutors are
shown in the Appendix.

Problem-Solving Tutors

A number of example-tracing tutors built with CTAT can be viewed as Btraditional^
problem-solving tutors, meaning they provide step-by-step guidance as students prac-
tice the solving of recurrent complex problems. The two most comprehensive such
tutors are Mathtutor and the Genetics Tutor. Mathtutor covers mathematics topics for
grades 6 through 8 in the American school system (https://mathtutor.web.cmu.edu)
(Aleven et al. 2009a). It is a re-implementation, as example-tracing tutors, of a set of
Cognitive Tutors for middle-school mathematics that were created in our lab prior to
CTAT (de Baker et al. 2007; Koedinger 2002; Koedinger and Terao 2002; Rittle-
Johnson and Koedinger 2005). Each of these tutors had seen multiple rounds of
classroom use and the curricula of which they were part had been shown to improve
student learning, compared to comparison curricula without tutoring software. The
Genetics Tutor supports problem-solving and reasoning tasks for high school and
college level genetics (Corbett et al. 2010). It has more than 25 units covering topics
in Mendelian Transmission, Pedigree Analysis, Gene Mapping, Population Genetics
and Genetic Pathways Analysis. Various tutor units have been evaluated in 15 colleges
and universities and in 4 high schools. In a total of 45 single-unit in-course evaluations,
pretest-to-posttest learning gains averaged about 18 percentage points (equivalent to
almost 2 letter grades) across topics at both the post-secondary and high school levels.
Like Mathtutor, the Genetics Tutor was originally implemented as a rule-based Cog-
nitive Tutor and later reimplemented as example-tracing tutor.

In addition to these two tutors, several tutors with smaller domain scopes have been
implemented that we also categorize as problem-solving tutors. Lynnette is a tutor for basic
equation solving (Long and Aleven 2013a, b; Waalkens et al. 2013). It was originally
implemented as an example-tracing tutor, and later re-implemented (also using CTAT) as a
rule-based Cognitive Tutor (Long and Aleven 2014), so as to be more flexible in recog-
nizing students’major and minor solution variations. In four classroom studies with a total
487 students in grades 6 through 8, the example-tracing version of Lynnette led to pre/post

238 Int J Artif Intell Educ (2016) 26:224–269

https://mathtutor.web.cmu.edu/

gains in basic equation solving skill with medium to large effect sizes (d= .69, d=1.65, and
d=1.17; in one experiment, the gains were not significant, due to a ceiling effect.

Our final example of a problem-solving tutor is the Tuning Tutor, an example-tracing
tutor developed by Carolyn Rosé for use in her course at Carnegie Mellon University
entitled BApplied Machine Learning.^ This tutor teaches students how to apply general
principles of avoiding overfitting in cross-validation to the case where parameters of a
model need to be tuned. It was used during two semesters and was well received by
students, many of whom completed more than the required number of tutor problems.
Informally, students expressed their appreciation for the opportunity to practice with
feedback and suggested that other concepts in the course include CTAT exercises as
well. The incidence of students attending office hours during the unit on tuning, which
used to be the most difficult unit in the second half of the course, dropped to nearly
zero. These examples confirm that example-tracing tutors can effectively support
learning at a variety of educational levels, including advanced college courses.

The Mathtutor, Genetics Tutor, and Lynnette projects help us better understand the
practical import of the fact that example-tracing tutors can handle only problem types
with a limited number of structurally dissimilar solution paths. As described, both
Mathtutor (Aleven et al. 2009a) and the Genetics Tutor (Corbett et al. 2010) were
originally developed as Cognitive Tutors (i.e., having a rule-based cognitive model)
(Aleven 2010) and later re-implemented as example-tracing tutors. In both instances,
the motivation for doing so was to make these tutors available over the Internet. (At the
time, CTAT did not support web-based delivery of rule-based Cognitive Tutors. It does
now, with a server-side model-tracing engine.) These example-tracing tutors have been
used extensively in schools and (in the case of the Genetics Tutor) in colleges, evidence
that they are bona fide, real-world tutors. In both projects, the problem types, tutor
interfaces, and tutoring behavior were kept largely the same when the tutors were re-
implemented as example-tracing tutors. In both projects, the authors were able to
capture, as example-tracing tutors, a large proportion of the problem sets of the original
tutors, without simplifying their solution spaces or tutoring behavior (roughly 95 % of
the problem sets in both projects). On the other hand, in both projects, there was a small
residue of problem types whose solution space was too large to be feasibly implement-
ed as example-tracing tutors (namely, a unit on abductive problem solving in genetics
and units on equation solving in middle-school mathematics). This finding was con-
firmed in the Lynnette project, in which a tutor for basic equation solving initially
implemented as an example-tracing tutor (Long and Aleven 2013a, b; Waalkens et al.
2013) was re-implemented as a rule-based Cognitive Tutor (Long and Aleven 2014), in
spite of the example-tracing tutor’s proven effectiveness in multiple classroom studies
(see above). The purpose of the reimplementation was to make it easier to create new
problem types for the tutor but also to have greater flexibility in recognizing solution
variations within each problem. These three projects thus provide key evidence that
example-tracing tutors are often an excellent option for tutor development. The re-
quirement of having a moderately-branching solution space turned out to sometimes be
an obstacle, but only infrequently so. This finding is interesting especially if one
considers that the problem types that were transitioned from rule-based Cognitive
Tutors to example-tracing tutors were not created or selected with example-tracing
tutors in mind. Evidently, in many domains, good practice problems need not have
widely branching solution spaces.

Int J Artif Intell Educ (2016) 26:224–269 239

Tutors that Use Worked-Out Examples or Erroneous Examples

Several CTAT-built tutors have been created for research that investigates benefits of
worked examples and erroneous examples in ITS, a topic that has seen increased
interest since 2009 (e.g., Salden et al. 2010b; McLaren et al. 2015a).

The Stoichiometry Tutor (McLaren et al. 2014, 2015b, 2016) was extended so that
students watch the step-by-step narrated playback of worked and erroneous examples in
the tutor’s problem-solving interface. They are prompted to explain the solutions, in the case
of standard worked examples, or fix the errors, in the case of erroneous examples. In two
classroom studies (McLaren et al. 2014, 2015b), involving 295 10th and 11th grade students
across the studies, erroneous examples and worked examples yielded the same learning
outcomes as tutored and untutored problems but were more efficient in terms of time (d
ranging between 1.76 and 3.31) and mental effort (d ranging between 0.89 and 1.04)
(McLaren et al. 2014). The AdaptErrEx project used erroneous examples to help students
learn decimals. Working with this tutor, students find, explain, and fix errors in decimal
problems. In two studies, one with 208 (Adams et al. 2014) and another with 390 students
(McLaren et al. 2015a), students who worked with erroneous examples performed signif-
icantly better on a delayed test (d=.62 and d=.33, respectively) than students in a tutored
problem-solving condition with explanation steps. Building on this work and on the
example-tracing technology, McLaren and colleagues created a suite of educational games,
Decimal Point, that use erroneous examples as the core instructional technique (Forlizzi et al.
2014). Although a considerable amount of custom ActionScript programming was needed,
CTAT provided a valuable foundation. As a final project that employed worked examples in
an example-tracing tutor, the Proportional Reasoning Tutor (Earnshaw 2014) was created
and used in a classroom study with 143 middle-school students that examined effects of
worked examples and tutored problems. Learners in the worked example condition took less
time and scored higher on the post-test than learners in the two other conditions.

With more and more studies showing that worked examples enhance learning with
an ITS or make it more efficient, we expect to see worked examples become a staple of
ITS, combined with self-explanation prompts. We see a need for more research that
reconciles the findings of studies focused on worked examples in the ITS literature with
those in other literatures (e.g., Van Gog and Rummel 2010; Renkl 2013). For example,
it would be useful to test whether the typical expertise reversal effect (studying
examples is more effective early on, problem solving is more effective later on)
(Kalyuga 2007; Kalyuga et al. 2003) occurs in the context of ITS.

As the projects reviewed above illustrate, worked-out examples or erroneous examples
can often (as in the Proportional Reasoning Tutor) be authored entirely within CTAT (i.e.,
without programming). The same can be said about prompts for self-explanation, which
often accompanyworked examples (Booth et al. 2013;McLaren et al. 2014;McLaren et al.
2015a, b; Rau et al. 2015a; see also Conati and Vanlehn 2000; Renkl 2013). At other times,
tool extensions were needed to support examples (e.g., the Stoichiometry Tutor and
AdaptErrEx). Regarding how examples and problems can be sequenced, as mentioned,
CTAT now supports the gradual backward fading of worked examples, shown to be an
effective method of transitioning fromworked examples to problems (Atkinson et al. 2003;
Salden et al. 2010a). This functionality is used in all problem sets ofMathtutor (Aleven et
al. 2009a). As an alternative strategy, an author could decide to interleave worked-out
examples and fully open problems (e.g., Paas andVanMerriënboer 1994), which she could

240 Int J Artif Intell Educ (2016) 26:224–269

do using the standard way of ordering problems within a problem set in the Tutorshop. A
third strategy is fixed or adaptive fading of example steps at the knowledge component
level, which was shown to be effective in one (non-CTAT) project (Salden et al. 2010a).
CTAT provides building blocks for tutor authors to implement adaptive example fading in
this manner, although we do not know of any CTAT tutors using this capability.

Tutors with Interactive Graphical Representations

Since 2009, a number of example-tracing tutors have been created with CTAT that feature
the use of interactive graphical representations of learningmaterials. This work shows that
interactive graphical representations can be a key way of leveraging ITS technology.

For some of these projects, special-purpose graphical interface components were
developed (which required programming). For example, the Fractions Tutor (https://
fractions.cs.cmu.edu) focuses on conceptual learning with multiple, interactive graphical
representations including number lines, fractions circles, and rectangles (Rau et al. 2013,
2014, 2015a). This tutor was used in five classroom studies with over 3000 students. In
the last study, learning gains, up from the pre-test, were d= .40 for the immediate post-test
and d= .60 for a delayed post-test (Rau et al. 2012). The Fractions Tutor project illustrates
that ITS, and example-tracing tutors specifically, can be effective with elementary school
students. The only other ITS work we know of at the elementary school level is a set of
studies by Stankov et al. (2007). To build the Fractions Tutor, special interface compo-
nents for the interactive graphical representations of fractions (i.e., an interactive number
line, circle, and rectangle) were developed and added to CTAT’s component class
hierarchy. They became part of the standard CTAT release package and were used in
other tutors. For example, in a different project, also dealing with elementary school
fractions learning (Stampfer and Koedinger 2013;Wiese and Koedinger 2015), they were
used to implement, entirely within the tools, an instructional approach called grounded
feedback (Mathan and Koedinger 2005; Nathan 1998).

Another project in which new interface components were created isChem Tutor (Rau et
al. 2015b). This tutor features domain-specific interactive graphical representations, such
as Lewis structures, Bohr models, and energy diagrams. Students receive step-by-step
guidance for planning and constructing representations and are prompted to self-explain
differences between representations so as to reflect on the limitations of each. New
interface components for these interactive representations were built first. Chem Tutor
led to large learning gains in a field study with 74 undergraduate students enrolled in an
introductory course for sciencemajors (d=1.44) (Rau et al. 2015b) and in a lab experiment
with 117 undergraduates (d= .78) (Rau and Wu 2015). Chem Tutor has been used as a
research platform to investigate support for representational competencies (Rau and Wu
2015), effects of students’ spatial abilities on their interactions with graphical representa-
tions (Rau 2015), and visual attention behaviors (Peterson et al. 2015; Rau et al. 2015b).

Some projects built interactive graphical representations using standard CTAT inter-
face components, bypassing the need to first create new custom interface components;
these include the Genetics Tutor (discussed above) and the RedBlackTree Tutor. The
latter is an example-tracing tutor that aims to help students in a college level introductory
data structures course understand (i.e., Bhand simulate^) a key algorithm for red-black
trees (Liew and Xhakaj 2015; Xhakaj 2015; Xhakaj and Liew 2015), a data structure
with many applications (e.g., Weiss 2010). Interactive red-black tree structures in the

Int J Artif Intell Educ (2016) 26:224–269 241

https://fractions.cs.cmu.edu/
https://fractions.cs.cmu.edu/

tutor interface were built out of standard CTAT components such as text boxes, radio
buttons and drop-down components, combined with standard Flash elements and a
small amount of customActionScript. In two small evaluation studies (Liew and Xhakaj
2015; Xhakaj and Liew 2015; Xhakaj 2015, approximately one hour of work with the
RedBlackTree Tutor led to large learning gains (d=1.66 and d=3.06, respectively).

Thus, CTAT offers various ways of supporting interactive graphical representations.
Sometimes (as in theGrounded Feedback Tutor), CTATalready offers an interactive interface
component for the given representation, so the tutor can be built without programming. At
other times, a new interactive graphical representation can be assembled from standard
CTAT-supported interface components (as in theGenetics Tutor), in some cases with a small
amount of custom ActonScript (as in the RedBlackTree Tutor). Sometimes, when moving
into a new domain, it is necessary to create new interactive interface components for the given
graphical representations (e.g.,Mathtutor, the Fractions Tutor, and Chem Tutor), which can
then become part of CTAT. This experience illustrates that it is important that an ITS
authoring tool (even one for non-programmers) is Bopen^ so that it is easy to extend its
collection of interface components and to extend what tutors built with the tool can do.

Tutors that Support Other Pedagogical Approaches

A number of example-tracing tutors have been built that use pedagogical approaches
other than tutored problem solving: educational games (example discussed above),
collaborative learning, learning with an external problem-solving environment, activ-
ities that target sense making and fluency building, and guided invention activities.

CTAT’s example-tracing tutor technology has been extended so that it now supports
the authoring of tutors with simple support for collaborative learning (Olsen et al.
2014b), similar to earlier work done with constraint-based tutors (Baghaei et al. 2007).
Using CTAT, an author can build tutor activities that combine tutored problem solving
with embedded simple collaboration scripts. In these activities, networked small teams
of students work synchronously on tutor problems. The students can have a shared but
– if the author so chooses – differentiated view of a joint problem and can have
different actions available, so collaborating students can have different roles. Synchro-
nized tutor engines provide tutoring for each student. This form of collaboration
support is quite flexible, although it has a number of limitations. For example, it is
not straightforward to provide feedback on students’ dialogue (e.g., Adamson et al.
2014) or on how students are collaborating (e.g., Rummel et al. under review; Walker et
al. 2014). Further, collaboration scripts have to be built from low-level building blocks.

CTAT’s collaborative features were used to author collaboration scripts that support
proven ways of scripting collaboration such as roles, cognitive group awareness (Janssen
and Bodemer 2013), and individual accountability (Slavin 1996). In a pull-out study
conducted in schools with 56 students, these tutors were shown to help elementary students
learn collaboratively (Olsen et al. 2014a), with gains no different from equivalent tutors used
individually. In a second study, a classroom study with 189 participating students, there
again were no differences in learning gains between students working individually and
collaboratively, but students working collaboratively spent less time on the tutor (Olsen et al.
under review). This line of work may help as a bridge between ITS and research in
Computer-Supported Collaborative Learning (CSCL) (see also Baghaei et al. 2007;
Kumar andKim 2014; Rummel et al. under review; VanLehn this issue;Walker et al. 2014).

242 Int J Artif Intell Educ (2016) 26:224–269

CTAT has also been used to provide tutoring within external problem-solving envi-
ronments including simulators for thermodynamics and chemistry (Aleven et al. 2006c;
Borek et al. 2009). In a new project byMcLaren and colleagues embeds a CTATexample-
tracing tutor within Google Sheets. This tutor guides college students in business model-
ing problems, represented on spreadsheets. This work builds on work on plug-in tutoring
agents that pre-dates CTAT (Koedinger et al. 1999; Mathan and Koedinger 2005; Ritter
and Koedinger 1996). Hooking up an external problem-solving environment is facilitated
by CTAT’s strict separation between interface and tutor functionality (http://ctat.pact.cs.
cmu.edu/index.php?id=tool-tutor). This notion is also being addressed in the xPST
authoring tools project (Blessing et al. 2009a, b; Kodavali et al. 2010).

A new project with the Fractions Tutor investigates whether an ITS can be made more
effective by adaptively targeting a broader range of learning mechanisms than ITS
typically do. The work is grounded in the Knowledge-Learning-Instruction (KLI) frame-
work (Koedinger et al. 2012), which links cognitive theory and instructional design. The
tutor aims to support three key classes of learning mechanisms identified by KLI: verbal
sense-making (SM), induction and refinement (IR), and fluency-building (F) processes.
SM activities in the Fractions Tutor include instructional videos that explain fractions
topics, interleaved with brief problem-solving exercises and opportunities to self-explain.
IR activities support tutored problem solving, as typically found in ITS. F activities
emphasize procedural practice with design features that may encourage students to work
more quickly (e.g., bigger problem steps, short hints, and on-screen timers). In a class-
room study with 1068 fourth and fifth grade students across 12 schools, the tutor led to
significant pre- to post-test learning gains (d= .47) (Doroudi et al. 2015); students who did
relatively more fluency-building activities learned more, suggesting (without definitively
proving) that extending the range of learningmechanisms can be effective. Ongoing work
uses machine learning techniques to create policies for adaptive activity selection.

CTAT has also been used to implement tutors for guided invention activities, in which
the goal is for students to develop a quantitative method that captures a mathematical or
physics concept, guided by carefully designed sets of contrasting examples. Prior research
shows that these kinds of activities prepare students well to learn and transfer from a more
traditional lesson (Schwartz andMartin 2004; Schwartz et al. 2011). Over the years, three
different tutors for guided invention activities have been built with CTAT. The first one, by
Roll et al. (2010) relied on rules and constraints (i.e., was not an example tracing tutor). A
second tutor was an example-tracing tutor that provided domain-general guidance during
invention activities (Holmes et al. 2014). In an evaluation study, in which 87 undergrad-
uate students in a first-year physics lab course at the University of British Columbia used
the system for two activities, roughly 30 min each (Holmes et al. 2014), domain-general
guidance during invention activities enhanced students’ conceptual understanding. In
addition, the systemwas used as part of the regular physics instruction at the University of
British Columbia until last year. A third tutor for invention activities, for middle-school
physics, is currently under development. It builds on example-tracing tutors, although
with substantial custom programming (Chase et al. 2015a, b).

A Tutor for Language Learning

The remaining cluster comprises a single tutor, the Article Tutor, an example-tracing
tutor that teaches students the English article system (when to use a, an, the, or no

Int J Artif Intell Educ (2016) 26:224–269 243

http://ctat.pact.cs.cmu.edu/index.php?id=tool-tutor
http://ctat.pact.cs.cmu.edu/index.php?id=tool-tutor

article). Other tutors for language learning have been built with CTAT as well (e.g.,
Guan et al. 2011; Liu et al. 2011; Ogan et al. 2009). The Article Tutor was built to be
part of a course for English as a Second Language (ESL). It was used in research to
investigate whether the use of self-explanation can be effective as a learning strategy for
ESL. In total, six tutor versions were built, including an adaptive tutor that prompted
students to self-explain only if they got the question wrong. This form of adaptivity
could be authored entirely within CTAT’s non-programmer tutor authoring paradigm.
In four classroom studies (390 students total) all conditions learned from the tutor but
the practice-only (no self-explanation) condition consistently was the more efficient
form of instruction (Wylie et al. 2009, 2010a, b, 2011). The work refines the conditions
under which self-explanation is understood to be effective (e.g., Koedinger et al. 2012).

Discussion and Conclusions

The main contributions highlighted in our IJAIED 2009 paper were: First, the CTAT
project pioneered a non-programmer paradigm for ITS authoring that involves (a)
generalized examples of problem-solving behavior as the tutor’s representation of
domain knowledge, (b) tools for creating, without programming, tutors that use these
generalized examples to provide tutoring, and (c) an algorithm for flexibly using
generalized examples to interpret student behavior and provide step-based tutoring. A
second intellectual contribution claimed at the time was a demonstration, across a range
of tutor research projects, that this paradigm can be widely useful and effective. A third
contribution was evidence of substantial cost savings: Building example-tracing tutors
was shown to be 4–8 times as cost-effective, compared to estimates in prior literature.

We see six novel scientific contributions of our project since 2009. First, we update
and bolster our argument that example-tracing tutors should be viewed as first-class
citizens in the world of ITS. We now focus on adaptive behavior as a hallmark of
intelligence, following Newell and Simon (1976). We provide a definition for adaptiv-
ity based on three factors, (cf. Aleven 2015; Aleven et al. 2013, forthcoming) and
highlight many elements of adaptivity in the behavior of example-tracing tutors.

Second, we provide additional evidence that example-tracing tutors are an effective
and mature paradigm for developing intelligent tutors. We describe 18 example-tracing
tutors built since 2009 and used in real educational settings, many with statistically
significant pre/post learning gains. Most of these tutors were for STEM domains
(science, technology, engineering, and mathematics), but we also see tutors for business
modeling and language learning. The tutors were used by students ranging from late
elementary school to university graduate students. As evidence of widespread use,
CTAT-built tutors were used by 44,000 students and account for 40 % of the data sets in
DataShop. This work thus supports the notion that a non-programmer approach to ITS
authoring can yield effective tutors. It also illustrates that CTAT has reached a state of
maturity in which tutors built with CTAT routinely withstand the rigors of classroom
use and even use within MOOCs.

Third, the 18 reviewed example-tracing tutors illustrate a range of pedagogical
approaches, including (standard) tutored problem solving, the use of worked-out
and erroneous examples, interactive graphical representations, and collaborative
learning. CTAT supports these features to a substantial degree; however, some

244 Int J Artif Intell Educ (2016) 26:224–269

amount of programming is sometimes necessary. Thus, we see that an ITS
authoring tool, in the hands of creative authors, can be used in unanticipated
ways. We also see that an ITS authoring environment, even one that supports a
non-programmer approach to authoring, should be easily extensible and accom-
modate custom programming.

Fourth, the strengths and limitations of example-tracing tutors are now better
understood. In particular, we better understand the extent to which it is limiting that
example-tracing tutors support only problems that have no more than a moderately-
branching solution space (unless many branches are isomorphic so that an author can
collapse them into a small number of branches using formulas). The experience across
a range of tutor development projects suggests that occasionally this limitation pre-
cludes use of the example-tracing paradigm, but more frequently, example-tracing
tutors are a viable approach. Other limitations are that adaptivity in response to affect,
metacognition, and motivation is not currently supported and that the number of
example tracing tutors that have been demonstrated in domains outside of STEM
domains remains relatively small.

Fifth, we have learned how an ITS architecture can be factored so it supports the
flexible re-use of tutor components. First, the notion of separating tool and tutor pre-
dates CTAT (Ritter and Koedinger 1996), but CTAT demonstrates some advantages of
it that have not been demonstrated before. Most importantly, the changes in web
technologies that forced us twice to revamp our tutor front-end technology would have
spelled doom for CTAT had it not been for the strict tool/tutor separation. The tool/tutor
separation has also made it possible to mix-and-match tutor engines and interface
technology and makes it easier to extend the tutor interface by creating new compo-
nents (rather than project-specific interfaces). We recommend this separation for any
ITS project. The second key way of factoring is to separate inner loop and outer loop,
with the student model as the sole means of communication between the two loops.
This separation has proven to be useful (e.g., it has been relatively easy to plug in an
alternative student model and outer loop). It will be interesting to see if this separation
holds up when we extend the range of student models and task selection policies. Sixth
and finally, we have created ways of embedding CTAT tutors in a range of e-learning
environments. We continue to work on extending the range of environments in which
these tutors can be embedded. We also plan to extend the range of advanced tutoring
functionality (including learning analytics and student modeling) that can be made
available to these environments.

We see interesting days ahead for ITS authoring tools. Our ongoing work focuses on
generalizing CTAT and supporting tutoring at scale. For ITS technology to spread, it is
critical that authoring tools not only support cost-effective authoring of sophisticated
tutor behaviors, without programming. Also, it is important that tutors interface with
popular e-learning and MOOC environments across the range of popular client
platforms.

Acknowledgments We thank the anonymous reviewers for their many insightful and helpful comments.
The research reported in this article was supported by IES Awards Nos. R305A120734, R305A080093, and
R305A130215, NSFAwards Nos. DRL-0910010, IIS-1361062, SBE-0836012 and SBE-0354420, and ONR
Award Nos. N000140310220, N000140310220, and N000140210443, as well as an award by the Grable
Foundation. These contributions are gratefully acknowledged. Any opinions expressed in this article represent
the views of the authors, not necessarily the funding agencies’ views.

Int J Artif Intell Educ (2016) 26:224–269 245

Appendix: 18 Example-Tracing Tutors

We provide screenshots of the 18 example-tracing tutors built since 2009 that are
discussed in the body of the document.

Mathtutor (Aleven et al. 2009a) is a comprehensive web-based tutoring system for mathematics in grades 6
through 8.

Mathtutor

246 Int J Artif Intell Educ (2016) 26:224–269

The Genetics Tutor (Corbett et al. 2010) covers a wide range of problem-solving activities in high-school and
college-level genetics

Genetics Tutor

Int J Artif Intell Educ (2016) 26:224–269 247

Lynnette is a tutor for basic equation solving for grades 6, 7, and 8, was originally implemented as an example-
tracing version (top) (Long and Aleven 2013a, b; Waalkens et al. 2013), and was later re-implemented, also
with CTAT, as a rule-based Cognitive Tutor (bottom) (Long and Aleven 2014)

Lynnette – Basic Equation Solving

248 Int J Artif Intell Educ (2016) 26:224–269

The Tuning Tutor helps graduate students and advanced undergraduate students learn to use cross validation to
avoid overfitting when tuning model parameters. It was used at Carnegie Mellon University in a course for
graduate students and advanced undergrads called “Applied Machine Learning” by Carolyn Rosé

The Tuning Tutor – Parameter Fitting in Machine Learning

Int J Artif Intell Educ (2016) 26:224–269 249

The Stoichiometry Tutor (McLaren et al. 2014, 2015b, 2016) supports the narrated replay of example
solutions. As the steps of the problem are replayed, a flashing yellow box draws the student s attention to
the next step of the worked example (top). After the worked example plays back, the student is prompted to fill
out the reasons for every step, and then their solution is evaluated (i.e., delayed feedback; bottom).

Stoichiometry Tutor

250 Int J Artif Intell Educ (2016) 26:224–269

AdaptErrEx (Adams et al., 2014; McLaren et al. 2015) is an example-tracing tutor for learning decimals (part
of 6th-grade mathematics) that has students identify, correct, and explain incorrect steps in worked-out
problem solutions

AdaptErrEx – Erroneous Examples

Int J Artif Intell Educ (2016) 26:224–269 251

Decimal Point (Forlizzi et al., 2014), built using CTAT as foundation, supports game-based learning with
erroneous examples to help middle-school students learn decimals

Decimal Point: Educational Games for Learning Decimals

252 Int J Artif Intell Educ (2016) 26:224–269

The Proportional Reasoning Tutor (Earnshaw, 2014) supports worked examples and tutored problems in
middle-school mathematics

Proportional Reasoning Tutor

Int J Artif Intell Educ (2016) 26:224–269 253

The Fractions Tutor (Rau et al. 2013, 2014, 2015a) supports conceptual learning of fractions in grades 4 and 5
using multiple interactive graphical representations of fractions

Fractions Tutor

254 Int J Artif Intell Educ (2016) 26:224–269

Grounded Feedback Tutor (Stampfer & Koedinger, 2013; Wiese & Koedinger, 2015) for elementary school
fractions learning uses a graphical representation to provide feedback on students' solutions, instead of
providing explicit correctness feedback. As the student enters a solution using numeric symbols, the fraction
bars (except those representing the given fractions) are updated by the system to reflect the student input

Grounded Feedback Tutor

Int J Artif Intell Educ (2016) 26:224–269 255

In Chem Tutor (Rau 2015; Rau and Wu 2015; Rau et al. 2015a, b), designed for introductory undergraduate
chemistry learning, students plan and construct a graphical representation (Lewis structures), with feedback
from the system

Given one representation, students construct a different kind of graphical representation of the same atom and
are prompted to reflect on the differences and limitations of the two visual representations

Chem Tutor

256 Int J Artif Intell Educ (2016) 26:224–269

The RedBlackTree Tutor (Liew & Xhakaj, 2015; Xhakaj, 2015; Xhakaj & Liew, 2015) helps students learn an
algorithm for building red-black trees, a common data structure in computer science

RedBlackTree Tutor

Int J Artif Intell Educ (2016) 26:224–269 257

Elementary school students (grades 4 and 5) use the Collaborative Fractions Tutorwith a partner; each partner
has a different role, with a different view of the problem and different available actions (Olsen et al. 2014a, b,
under review)

Tutor for collaborative learning of fractions

258 Int J Artif Intell Educ (2016) 26:224–269

Tutor for Business Modeling with Google Sheets

An example-tracing tutor build by McLaren and colleagues, embedded within Google Sheets, provides
guidance with business modeling problems

Int J Artif Intell Educ (2016) 26:224–269 259

FractionsTutorversionthatsupportsSenseMaking,Induction/Refinement,andFluencyBuilding

A new version of the Fractions Tutor (Doroudi et al., 2015) has activities targeting each of the three main
learning mechanisms identified in the Knowledge-Learning-Instruction framework (KLI; Koedinger et al.,
2012) induction and refinement (IR) (top), sense-making (SM) (middle), and fluency (F) (bottom)

A new version of the Fractions
Tutor (Doroudi et al., 2015) has
activities targeting each of the
three main learning mechanisms
identified in the Knowledge-
Learning-Instruction framework
(KLI; Koedinger et al., 2012)
induction and refinement (IR)
(top), sense-making (SM)
(middle), and fluency (F) (bottom)

260 Int J Artif Intell Educ (2016) 26:224–269

A tutor by Roll et al. (2010) provides guidance during invention activities

CTAT was used to create a tutor for guided invention activities with a Wizard of Oz interface (Chase et al.,
2015); CTAT s collaborative tutoring facility enabled separate roles and capabilities for student and wizard.

Tutors for Guided Invention activities

Int J Artif Intell Educ (2016) 26:224–269 261

References

Adams, D. M., McLaren, B. M., Durkin, K., Mayer, R. E., Rittle-Johnson, B., Isotani, S., & Velsen, M. V.
(2014). Using erroneous examples to improve mathematics learning with a web-based tutoring system.
Computers in Human Behavior, 36, 401–411. doi:10.1016/j.chb.2014.03.053.

Adamson, D., Dyke, G., Jang, H., & Rosé, C. P. (2014). Towards an agile approach to adapting dynamic
collaboration support to student needs. International Journal of Artificial Intelligence in Education, 24(1),
92–124. doi:10.1007/s40593-013-0012-6.

Aleven, V. (2010). Rule-Based cognitive modeling for intelligent tutoring systems. In R. Nkambou, J.
Bourdeau, & R. Mizoguchi (Eds.), Studies in computational intelligence (Advances in intelligent tutoring
systems, Vol. 308, pp. 33–62). Berlin: Springer. doi:10.1007/978-3-642-14363-2_3.

Aleven, V. (2015). A is for Adaptivity, but what is Adaptivity? Re-defining the field of AIED. In K. Porayska-
Pomsta, G. McCalla, & B. du Boulay (Eds.). Proceedings of the Workshops at the 17th International
Conference on Artificial Intelligence in Education AIED 2015 (Vol. 4, Workshop on Les Contes du
Mariage: Should AI stay married to Ed? A workshop examining the current and future identity of the
AIED field). Available from: http://adenu.ia.uned.es/publications/aied2015ws/procs/v2/.

Aleven, V., & Koedinger, K. R. (2013). Knowledge component approaches to learner modeling. In R.
Sottilare, A. Graesser, X. Hu, & H. Holden (Eds.), Design recommendations for adaptive intelli-
gent tutoring systems (Learner modeling, Vol. I, pp. 165–182). Orlando: US Army Research
Laboratory.

Aleven, V., McLaren, B. M., Roll, I., & Koedinger, K. R. (2006a). Toward meta-cognitive tutoring: A model
of help seeking with a cognitive tutor. International Journal of Artificial Intelligence in Education, 16,
101–128.

Aleven, V., McLaren, B. M., Sewall, J., & Koedinger, K. R. (2006b). The Cognitive Tutor Authoring Tools
(CTAT): Preliminary evaluation of efficiency gains. In M. Ikeda, K. D. Ashley, & T. W. Chan (Eds.),

The Article Tutor

Version of the Article Tutor (Wylie et al. 2011) that supports self-explanation

262 Int J Artif Intell Educ (2016) 26:224–269

http://dx.doi.org/10.1016/j.chb.2014.03.053
http://dx.doi.org/10.1007/s40593-013-0012-6
http://dx.doi.org/10.1007/978-3-642-14363-2_3
http://adenu.ia.uned.es/publications/aied2015ws/procs/v2/

Proceedings of the 8th International Conference on Intelligent Tutoring Systems, ITS 2006 (pp. 61–70).
Berlin: Springer. doi:10.1007/11774303_7.

Aleven, V., Sewall, J., McLaren, B. M., & Koedinger, K. R. (2006c). Rapid authoring of intelligent tutors for
real-world and experimental use. In Kinshuk, R. Koper, P. Kommers, P. Kirschner, D. G. Sampson, & W.
Didderen (Eds.), Proceedings of the 6th IEEE International Conference on Advanced Learning
Technologies, ICALT 2006 (pp. 847–851). Los Alamitos: IEEE Computer Society.

Aleven, V., McLaren, B. M., & Sewall, J. (2009a). Scaling up programming by demonstration for intelligent
tutoring systems development: an open-access web site for middle school mathematics learning. IEEE
Transactions on Learning Technologies, 2(2), 64–78.

Aleven, V., McLaren, B. M., Sewall, J., & Koedinger, K. R. (2009b). A new paradigm for intelligent tutoring
systems: Example-tracing tutors. International Journal of Artificial Intelligence in Education, 19(2), 105–154.

Aleven, V., Beal, C. R., & Graesser, A. C. (2013). Introduction to the special issue on advanced learning
technologies. Journal of Educational Psychology, 105(4), 929. doi:10.1037/a0034155.

Aleven, V., Sewall, J., Popescu, O., van Velsen, M., Demi, S., & Leber, B. (2015a). Reflecting on twelve years
of ITS authoring tools research with CTAT. In R. Sottilare, A. Graesser, X. Hu, & K. Brawner (Eds.),
Design recommendations for adaptive intelligent tutoring systems (Authoring Tools, Vol. III, pp. 263–
283). Orlando: US Army Research Laboratory.

Aleven, V., Sewall, J., Popescu, O., Xhakaj, F., Chand, D., Baker, R. S., & Gasevic, D. (2015b). The
beginning of a beautiful friendship? Intelligent tutoring systems and MOOCs. In C. Conati, N.
Heffernan, A. Mitrovic, & M. F. Verdejo (Eds.), Proceedings of the 17th International Conference on
AI in Education, AIED 2015 (pp. 525–528). New York: Springer. doi:10.1007/978-3-319-19773-9_53.

Aleven, V., McLaughlin, E. A., Glenn, R. A., & Koedinger, K. R. (forthcoming). Instruction based on adaptive
learning technologies. In R. E. Mayer & P. Alexander (Eds.), Handbook of research on learning and
instruction. Routledge.

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the LISP tutor. Cognitive
Science, 13(4), 467–505. doi:10.1016/0364-0213(89)90021-9.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned.
The Journal of the Learning Sciences, 4(2), 167–207.

Arroyo, I., Beck, J., Woolf, B. P., Beal, C. R., & Schultz, K. (2000). Macroadapting animal watch to gender
and cognitive differences with respect to hint interactivity and symbolism. In G. Gauthier, C. Frasson, &
K. VanLehn (Eds.), Proceedings of the 5th International Conference on Intelligent Tutoring Systems, ITS
2000 (pp. 574–583). Berlin: Springer Verlag.

Arroyo, I., Woolf, B. P., Burleson, W., Muldner, K., Rai, D., & Tai, M. (2014). A multimedia adaptive tutoring
system for mathematics that addresses cognition, metacognition and affect. International Journal of
Artificial Intelligence in Education, 24(4), 387–426. doi:10.1007/s40593-014-0023-y.

Atkinson, R. K., Renkl, A., & Merrill, M. M. (2003). Transitioning from studying examples to solving
problems: Effects of self-explanation prompts and fading worked-out steps. Journal of Educational
Psychology, 95(4), 774–783.

Baghaei, N., Mitrovic, A., & Irwin, W. (2007). Supporting collaborative learning and problem-solving in a
constraint-based CSCL environment for UML class diagrams. International Journal of Computer-
Supported Collaborative Learning, 2(2–3), 159–190. doi:10.1007/s11412-007-9018-0.

Blessing, S. B., & Gilbert, S. (2008). Evaluating an authoring tool for model-tracing intelligent tutoring
systems. In B. Woolf, E. Aimeur, R. Nkambou, & S. Lajoie (Eds.), ITS ‘08: Proceedings of the 9th
International Conference on Intelligent Tutoring Systems (pp. 204–215). Berlin: Springer. doi:10.1007/
978-3-540-69132-7_25.

Blessing, S. B., Gilbert, S. B., Blankenship, L., & Sanghvi, B. (2009). From SDK to xPST: A new way to
overlay a tutor on existing software. In Proceedings of the 2009 FLAIRS Conference (pp. 466–467).
Association for the Advancement of Artificial Intelligence.

Blessing, S. B., Gilbert, S. B., Ourada, S., & Ritter, S. (2009b). Authoring model-tracing cognitive tutors.
International Journal of Artificial Intelligence in Education, 19(2), 189–210.

Blessing, S., Devasani, S., & Gilbert, S. (2011). Evaluation of WebxPST: A browser-based authoring tool for
problem-specific tutors. In G. Biswas, S. Bull, J. Kay, & A. Mitrovic (Eds.), Proceedings of the 15th
International Conference on Artificial Intelligence in Education, AIED 2011 (pp. 423–425). Berlin: Springer.

Booth, J. L., Lange, K. E., Koedinger, K. R., & Newton, K. J. (2013). Using example problems to improve
student learning in algebra: Differentiating between correct and incorrect examples. Learning and
Instruction, 25, 24–34. doi:10.1016/j.learninstruc.2012.11.002.

Borek, A., McLaren, B. M., Karabinos, M., & Yaron, D. (2009). How much assistance is helpful to students in
discovery learning? In U. Cress, V. Dimitrova, & M. Specht (Eds.), Proceedings 4th European

Int J Artif Intell Educ (2016) 26:224–269 263

http://dx.doi.org/10.1007/11774303_7
http://dx.doi.org/10.1037/a0034155
http://dx.doi.org/10.1007/978-3-319-19773-9_53
http://dx.doi.org/10.1016/0364-0213(89)90021-9
http://dx.doi.org/10.1007/s40593-014-0023-y
http://dx.doi.org/10.1007/s11412-007-9018-0
http://dx.doi.org/10.1007/978-3-540-69132-7_25
http://dx.doi.org/10.1007/978-3-540-69132-7_25
http://dx.doi.org/10.1016/j.learninstruc.2012.11.002

Conference on Technology-Enhanced Learning, EC-TEL 2009 (pp. 391–404). Berlin: Springer. doi:10.
1007/978-3-642-04636-0_38.

Bull, S., & Kay, J. (2010). Open learner models. In R. Nkambou, J. Bourdeau, & R. Mizoguchi (Eds.), Studies
in Computational Intelligence: Vol. 308. Advances in intelligent tutoring systems (pp. 301-322). Berlin,
Heidelberg: Springer. doi:10.1007/978-3-642-14363-2_15.

Chase, C., Marks, J., Bernett, D., Bradley, M., & Aleven, V. (2015a). Towards the development of the
invention coach: A naturalistic study of teacher guidance for an exploratory learning task. In C. Conati, N.
Heffernan, A. Mitrovic, & M. F. Verdejo (Eds.), Proceedings of the 17th International Conference on
Artificial Intelligence in Education, AIED 2015 (pp. 558–561). New York: Springer. doi:10.1007/978-3-
319-19773-9_6.

Chase, C., Marks, J., Bernett, D., & Aleven, V. (2015b). The design of an exploratory learning environment to
support Invention. Paper presented during the Workshop on Intelligent Support in Exploratory and Open-
Ended Learning Environments, held as part of the 17th International Conference on Artificial Intelligence
in Education, AIED 2015.

Clark, R. E., Feldon, D., van Merriënboer, J. J. G., Yates, K., & Early, S. (2008). Cognitive task analysis. In J.
M. Spector, M. D. Merrill, J. J. G. van Merriënboer, & M. P. Driscoll (Eds.), Handbook of research on
educational communications and technology (3rd ed., pp. 577–593). New York: Macmillan/Gale.

Conati, C., & Vanlehn, K. (2000). Toward computer-based support of meta-cognitive skills: A computational
framework to coach self-explanation. International Journal of Artificial Intelligence in Education, 11(4),
389–415.

Cook, R., Kay, J., & Kummerfeld, B. (2015). MOOClm: User modelling for MOOCs. In F. Ricci, K.
Bontcheva, O. Conlan, & S. Lawless (Eds.), Proceedings of the 23rd International Conference on User
Modeling, Adaptation and Personalization, UMAP 2015 (pp. 80–91). Springer International Publishing.
doi:10.1007/978-3-319-20267-9_7.

Corbett, A. T., & Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of procedural
knowledge. User Modeling and User-Adapted Interaction, 4(4), 253–278.

Corbett, A., McLaughlin, M., & Scarpinatto, K. C. (2000). Modeling student knowledge: Cognitive Tutors in
high school and college. User Modeling and User-Adapted Interaction, 10, 81–108.

Corbett, A., Kauffman, L., MacLaren, B., Wagner, A., & Jones, E. (2010). A Cognitive Tutor for genetics
problem solving: Learning gains and student modeling. Journal of Educational Computing Research,
42(2), 219–239.

de Baker, R. S. J., Corbett, A. T., &Koedinger, K. R. (2007). The difficulty factors approach to the design of lessons
in intelligent tutor curricula. International Journal of Artificial Intelligence in Education, 17(4), 341–369.

Devasani, S., Gilbert, S. B., & Blessing, S. B. (2012). Evaluation of two intelligent tutoring system authoring
tool paradigms: Graphical user interface-based and text-based. In Proceedings 21st Annual Conference on
Behavior Representation in Modeling and Simulation 2012 (BRiMS 2012) (pp. 51–58). Red Hook, NY:
Curran Associates, Inc.

Doroudi, S., Holstein, K., Aleven, V., &Brunskill, E. (2015). Towards understanding how to leverage sense-making,
induction/refinement and fluency to improve robust learning. In O. C. Santos, J. G. Boticario, C. Romero, M.
Pechenizkiy, A. Merceron, et al. (Eds.), Proceedings of the 8th International Conference on Educational Data
Mining, EDM 2015 (pp. 376–379). Worcester: International Educational Data Mining Society.

Earnshaw, Y. (2014). Effects of levels of instructional assistance on learning and mental effort in an intelligent
tutoring system: Proportional reasoning and middle school students. Doctoral dissertation. Available from
ProQuest Dissertations and Theses database. (UMI No. 3637974).

Forlizzi, J., McLaren, B. M., Ganoe, C., McLaren, P. B., Kihumba, G., & Lister, K. (2014). Decimal point:
Designing and developing an educational game to teach decimals to middle school students. In C. Busch
(Ed.), 8th European Conference on Games-Based Learning: ECGBL2014 (pp. 128–135). Reading:
Academic Conferences and Publishing International.

Goguadze, G., Sosnovsky, S., Isotani, S., & McLaren, B. M. (2011). Evaluating a Bayesian student model of
decimal misconceptions. In M. Pechenizkiy, T. Calders, C. Conati, S. Ventura, C. Romero, & J. Stamper
(Eds.), Proceedings of the 4th International Conference on Educational Data Mining, EDM 2011 (pp.
301–306). Worcester: International Data Mining Society.

Guan, C. Q., Liu, Y., Chan, D. H. L., Ye, F., & Perfetti, C. A. (2011). Writing strengthens orthography and
alphabetic-coding strengthens phonology in learning to read Chinese. Journal of Educational Psychology,
103(3), 509–522. doi:10.1037/a0023730.

Harpstead, E., MacLellan, C. J., Aleven, V., & Myers, B. A. (2015). Replay analysis in open-ended
educational games. In C. S. Loh, Y. Sheng, & D. Ifenthaler (Eds.), Serious games analytics (pp. 381–
399). New York: Springer International Publishing. doi:10.1007/978-3-319-05834-4_17.

264 Int J Artif Intell Educ (2016) 26:224–269

http://dx.doi.org/10.1007/978-3-642-04636-0_38
http://dx.doi.org/10.1007/978-3-642-04636-0_38
http://dx.doi.org/10.1007/978-3-642-14363-2_15
http://dx.doi.org/10.1007/978-3-319-19773-9_6
http://dx.doi.org/10.1007/978-3-319-19773-9_6
http://dx.doi.org/10.1007/978-3-319-20267-9_7
http://dx.doi.org/10.1037/a0023730
http://dx.doi.org/10.1007/978-3-319-05834-4_17

Heffernan,N. T.,&Heffernan, C. L. (2014). TheASSISTments ecosystem:Building a platform that brings scientists
and teachers together for minimally invasive research on human learning and teaching. International Journal of
Artificial Intelligence in Education, 24(4), 470–497. doi:10.1007/s40593-014-0024-x.

Holmes, N. G., Day, J., Park, A. H., Bonn, D. A., & Roll, I. (2014). Making the failure more productive:
Scaffolding the invention process to improve inquiry behaviours and outcomes in productive failure
activities. Instructional Science, 42(4), 523–538. doi:10.1007/s11251-013-9300-7.

Janssen, J., & Bodemer, D. (2013). Coordinated computer-supported collaborative learning: Awareness and
awareness tools. Educational Psychologist, 48(1), 40–55.

Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational
Psychology Review, 19(4), 509–539. doi:10.1007/s10648-007-9054-3.

Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational
Psychologist, 38(1), 23–31. doi:10.1207/S15326985EP3801_4.

Kay, J., Reimann, P., Diebold, E., & Kummerfeld, B. (2013). MOOCs: So many learners, so much potential.
IEEE Intelligent Systems, 3, 70–77. doi:10.1109/MIS.2013.66.

Kleij, F. M. V. D., Feskens, R. C. W., & Eggen, T. J. H. M. (2015). Effects of feedback in a computer-based
learning environment on students’ learning outcomes. Review of Educational Research. doi:10.3102/
0034654314564881.

Kodaganallur, V., Weitz, R., & Rosenthal, D. (2005). A comparison of model-tracing and constraint-based
intelligent tutoring paradigms. International Journal of Artificial Intelligence in Education, 15(1), 117–
144.

Kodavali, S. K., Gilbert, S., & Blessing, S. (2010). Expansion of the xPST framework to enable non-
programmers to create intelligent tutoring systems in 3D game environments. In V. Aleven, J. Kay, &
J. Mostow (Eds.), Lecture Notes in Computer Science: Proceedings of the 10th International Conference
on Intelligent Tutoring Systems, ITS 2010, vol. 2 (Vol. 6095, pp. 365–367). Berlin: Springer.

Koedinger, K. R. (2002). Toward evidence for instructional design principles: Examples from Cognitive Tutor
Math 6. Invited paper. In Proceedings of PME-NA XXXIII (the North American Chapter of the
International Group for the Psychology of Mathematics Education (pp. 21–49).

Koedinger, K. R., & Aleven, V. (2007). Exploring the assistance dilemma in experiments with Cognitive
Tutors. Educational Psychology Review, 19(3), 239–264.

Koedinger, K. R., & Corbett, A. T. (2006). Cognitive Tutors: Technology bringing learning sciences to the
classroom. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 61–78). New
York: Cambridge University Press.

Koedinger, K., & Mitrovic, A. (2009). Authoring intelligent tutoring systems: Preface for special issue on
authoring intelligent tutoring systems. International Journal of Artificial Intelligence in Education, 19(2),
103–104.

Koedinger, K. R., & Terao, A. (2002). A cognitive task analysis of using pictures to support pre-algebraic
reasoning. In W. Gray & C. D. Schunn (Eds.), Proceedings of the Twenty-fourth Annual Conference of the
Cognitive Science Society (pp. 542–547). Taylor & Francis Group.

Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent tutoring goes to school in
the big city. International Journal of Artificial Intelligence in Education, 8(1), 30–43.

Koedinger, K. R., Suthers, D. D., & Forbus, K. D. (1999). Component-based construction of a science
learning space. International Journal of Artificial Intelligence in Education, 10(3), 292–313.

Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B., & Hockenberry, M. (2004). Opening the door to
non-programmers: Authoring intelligent tutor behavior by demonstration. In J. C. Lester, R. M. Vicario,
& F. Paraguaçu (Eds.), Proceedings of seventh International Conference on Intelligent Tutoring Systems,
ITS 2004 (pp. 162–174). Berlin: Springer.

Koedinger, K. R., de Baker, R. S. J., Cunningham, K., Skogsholm, A., Leber, B., & Stamper, J. (2010). A data
repository for the EDM community: The PSLC datashop. In S. Ventura, C. Romero, M. Pechenizkiy, &
R. S. J. D. Baker (Eds.), Handbook of educational data mining (pp. 43–55). Boca Raton: CRC Press.

Koedinger, K. R., Corbett, A. T., & Perfetti, C. (2012). The knowledge-learning-instruction framework:
Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36(5), 757–
798. doi:10.1111/j.1551-6709.2012.01245.x.

Kumar, R., & Kim, J. (2014). Preface to the special issue on intelligent support for learning in groups.
International Journal of Artificial Intelligence in Education, 24(1), 1–7. doi:10.1007/s40593-013-0013-5.

Liew, C. W., & Xhakaj, F. (2015). Teaching a complex process: Insertion in red black trees. In C. Conati, N.
Heffernan, A. Mitrovic, & M. F. Verdejo (Eds.), Proceedings of the 17th International Conference on
Artificial Intelligence in Education, AIED 2015 (pp. 698–701). New York: Springer International
Publishing. doi:10.1007/978-3-319-19773-9_95.

Int J Artif Intell Educ (2016) 26:224–269 265

http://dx.doi.org/10.1007/s40593-014-0024-x
http://dx.doi.org/10.1007/s11251-013-9300-7
http://dx.doi.org/10.1007/s10648-007-9054-3
http://dx.doi.org/10.1207/S15326985EP3801_4
http://dx.doi.org/10.1109/MIS.2013.66
http://dx.doi.org/10.3102/0034654314564881
http://dx.doi.org/10.3102/0034654314564881
http://dx.doi.org/10.1111/j.1551-6709.2012.01245.x
http://dx.doi.org/10.1007/s40593-013-0013-5
http://dx.doi.org/10.1007/978-3-319-19773-9_95

Liu, Y., Wang, M., Perfetti, C. A., Brubaker, B., Wu, S., & MacWhinney, B. (2011). Learning a tonal language
by attending to the tone: an in vivo experiment. Language Learning, 61(4), 1119–1141. doi:10.1111/j.
1467-9922.2011.00673.x.

Long, Y., & Aleven, V. (2013a). Active learners: Redesigning an intelligent tutoring system to support self-
regulated learning. In D. Hernández-Leo, T. Ley, R. Klamma, & A. Harrer (Eds.), Scaling up learning for
sustained impact, Proceedings of the Eighth European Conference on Technology Enhanced Learning
(EC-TEL 2013) (pp. 490–495). Berlin: Springer. doi:10.1007/978-3-642-40814-4_44.ShortPaper.

Long, Y., &Aleven, V. (2013b). Supporting students’ self-regulated learningwith an open learnermodel in a linear
equation tutor. In H. C. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.), Proceedings of the 16th International
Conference on Artificial Intelligence in Education, AIED 2013 (pp. 249–258). Berlin: Springer.

Long, Y., & Aleven, V. (2014). Gamification of joint student/system control over problem selection in a linear
equation tutor. In S. Trausan-Matu, K. E. Boyer, M. Crosby, & K. Panourgia (Eds.), Proceedings of the
12th International Conference on Intelligent Tutoring Systems, ITS 2014 (pp. 378–387). New York:
Springer. doi:10.1007/978-3-319-07221-0_47.

Lovett,M. C. (1998). Cognitive task analysis in the service of intelligent tutoring system design: A case study in
statistics. In B. P. Goettle, H. M. Halff, C. L. Redfield, & V. J. Shute (Eds.), Intelligent Tutoring Systems,
Proceedings of the Fourth International Conference, ITS 1998 (pp. 234–243). Berlin: Springer Verlag.

MacLellan, C., Koedinger, K. R., & Matsuda, N. (2014). Authoring tutors with SimStudent: An evaluation of
efficiency and model quality. In S. Trausan-Matu, K. E. Boyer, M. Crosby, & K. Panourgia (Eds.),
Proceedings of the 12th International Conference on Intelligent Tutoring Systems, ITS 2014 (pp. 551–
560). Berlin: Springer. doi:10.1007/978-3-319-07221-0_66.

Mathan, S. A., & Koedinger, K. R. (2005). Fostering the intelligent novice: Learning from errors with
metacognitive tutoring. Educational Psychologist, 40(4), 257–265.

Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2015). Teaching the teacher: Tutoring SimStudent leads to
more effective Cognitive Tutor authoring. International Journal of Artificial Intelligence in Education,
25(1), 1–34. doi:10.1007/s40593-014-0020-1.

McKendree, J. (1990). Effective feedback content for tutoring complex skills. Human Computer Interaction,
5(4), 381–413. doi:10.1207/s15327051hci0504_2.

McLaren, B. M., Lim, S. J., & Koedinger, K. R. (2008). When and how often should worked examples be
given to students? New results and a summary of the current state of research. In B. C. Love, K. McRae,
& V. M. Sloutsky (Eds.), Proceedings of the 30th Annual Meeting of the Cognitive Science Society (pp.
2176–2181). Austin: Cognitive Science Society.

McLaren, B. M., DeLeeuw, K. E., & Mayer, R. E. (2011a). A politeness effect in learning with web-based
intelligent tutors. International Journal of Human Computer Studies, 69(1–2), 70–79. doi:10.1016/j.ijhcs.
2010.09.001.

McLaren, B. M., DeLeeuw, K. E., & Mayer, R. E. (2011b). Polite web-based intelligent tutors: Can they
improve learning in classrooms? Computers & Education, 56(3), 574–584.

McLaren, B. M., Adams, D., Durkin, K., Goguadze, G., Mayer, R. E., Rittle-Johnson, B., & Velsen, M. V.
(2012). To err is human, to explain and correct is divine: A study of interactive erroneous examples with
middle school math students. In A. Ravenscroft, S. Lindstaedt, C. Delgado Kloos, & D. Hernández-Leo
(Eds.), 21st-Century Learning for 21st-Century Skills: 7th European Conference on Technology-
Enhanced Learning, EC-TEL 2012 (pp. 222–235). Berlin: Springer. doi:10.1007/978-3-642-33263-0_18.

McLaren, B. M., van Gog, T., Ganoe, C., Yaron, D., & Karabinos, M. (2014). Exploring the assistance
dilemma: Comparing instructional support in examples and problems. In S. Trausan-Matu, K. E. Boyer,
M. Crosby, & K. Panourgia (Eds.), Proceedings of the 12th International Conference on Intelligent
Tutoring Systems, ITS 2014 (pp. 354–361). Berlin: Springer. doi:10.1007/978-3-319-07221-0_66.

McLaren, B. M., Adams, D. M., & Mayer, R. E. (2015a). Delayed learning effects with erroneous examples: a
study of learning decimals with a web-based tutor. International Journal of Artificial Intelligence in
Education, 25(4), 520–542.

McLaren, B. M., van Gog, T., Ganoe, C., Yaron, D., & Karabinos, M. (2015b). Worked Examples are more
efficient for learning than high-assistance instructional software. In C. Conati, N. Heffernan, A. Mitrovic,
&M. F. Verdejo (Eds.), Proceedings of the 17th International Conference on AI in Education, AIED 2015
(pp. 710–713). Berlin: Springer. doi:10.1007/978-3-319-19773-9_98.

McLaren, B. M., van Gog, T., Ganoe, C., Karabinos, M., & Yaron, D. (2016). The efficiency of worked
examples compared to erroneous examples, tutored problem solving, and problem solving in classroom
experiments. Computers in Human Behavior, 55, 87–99.

Mitrovic, A., & Ohlsson, S. (1999). Evaluation of a constraint-based tutor for a database language.
International Journal of Artificial Intelligence in Education, 10(3–4), 238–256.

266 Int J Artif Intell Educ (2016) 26:224–269

http://dx.doi.org/10.1111/j.1467-9922.2011.00673.x
http://dx.doi.org/10.1111/j.1467-9922.2011.00673.x
http://dx.doi.org/10.1007/978-3-642-40814-4_44.ShortPaper
http://dx.doi.org/10.1007/978-3-319-07221-0_47
http://dx.doi.org/10.1007/978-3-319-07221-0_66
http://dx.doi.org/10.1007/s40593-014-0020-1
http://dx.doi.org/10.1207/s15327051hci0504_2
http://dx.doi.org/10.1016/j.ijhcs.2010.09.001
http://dx.doi.org/10.1016/j.ijhcs.2010.09.001
http://dx.doi.org/10.1007/978-3-642-33263-0_18
http://dx.doi.org/10.1007/978-3-319-07221-0_66
http://dx.doi.org/10.1007/978-3-319-19773-9_98

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J., & Mcguigan, N. (2009).
ASPIRE: An authoring system and deployment environment for constraint-based tutors. International
Journal of Artificial Intelligence in Education, 19(2), 155–188.

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art. International
Journal of Artificial Intelligence in Education, 10(1), 98–129.

Murray, T., Blessing, S., & Ainsworth, S. (2003). Authoring tools for advanced technology learning
environments: Toward cost-effective adaptive, interactive and intelligent educational software.
Amsterdam: Kluwer Academic Publishers.

Nathan, M. J. (1998). Knowledge and situational feedback in a learning environment for algebra story problem
solving. Interactive Learning Environments, 5(1), 135–159.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs: Prentice-Hall.
Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search.

Communications of the ACM, 19(3), 113–126. doi:10.1145/360018.360022.
Nye, B. D., Graesser, A. C., & Hu, X. (2014). AutoTutor and family: A review of 17 years of natural language

tutoring. International Journal of Artificial Intelligence in Education, 24(4), 427–469. doi:10.1007/
s40593-014-0029-5.

Ogan, A., Aleven, V., & Jones, C. (2009). Advancing development of intercultural competence through
supporting predictions in narrative video. International Journal of Artificial Intelligence in Education,
19(3), 267–288.

Olsen, J. K., Belenky, D. M., Aleven, V., & Rummel, N. (2014a). Using an intelligent tutoring system to
support collaborative as well as individual learning. In S. Trausan-Matu, K. E. Boyer, M. Crosby, & K.
Panourgia (Eds.), Proceedings of the 12th International Conference on Intelligent Tutoring Systems, ITS
2014 (pp. 134–143). Berlin: Springer. doi:10.1007/978-3-319-07221-0_66.

Olsen, J. K., Belenky, D. M., Aleven, V., Rummel, N., Sewall, J., & Ringenberg, M. (2014b). Authoring tools
for collaborative intelligent tutoring system environments. In S. Trausan-Matu, K. E. Boyer, M. Crosby, &
K. Panourgia (Eds.), Proceedings of the 12th International Conference on Intelligent Tutoring Systems,
ITS 2014 (pp. 523–528). Berlin: Springer. doi:10.1007/978-3-319-07221-0_66.

Olsen, J. K., Rummel, N., & Aleven, V. (under review). Investigating effects of embedding collaboration in an
intelligent tutoring system for elementary school students.

Paas, F. G. W. C., & Van Merriënboer, J. J. G. (1994). Variability of worked examples and transfer of
geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology,
86(1), 122–133.

Pane, J. F., Griffin, B. A., McCaffrey, D. F., & Karam, R. (2013). Effectiveness of Cognitive Tutor Algebra I at
scale. Educational Evaluation and Policy Analysis, 0162373713507480. doi:10.3102/
0162373713507480.

Paquette, L., Lebeau, J.-F., & Mayers, A. (2010). Authoring problem-solving tutors: A comparison between
ASTUS and CTAT. In R. Nkambou, J. Bourdeau, & R. Mizoguchi (Eds.), Advances in intelligent tutoring
systems (pp. 377–405). Berlin: Springer. doi:10.1007/978-3-642-14363-2_19.

Paquette, L., Lebeau, J.-F., Beaulieu, G., & Mayers, A. (2015). Designing a knowledge representation
approach for the generation of pedagogical interventions by MTTs. International Journal of Artificial
Intelligence in Education, 25(1), 118–156. doi:10.1007/s40593-014-0030-z.

Pavlik, P. I., Brawner, K., Olney, A., &Mitrovic, A. (2013). A review of studentmodels used in intelligent tutoring
systems. In R. Sottilare, A. Graesser, X. Hu, & H. Holden (Eds.), Design recommendations for adaptive
intelligent tutoring systems (Learner modeling, Vol. I, pp. 39–68). Orlando: US Army Research Laboratory.

Peterson, J., Pardos, Z., Rau, M. A., Swigart, A., Gerber, C., & McKinsey, J. (2015). Understanding student
success in chemistry using gaze tracking and pupillometry. In C. Conati, N. Heffernan, A. Mitrovic, & M.
F. Verdejo (Eds.), Proceedings of the 17th International Conference on AI in Education, AIED 2015 (pp.
358–366). New York: Springer International Publishing. doi:10.1007/978-3-319-19773-9_36.

Rau, M. A. (2015). Why do the rich get richer? A structural equation model to test how spatial skills affect
learning with representations. In O. C. Santos, J. G. Boticario, C. Romero, M. Pechenizkiy, A. Merceron,
et al. (Eds.), Proceedings of the 8th International Conference on Educational Data Mining, EDM 2015
(pp. 350–359). Worcester: International Educational Data Mining Society.

Rau, M. A., & Wu, S. P. W. (2015). ITS support for conceptual and perceptual processes in learning with
multiple graphical representations. In C. Conati, N. Heffernan, A. Mitrovic, & M. F. Verdejo (Eds.),
Proceedings of the 17th International Conference on AI in education, AIED 2015 (pp. 398–407). New
York: Springer International Publishing. doi:10.1007/978-3-319-19773-9_40.

Rau, M. A., Aleven, V., Rummel, N., & Rohrbach, S. (2012). Sense making alone doesn’t do it: Fluency
matters too! ITS support for robust learning with multiple representations. In S. A. Cerri, W. J. Clancey,

Int J Artif Intell Educ (2016) 26:224–269 267

http://dx.doi.org/10.1145/360018.360022
http://dx.doi.org/10.1007/s40593-014-0029-5
http://dx.doi.org/10.1007/s40593-014-0029-5
http://dx.doi.org/10.1007/978-3-319-07221-0_66
http://dx.doi.org/10.1007/978-3-319-07221-0_66
http://dx.doi.org/10.3102/0162373713507480
http://dx.doi.org/10.3102/0162373713507480
http://dx.doi.org/10.1007/978-3-642-14363-2_19
http://dx.doi.org/10.1007/s40593-014-0030-z
http://dx.doi.org/10.1007/978-3-319-19773-9_36
http://dx.doi.org/10.1007/978-3-319-19773-9_40

G. Papadourakis, & K. Panourgia (Eds.), Proceedings of the 11th International Conference on Intelligent
Tutoring Systems, ITS 2012 (pp. 174–184). Berlin: Springer.

Rau, M., Aleven, V., & Rummel, N. (2013). Interleaved practice in multi-dimensional learning tasks: Which
dimension should we interleave?. Learning and Instruction, 23, 98–114. doi:learninstruc.2012.07.003.

Rau, M. A., Aleven, V., Rummel, N., & Pardos, Z. (2014). How should intelligent tutoring systems sequence
multiple graphical representations of fractions? A multi-methods study. International Journal of Artificial
Intelligence in Education, 24(1), 125–161. doi:10.1007/s40593-013-0011-7.

Rau, M. A., Aleven, V., & Rummel, N. (2015a). Successful learning with multiple graphical representations
and self-explanation prompts. Journal of Educational Psychology, 107(1), 30–46. doi:10.1037/a0037211.

Rau, M. A., Michaelis, J. E., & Fay, N. (2015b). Connection making between multiple graphical represen-
tations: A multi-methods approach for domain-specific grounding of an intelligent tutoring system for
chemistry. Computers & Education, 82, 460–485. doi:10.1016/j.compedu.2014.12.009.

Razzaq, L., Patvarczki, J., Almeida, S. F., Vartak, M., Feng, M., Heffernan, N. T., & Koedinger, K. R. (2009).
The Assistment Builder: Supporting the life cycle of tutoring system content creation. IEEE Transactions
on Learning Technologies, 2(2), 157–166.

Renkl, A. (2013). Toward an instructionally oriented theory of example-based learning. Cognitive Science,
38(1), 1–37. doi:10.1111/cogs.12086.

Renkl, A., Atkinson, R. K., & Grosse, C. S. (2003). How fading worked solution steps works—a cognitive
load perspective. Instructional Science, 32, 1–24.

Rice, W. (2011). Moodle 2.0 e-learning course development: A complete guide to successful learning using
Moodle. Birmingham: Packt Publishing Ltd.

Ritter, S., & Koedinger, K. R. (1996). An architecture for plug-in tutor agents. International Journal of
Artificial Intelligence in Education, 7(3–4), 315–347.

Ritter, S., Anderson, J. R., Koedinger, K. R., & Corbett, A. (2007). Cognitive Tutor: Applied research in
mathematics education. Psychonomic Bulletin & Review, 14(2), 249–255.

Rittle-Johnson, B., & Koedinger, K. R. (2005). Designing knowledge scaffolds to support mathematical
problem solving. Cognition and Instruction, 23(3), 313–349.

Roll, I., Aleven, V., & Koedinger, K. R. (2010). The Invention Lab: Using a hybrid of model tracing and
constraint-based modeling to offer intelligent support in inquiry environments. In V. Aleven, J. Kay, & J.
Mostow (Eds.), Lecture Notes in Computer Science: Proceedings of the 10th International Conference on
Intelligent Tutoring Systems, ITS 2010 (Vol. I, pp. 115–124). Berlin: Springer.

Roll, I., Aleven, V., McLaren, B. M., & Koedinger, K. R. (2011). Metacognitive practice makes perfect:
Improving students’ self-assessment skills with an intelligent tutoring system. In G. Biswas, S. Bull, J.
Kay, & A. Mitrovic (Eds.), Proceedings of the 15th international conference on artificial intelligence in
education, AIED 2011 (pp. 288–295). Berlin: Springer. doi:10.1007/978-3-642-21869-9_38.

Rummel, N., Walker, E., & Aleven, V. (under review). Different futures of adaptive collaborative learning
support. Manuscript submitted for publication.

Salden, R. J. C. M., Aleven, V., Schwonke, R., & Renkl, A. (2010a). The expertise reversal effect and worked
examples in tutored problem solving. Instructional Science, 38(3), 289–307. doi:10.1007/s11251-009-9107-8.

Salden, R. J. C. M., Koedinger, K. R., Renkl, A., Aleven, V., & McLaren, B. M. (2010b). Accounting for
beneficial effects of worked examples in tutored problem solving. Educational Psychology Review, 22(4),
379–392. doi:10.1007/s10648-010-9143-6.

Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: The hidden efficiency of
encouraging original student production in statistics instruction. Cognition and Instruction, 22(2), 129–184.

Schwartz, D. L., Chase, C. C., Oppezzo, M. A., & Chin, D. B. (2011). Practicing versus inventing with
contrasting cases: The effects of telling first on learning and transfer. Journal of Educational Psychology,
103(4), 759–775. doi:10.1037/a0025140.

Slavin, R. E. (1996). Research on cooperative learning and achievement: What we know, what we need to
know. Contemporary Educational Psychology, 21(1), 43–69.

Sottilare, R. (2012). Considerations in the development of an ontology for a generalized intelligent framework
for tutoring. In I3M defense and homeland security simulation Conference (DHSS 2012).

Sottilare, R., Graesser, A., Hu, X., & Holden, H. (Eds.) (2013). Design recommendations for adaptive
intelligent tutoring systems (Vol. I, Learner Modeling). Orlando: US Army Research Laboratory.

Sottilare, R., Graesser, A., Hu, X., & Holden, H. (Eds.) (2014). Design recommendations for adaptive
intelligent tutoring systems (Vol. II - Instructional Management). Orlando: US Army Research Laboratory.

Sottilare, R., Graesser, A., Hu, X., & Brawner, K. (Eds.) (2015). Design recommendations for adaptive
intelligent tutoring systems (Vol. III - Authoring Tools and Expert Modeling Techniques). Orlando: US
Army Research Laboratory.

268 Int J Artif Intell Educ (2016) 26:224–269

http://dx.doi.org/10.1007/s40593-013-0011-7
http://dx.doi.org/10.1037/a0037211
http://dx.doi.org/10.1016/j.compedu.2014.12.009
http://dx.doi.org/10.1111/cogs.12086
http://dx.doi.org/10.1007/978-3-642-21869-9_38
http://dx.doi.org/10.1007/s11251-009-9107-8
http://dx.doi.org/10.1007/s10648-010-9143-6
http://dx.doi.org/10.1037/a0025140

Stampfer, E., & Koedinger, K. R. (2013). When seeing isn’t believing: Influences of prior conceptions and
misconceptions. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th
Annual Conference of the Cognitive Science Society (pp. 916–919). Berlin: Springer. doi:10.1007/978-3-
642-39112-5_145.

Stankov, S., Rosić, M., Žitko, B., & Grubišić, A. (2007). TEx-Sys model for building intelligent tutoring
systems. Computers & Education, 51(3), 1017–1036. doi:10.1016/j.compedu.2007.10.002.

Van Gog, T., & Rummel, N. (2010). Example-based learning: Integrating cognitive and social-cognitive
research perspectives. Educational Psychology Review, 22(2), 155–174. doi:10.1007/s10648-010-9134-7.

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in
Education, 16(3), 227–265.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other
tutoring systems. Educational Psychologist, 46(4), 197–221.

VanLehn, K. (this issue). Regulative loops, step loops and task loops. International Journal of Artificial
Intelligence in Education, 26(1).

Waalkens, M., Aleven, V., & Taatgen, N. (2013). Does supporting multiple student strategies lead to greater
learning and motivation? Investigating a source of complexity in the architecture of intelligent tutoring
systems. Computers & Education, 60(1), 159–171. doi:10.1016/j.compedu.2012.07.016.

Walker, E., Rummel, N., & Koedinger, K. R. (2014). Adaptive intelligent support to improve peer tutoring in
algebra. International Journal of Artificial Intelligence in Education, 24(1), 33–61. doi:10.1007/s40593-
013-0001-9.

Weiss, M. A. (2010). Data structures and problem solving using Java (4th Edition). New York: Pearson
Education, Inc.

Wiese, E. S., & Koedinger, K.R. (2015). Grounded feedback in a fraction addition tutor. Paper presented as
part of the SymposiumMultiple Representations and Multimedia: Student Learning and Instruction at the
2015 Annual Meeting of the American Educational Research Association (AERA). Chicago, IL.

Woolf, B. P. (2009). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-
learning. Burlington: Morgan Kaufmann.

Wylie, R., Koedinger, K. R., & Mitamura, T. (2009). Is self-explanation always better? The effects of adding
self-explanation prompts to an English grammar tutor. In N. A. Taatgen & H. van Rijn (Eds.),
Proceedings of the 31st Annual Conference of the Cognitive Science Society (pp. 1300–1305). Austin:
Cognitive Science Society.

Wylie, R., Koedinger, K. R., & Mitamura, T. (2010a). Analogies, explanations, and practice: Examining how
task types affect second language grammar learning. In V. Aleven, J. Kay, & J. Mostow (Eds.), Lecture
notes in computer science: Proceedings of the 10th International Conference on Intelligent Tutoring
Systems, ITS 2010 (Vol. 6094, pp. 214–223). Berlin: Springer. doi:10.1007/978-3-642-13388-6_26.

Wylie, R., Koedinger, K. R., & Mitamura, T. (2010b). Extending the self-explanation effect to second
language grammar learning. In K. Gomez, L. Lyons, & J. Radinsky (Eds.), Learning in the disciplines:
Proceedings of the 9th International Conference of the Learning Sciences, ICLS 2010 (Vol. 1, pp. 57–64).
Chicago: International Society of the Learning Sciences.

Wylie, R., Sheng, M., Mitamura, T., & Koedinger, K. (2011). Effects of adaptive prompted self-explanation on
robust learning of second language grammar. In G. Biswas, S. Bull, J. Kay, & A. Mitrovic (Eds.), Lecture
notes in computer science: Artificial intelligence in education (Vol. 6738, pp. 588–590). Berlin: Springer.
doi:10.1007/978-3-642-21869-9_110.

Xhakaj, F. (2015). Intelligent tutors and granularity a new approach to red black trees. Unpublished senior
thesis, Department of Computer Science, Lafayette College, Easton Pennsylvania.USA.

Xhakaj, F., & Liew, C. W. (2015). A new approach to teaching red black tree. In V. Dagienė, C. Schulte, & T.
Jevsikova (Eds.), Proceedings of the 20th ACM Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE ‘15 (pp. 278–283). New York: ACM. doi:10.1145/2729094.
2742624.

Int J Artif Intell Educ (2016) 26:224–269 269

http://dx.doi.org/10.1007/978-3-642-39112-5_145
http://dx.doi.org/10.1007/978-3-642-39112-5_145
http://dx.doi.org/10.1016/j.compedu.2007.10.002
http://dx.doi.org/10.1007/s10648-010-9134-7
http://dx.doi.org/10.1016/j.compedu.2012.07.016
http://dx.doi.org/10.1007/s40593-013-0001-9
http://dx.doi.org/10.1007/s40593-013-0001-9
http://dx.doi.org/10.1007/978-3-642-13388-6_26
http://dx.doi.org/10.1007/978-3-642-21869-9_110
http://dx.doi.org/10.1145/2729094.2742624
http://dx.doi.org/10.1145/2729094.2742624

	Example-Tracing Tutors: Intelligent Tutor Development for Non-programmers
	Abstract
	Introduction
	Overview of Example-Tracing Tutors and CTAT
	Authoring Process
	Inner Loop: Using a Behavior Graph to Provide Tutoring
	Learner Modeling
	Outer Loop
	Tutor Front End
	Delivery and Deployment
	Support for Research
	Architecture
	ITS Authoring Tool Development Philosophy

	Should Example-Tracing Tutors be Considered ITS?
	Evidence of the Effectiveness of Example-Tracing Tutors
	Problem-Solving Tutors
	Tutors that Use Worked-Out Examples or Erroneous Examples
	Tutors with Interactive Graphical Representations
	Tutors that Support Other Pedagogical Approaches
	A Tutor for Language Learning

	Discussion and Conclusions
	Appendix: 18 Example-Tracing Tutors
	Mathtutor
	Genetics Tutor
	Lynnette: Basic Equation Solving
	The Tuning Tutor – Parameter Fitting in Machine Learning
	Stoichiometry Tutor
	AdaptErrEx – Erroneous Examples
	Decimal Point: Educational Games for Learning Decimals
	Tutor for Business Modeling with Google Sheets
	Fractions Tutor Version that Supports Sense Making, Induction/Refinement, and Fluency Building
	Tutors for Guided Invention Activities

	References

