Int J Artif Intell Educ (2016) 26:855-876 @ CrossMark
DOI 10.1007/540593-016-0097-9

ARTICLE

Perceived Task-Difficulty Recognition from Log-file
Information for the Use in Adaptive Intelligent
Tutoring Systems

Ruth Janning! - Carlotta Schatten’ -
Lars Schmidt-Thieme!

Published online: 26 May 2016
© International Artificial Intelligence in Education Society 2016

Abstract Recognising students’ emotion, affect or cognition is a relatively young
field and still a challenging task in the area of intelligent tutoring systems. There
are several ways to use the output of these recognition tasks within the system. The
approach most often mentioned in the literature is using it for giving feedback to
the students. The features used for that approach can be high-level features like lin-
guistics features which are words related to emotions or affects, taken e.g. from
written or spoken inputs, or low-level features like log-file features which are cre-
ated from information contained in the log-files. In this work we aim at supporting
task sequencing by perceived task-difficulty recognition on low-level features eas-
ily extracted from the log-file. We analyse these features by statistical tests showing
that there are statistically significant feature combinations and hence the presented
features are able to describe students’ perceived task-difficulty in intelligent tutor-
ing systems. Furthermore, we apply different classification methods to the log-file
features for perceived task-difficulty recognition and present a kind of higher ensem-
ble method for improving the classification performance on the features extracted
from a real data set. The presented approach outperforms classical ensemble meth-
ods and is able to improve the classification performance substantially, enabling a
perceived task-difficulty recognition satisfactory enough for employing its output for
components of a real system like task independent support or task sequencing.

P4 Ruth Janning
janning @ismll.uni-hildesheim.de

1" Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim,

Hildesheim, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s40593-016-0097-9-x&domain=pdf
mailto:janning@ismll.uni-hildesheim.de

856 Int J Artif Intell Educ (2016) 26:855-876

Keywords Adaptive intelligent tutoring systems - Task sequencing - Perceived
task-difficulty recognition - Classification - Classification performance
improvement - Feature analysis - Log-file features

Introduction

Nowadays, intelligent tutoring systems are important tools for supporting the edu-
cation of students, for instance in learning mathematics. The main advantages of
intelligent tutoring systems are the possibility for a student to practice any time and
anywhere, as well as the possibility of adaptivity and individualisation for a sin-
gle student. Usually, an adaptive intelligent tutoring system possesses an internal
model of the student and a task sequencer that decides which tasks in which order
are shown to the student. This work aims at supporting task sequencing in adaptive
intelligent tutoring systems by perceived task-difficulty recognition. This perceived
task-difficulty recognition is applied to information easily extracted from the log-
file. More explicitly, we try to classify features extracted from the log-file as ’the
student felt over-challenged by the last task’ (i.e. the last task was too hard), ’the
student felt under-challenged by the last task’ (i.e the last task was too easy) or "the
student felt appropriately challenged’ (i.e. the last task was appropriate), that can
be summarised as perceived task-difficulty. Originally, the task sequencing in adap-
tive intelligent tutoring systems was developed using information gained from expert
and domain knowledge and from logged information about the performance of stu-
dents in former exercises. In Schatten and Schmidt-Thieme (2014) a new efficient
sequencer, based on a performance prediction system was presented, which only
uses former performance information from students to sequence the tasks without the
need for expensive expert and domain knowledge. This approach uses the machine
learning method matrix factorization (see e.g., Cichocki et al. (2009)) to provide per-
formance. Subsequently, it uses the output of the performance prediction process to
sequence the tasks according to the theory of Vygotsky’s Zone of Proximal Devel-
opment (Vygotsky (1978)). That is, the sequencer chooses the next task in order to
neither bore nor frustrate the student, or in other words, the next task should not be
too easy nor too hard for the student. This is done by choosing a task with a predicted
performance closest to a certain threshold that symbolises the performance score that
the student would have, if he/she will remain within the Zone of Proximal Develop-
ment. This kind of task sequencing can be supported by our perceived task-difficulty
recognition by building a personalised threshold for the approach in Schatten and
Schmidt-Thieme (2014) and by detecting misconceptions by means of a comparison
of performance and perceived task-difficulty.

A further question, besides the questions which input features to use for perceived
task-difficulty recognition and how to use perceived task-difficulty recognition
within intelligent tutoring systems, is how to realise the perceived task-difficulty
recognition. This means a classification approach has to be chosen. According to the
literature, a state-of-the-art classification approach for affect recognition is a sup-
port vector machine (see e.g. Schuller et al. (2011)). However, usually the collection
of data from young students is costly and complex and privacy issues have to be

@ Springer

Int J Artif Intell Educ (2016) 26:855-876 857

considered carefully. These facts lead to small data sets in this area and finally to
a limited performance of the support vector machine (SVM) applied to the data.
Hence, the question arises, is there a way to improve the classification performance?
Janning et al. (2014e) presented an approach for improving the affect recognition
performance of SVMs applied to features extracted from speech. In this work we
will further investigate this approach on the one hand by applying it to log-file fea-
tures instead of speech features and on the other hand by applying the approach of
Janning et al. (2014e) also to other classification models. The goal is to investigate
which classification model performs best for the log-file features and if the above
mentioned approach for performance improvement also works on classification mod-
els other than SVMs. Furthermore, in opposite to Janning et al. (2014e) where we
solved a binary classification problem, in this work we address a multi-class classi-
fication problem and show that the approach of Janning et al. (2014e) also works for
multi-class classification.

The main contributions of this article are: (1) presentation of log-file features
for perceived task-difficulty recognition in intelligent tutoring systems, (2) statistical
analysis of the presented features and experiments with different classifiers applied
to the features showing the ability of the features to describe the perceived task-
difficulty of a student, (3) presentation of an ensemble method for improving the
perceived task-difficulty recognition performance on the presented features, and (4)
proposal for the use of perceived task-difficulty recognition in intelligent tutoring
systems for supporting task sequencing.

The article is structured as follows: after some related work we present the
proposed log-file features on the one hand for recognising the overall perceived
task-difficulty of a student and on the other hand for recognising the perceived task-
difficulty of a student per task. Subsequently, we describe our approach for improving
the perceived task-difficulty recognition performance for a multi-class classification
problem and with different classification models. Finally, we discuss how to sup-
port task sequencing by means of the proposed perceived task-difficulty recognition
approach.

Related Work

To develop an affect — or as in our case perceived task-difficulty — recognition
approach appropriate features and classes have to be identified and one has to decide
about the classification model to use. To recognise affect in speech linguistics fea-
tures (like n-grams and bag-of-words) and low-level features like disfluencies (e.g.
speech pauses) or articulation features (see e.g. Schuller et al. (2011) and Janning
et al. (2014e)) can be distinguished. If linguistics features are used, a transcription or
speech recognition process has to be applied to the speech input before affect recog-
nition can be conducted. Linguistic features for affect and emotion recognition from
conversational cues were presented and investigated e.g. in D’Mello et al. (2008) and
D’Mello and Graesser (2012). Acoustic-prosodic features as well as lexical features
are used in the context of emotion prediction in Forbes-Riley and Litman (2004),
Litman and Forbes-Riley (2004) and Ai et al. (2006). Low-level features are used in

@ Springer

858 Int J Artif Intell Educ (2016) 26:855-876

the literature for instance for expert identification, as in Worsley and Blikstein (2011),
Morency et al. (2013) and Luz (2013), or for emotion and affect recognition as in
Moore et al. (2014) and Janning et al. (2014e), or for humour recognition as in Puran-
dare and Litman (2006). The advantage of using low-level features like disfluencies is
that instead of a full transcription or speech recognition approach only for instance a
pause identification has to be applied before computing the features. This means that
one does not inherit the error of the full speech recognition approach. Furthermore,
these features are independent from the need that students are using words related to
affects. But still those features inherit the error from the preprocessing step. Features
that are even easier to extract, which are robust against errors from preprocessing
steps and which also are independent from the need that students are using words
related to affects are features obtained from information about the actions of the stu-
dents interacting with the system (see e.g., Mavrikis (2008)) like features extracted
from a log-file (see e.g., Baker et al. (2012), San Pedro et al. (2013), Pardos et al.
(2014)). In Mavrikis (2008) such features are used to predict whether a student can
answer questions correctly in an intelligent learning environment without requesting
help and whether a student’s interaction is beneficial in terms of learning. Also in
D’Mello et al. (2007) features are extracted from the tutor log-files. These features
are mainly related to the dialogue of the tutor with the student, whereas the log-file
features presented in this work are related to the actions of the students. The reason
is that in former studies, where students were prompted to explain aloud their obser-
vations and solutions to mathematical tasks, it was observed, that the students often
exhibited longer pauses of silence while thinking about the problem when they were
over-challenged or produced a lot of short pauses while communicating when they
were appropriately challenged (see Janning et al. (2015)). The assumption for the
log-file features is that this behaviour is also observable in the interactions of the stu-
dents with the system. Also the keystroke dynamics features used in Epp et al. (2011)
belong to this kind of features. In Epp et al. (2011) emotional states were identified by
analysing the rhythm of the typing patterns of persons on a keyboard. Because of the
mentioned advantages of such features, in this work we consider features extracted
from the log-file. Different from other works the proposed log-file features are cre-
ated for recognising the perceived task-difficulty for supporting task sequencing. A
further possibility of obtaining features is using the information from physiologi-
cal sensors as in Arroyo et al. (2014), where sensors like camera and seat cushion
are applied, or in Woolf et al. (2009), where a facial expression system, a posture
analysis seat, a pressure mouse and a wireless skin conductance sensor are used. In
Cooper et al. (2010) sensors in combination with interaction data are applied for emo-
tion recognition. The 9 features extracted from the interaction data are similar to the
log-file features presented in this work, however the features in this work are more
fine granulated like the average and maximal time distance between actions. The rea-
son is that we assume for instance that the longer the time distance between actions
of the student the more he/she probably is thinking about the task and the more chal-
lenging is the task for the student. However, bringing sensors into classrooms is time
consuming and expensive and one has potentially to cope with students’ acceptance
of the sensors (and the consent of their parents). Furthermore, we aim to enable

@ Springer

Int J Artif Intell Educ (2016) 26:855-876 859

an intelligent tutoring system allowing that the student can practice anytime and
anywhere, which reduces the application possibility for sensors.

Research has identified what kind of emotions or affects can be recognised in
intelligent tutoring systems. In D’Mello et al. (2008) boredom, confusion, delight,
flow, frustration, neutral and surprise were investigated and for boredom, confusion,
flow, frustration and neutral statistically significant relationships were discovered.
D’Mello et al. (2007) treats anger, boredom, confusion, contempt, curiosity, dis-
gust, eureka, flow and frustration and it was found out that boredom, confusion,
and frustration were reported at higher rates than were anger, contempt, and dis-
gust. Woolf et al. (2009) looked at frustration, motivation/flow, confidence, boredom
and fatigue. However, as mentioned above, in this work we want to use the stu-
dents behavioural information gained from log-files for recognising the perceived
task-difficulty and supporting the sequencing of tasks. That is, the goal is to nei-
ther bore the student with too easy tasks nor to frustrate him/her with too hard tasks,
but to keep him/her in the Zone of Proximal Development (according to Vygotsky
(1978)). Accordingly, we want to use the output of the automatic perceived task-
difficulty recognition to get an answer to the question "Was this task too easy, too
hard or appropriate for the student?”. With other words, we want to recognise the
personalised task-difficulty from the view of the student, i.e., we want to find out if
the student felt under-challenged, over-challenged or appropriately challenged. We
use five different perceived task-difficulty classes for this recognition task, labelled
by the students themselves (see Fig. 1): ftoo hard, hard, appropriate, easy and too
easy. Different to the study in Robison et al. (2009), where the answers of the par-
ticipants to the question how they feel was used for an immediate feedback, in this
work the self-reports of the students are used for building an automatic perceived
task-difficulty recognition without the need of students directly expressing their
emotions.

The possible methods for automatic emotion, affect or cognition recognition
depend on the kind of features used as input. Linguistics features are obtained by a
preceding speech recognition process and can be processed by methods coming from
the areas sentiment classification and opinion mining (Sadegh et al. (2012)). Espe-
cially methods from the field of opinion mining on microposts seem to be appropriate
if linguistics features are considered. State-of-the-art methods in opinion mining on
microposts use methods based on optimisation approaches (see e.g., Hu et al. (2013))
and Naive Bayes (see e.g., Saif et al. (2012)). The process of obtaining disfluencies
like pauses is different from the full speech recognition process. For extracting for
instance pauses usually an energy threshold on the decibel scale is used as in Luz
(2013) or an SVM is applied for pause classification on acoustic features as in Qi
et al. (2004). The articulation features proposed in Janning et al. (2014e) are obtained
by an intermediate step of speech recognition. For extracting features from log-files
instead there is no special extraction method needed. The most important method for
these features is the writing of the log-file. Appropriate state-of-the-art methods for
automatic affect recognition on low-level features like disfluencies, but also on log-
file features, are classification methods like SVMSs, decision trees or ensembles of
those (see Schuller et al. (2011) and D’Mello et al. (2008)). The best performing

@ Springer

860 Int J Artif Intell Educ (2016) 26:855-876

Division: Dividiere die beiden gegebenen Bruche und kurze anschlieBend das Ergebnis.

Gekurzter
Bruch

Gegebene

Bruche (ungekurzt) Ergebnis

Endergebnisiiberpriifung

\) Dein Endergebnis ist richtig!

Deine Meinung:
Diese Aufgabe war ...

zu schwer [

Aufgabe uberspringen Hilfe
(zu leicht) (1) Briche werden dividiert, indem mit derh Kehrwert

multipliziert wird. Endergebnis
- uberprufen
:\z‘fgs:::v:?)er ringen Anleitung (!l;‘]:rdvi?tzz:x;te,n zu bilden, werden Zphler und
skip task because ... Hint
ints .
too easy task was ... easy appropriate hard

too hard

Fig. 1 Self-labelling tutoring tool

state-of-the-art method in this field is, according to the literature, an SVM. SVMs
(Boser et al. (1992), Cortes and Vapnik (1995)) are supervised machine learning
methods that can be used for classification tasks and deliver in many areas the best
performance in comparison to other classification approaches. The library LIBSVM
(Chang and Lin (2011)) provides an efficient and often used implementation of an
SVM. The idea for the presented ensemble method for improving the classification
performance is based on former work (Janning et al. (2013), Janning et al. (2014a),
Janning et al. (2014d)), where a hybrid neural network plait (HNNP) for improving
the classification performance on small and noisy signal data sets was developed and
investigated. The HNNP approach uses different feature sets from different infor-
mation sources and different kinds of neural networks with adapted architecture
which are retrained interactively within a plait structure using additional side infor-
mation gained before and during the retraining for a further improvement. The SVM
plait (Janning et al. (2014e)), a first step towards the adaption of HNNP for affect
recognition, has a similar structure but it uses the same kind of SVMs within the
plait structure and feature subsets of one information source. The architecture of
the SVMs within the SVM plait structure does not need to be adapted, the addi-
tional input is added instead to the input feature vectors. In this article we propose a
generalised version of the SVM plait, which is applicable to other classification mod-
els beyond SVMs and for multi-class classification. The presented generalised plait

@ Springer

Int J Artif Intell Educ (2016) 26:855-876 861

structure uses the principles of ensemble methods (which use multiple learning mod-
els to obtain a better prediction performance) like stacking, or stacked generalisation
respectively, which are explained and investigated for instance in Ting and Witten
(1999). Different from plain stacking, the presented plait consists of several layered
stackings with different additional inputs.

Log-File Features

As mentioned above, we aim at using features extracted from the log-file for per-
ceived task-difficulty recognition and supporting task sequencing. Such features are
for instance the time the student spent for a task, the time between actions or the time
until the first hint request or result check of the student. The idea behind this kind of
features is that for instance usually the longer the time spent for a task the more chal-
lenging is the task for the student. Another example is that usually the longer the time
distance between actions of the student the more he/she probably thinks about the
task and the more challenging is the task for the student. The advantage of using such
features is that they are very easy to obtain and there is no need of speech recognition
or natural language understanding which would introduce a further source of errors.
In the following, we will investigate features extracted from the log-file from two
different perspectives: (1) for recognising the overall accumulated perceived task-
difficulty of the student for the whole learning session (to investigate in general if
those kind of features are able to describe students’ perceived task-difficulty in our
data), and (2) for recognising the perceived task-difficulty of a student per task. The
idea behind the features for both cases is the same, but they have to be adapted a little
bit for each case. The data for extracting the log-file features originate from a study
where 7 students in the age of 21 — 28 each had to solve 40 mathematical tasks and
to label at the end of a task the perceived task-difficulty themselves by means of the
small offline self-labelling tutoring java tool described in Janning et al. (2014b) and
shown in Fig. 1. This tool was used for the study as a drill and practice math system
that does not model the student knowledge, but provides only the log-file data and
the labels. The mathematical tasks were chosen from the following areas:

Reducing fractions with numbers and variables
Adding fractions with and without intermediate steps and with numbers and
variables

e Subtracting fractions with and without intermediate steps and with numbers and
variables

e Multiply fractions with and without intermediate steps and with numbers and
variables

e Divide fractions with and without intermediate steps and with numbers and
variables
Distributivity law with and without intermediate steps
Finite sums of unit fractions
Rule of Three

@ Springer

862 Int J Artif Intell Educ (2016) 26:855-876

The students could either solve the task and label it after solving the task with
easy, appropriate or hard or they could skip the task and label it as foo hard or too
easy depending on the reason why they skipped it. Furthermore, the students could
ask for several hints per task, where the last hint contains the solution of the task.
Every action of a student, like pressing buttons, typing in numbers, asking for a hint
or submitting the answer, was written — together with a time stamp — into a log file
immediately after the action, enabling the extraction of the log-file features described
below. Each of the 7 students has seen all 40 tasks resulting in 280 labelled tasks, or
more explicitly 40 with label oo hard (after skipping the task), 20 with label hard, 93
with label appropriate, 121 with label easy and 6 with label foo easy (after skipping
the task). For those experiments in which we tried to recognise the perceived task-
difficulty of a student per task we used only examples with label hard, appropriate
or easy (according to our goal to support the task sequencer), i.e. those examples of
tasks which were not skipped.

Recognising Accumulated Perceived Task-Difficulty

Before the log-file features can be created some measurements have to be extracted
from the log-file. The measurements for creating the log-file features for recog-
nising the accumulated perceived task-difficulty of a student i are listed in
Table 1 and the resulting features are shown in Table 2. These features reflect the
behaviour of the student interacting with the system, since they report about the
actions of a student related to task skips, time spent, hint requests, inputs and result

Table 1 Measurements for student i from the log-file input data, which are needed for extracting the
desired log-file features for recognising accumulated perceived task-difficulty

Symbol Explanation

hs; Number of hints seen

ha; Number of hints available

i, Number of skipped tasks

skip,-(") Time until uth skip

Nskip; Number of skips

t,.(”) Time spent for the vth task

h fl.(w) Time until first hint request for the wth task
hti(x) Time between xth and (x + 1)th hint request
ri Number of all result checks

wri Number of wrong result checks

r fi('V) Time until first result check for the yth task
wrong,.(Z) Number of wrong inputs for the zth task
acti ong") Time between the ath and (a + 1)th action
ng Number of actions

@ Springer

Int J Artif Intell Educ (2016) 26:855-876

863

Table 2 Features created from log-file data for recognising accumulated perceived task-difficulty

Features

Formulas

Average, minimal, maximal time until skip

Average, minimal, maximal time spent for a task
Number of hints seen of all hints

Average, minimal, maximal time until first hint request
Average, minimal, maximal time distances

between hint requests

Average, maximal number of wrong inputs

Number of wrong result checks of all checks

> sk[p}“)
Rskip;
)

1 .
#, mm,)(ti(“)), max, (
hsi
ha; w
DI T . (w) (w)
“nf’, miny, (Af; "), maxy (hf; ")

i
x)
2y

hs;

, miny, (skip;“)), maxy (skipl.(”))

(U))

i

, ming (ht™), max, (ht™)

> wrongl(‘-)

ny;

s maxz(wr()ng,-(Z))

wri

Ti
Zy rf(_v)

e —, min,, (rfl.('v)), maxy (rf;

> action;") (a)
i

na;

Average, minimal, maximal time until first result check o >)

Average, maximal time distance between actions , max, action

checks. The accumulated perceived task-differently labels per student are obtained
by the following function:

if skip because too easy 4.0

if skip o
1 if skip because too hard 0.0
acc. labelof a studenti = rnd " Z if easy 3.0
d if not skip if ok 2.0
if hard 1.0

1

where rnd is a round function, ¢ is the number the of tasks shown to the student
and skip is a boolean variable with value 1 for the case that the student skipped the
task or O if the student did not skip the task. To find out if the presented features are
suitable to describe the perceived task-difficulty of a student we applied a statistical
analysis on single features as well as on feature combinations. Hence, as a first step
we investigated the relevance of each of the presented features by mapping the feature
values to the accumulated perceived task-difficulty labels, doing a linear regression
and measuring the p-value, indicating the statistical significance, as well as the R>
and Adjusted R? value, indicating how well the regression result can approximate the
real data points. The results with the best p-values are shown in Table 3. As one can
see in Table 3, the feature number of hints requested delivers the best p-value when
it is mapped to the perceived task-difficulty labels. However, as expected, most of
the single features are not very significant, as for statistical significance one would
desire a p-value smaller than 0.05 and values for R? and Adjusted R? that are close to
1. A more reasonable approach is to combine several features instead of considering
just one feature. Hence, we also investigated different combinations of features by

@ Springer

864 Int J Artif Intell Educ (2016) 26:855-876

Table 3 Best p-value, R? and Adjusted R? value for the log-file features mapped to accumulated
perceived task-difficulty labels (reported are only features with p < 0.12)

Log-file feature p-value R? Adjusted R?
Number of hints requested 0.0060 0.8075 0.7690
Maximal time between hint requests 0.0955 0.4569 0.3483
Average time between actions 0.1152 0.4205 0.3046

mapping all considered feature values to the accumulated perceived task-difficulty
labels. Subsequently, we applied a multivariate linear regression to obtain the p-value,
R? and Adjusted R? of the combinations. The feature combinations we started our
analysis with, were obtained from generating the correlation matrix. We created a
set for each feature by choosing those features for the set that are least correlated to
the considered feature, i.e., with correlation values nearest to 0. In further steps we
removed from these feature sets one feature after the other and applied a statistical test
to each of the generated feature sets with different numbers of elements. The feature
combinations with the best p-values, i.e. those with a p-value smaller than 0.05, are
listed in Table 4. The best feature combination consists of 2 features (average time
until skip, average time until first hint request). The p-value of 0.00516 of this feature
combination is small enough (compared to 0.05) and the (Adjusted) R? value of
0.9282 (0.8923) of this feature combination is close enough to 1, to assume that
this combination of features is statistically significant and hence is able to describe
the behaviour of a student expressed as the accumulated perceived task-difficulty
in our data. This means that it is possible to recognise the overall perceived task-
difficulty of a student of our study by means of the presented features. However, as
mentioned above, the accumulated perceived task-difficulty is measured per student
and a relatively small amount of students participated in our study. Hence, in the next
section we will investigate perceived task-difficulty recognition per task providing a
much larger amount of examples to investigate and classify.

Table4 p-value, R? and Adjusted R? for the best combinations of log-file features (with a p-value smaller
than 0.05) of a set with a number (#) of 4, 3 or 2 features mapped to the perceived task-difficulty labels

Log-file features p-value R? Adjusted R?

4 Maximal time between actions, maximal time 0.00918 0.9954 0.9862
spent for a task, minimal time until first hint
request, maximal time between hint requests

3 Average time until first result check, average time 0.01543 0.9561 0.9121
until skip, average time until first hint request

2 Average time until skip, average time until first 0.00516 0.9282 0.8923

hint request

@ Springer

Int J Artif Intell Educ (2016) 26:855-876 865

Recognising Perceived Task-Difficulty per Task

The log-file features presented above for recognising the accumulated perceived task-
difficulty per student have to be adapted to be applicable for describing students’
behaviour for single tasks instead of for the whole learning session with all tasks.
More explicitly, the features describing an action, which occurs just once during one
task, have to be adapted. That is average, minimal, maximal time spent for a task
are converted to time spent for a task and the same has to be done with average,
minimal, maximal time until first hint request, average, maximal number of wrong
inputs and average, minimal, maximal time until first result check. Average, minimal
and maximal time until skip instead are removed as we only consider examples of
tasks that were not skipped for recognising the perceived task-difficulty per task and
supporting task sequencing. The resulting features which we used in the experiments
for recognising the perceived task-difficulty per task are shown in Table 5.

As mentioned above, the statistical analysis of the features per student was applied
on a very small set of examples. Hence, we conducted the same analysis additionally
with the features per task. The results are shown in Tables 6 and 7. In the case of sin-
gle features (Table 6) the p-values are very small but unfortunately the (Adjusted) R?
values are not very close to 1. The best feature combination (Table 7) delivers also a
very small p-value and a much better result for (Adjusted) R2. We conducted these
statistical analyses as a first step for investigating in general if the log-file features are
appropriate for perceived task-difficulty recognition. For a perceived task-difficulty
recognition applicable in an intelligent tutoring system, classifiers have to be applied
to the features. Hence, in the following we discuss experiments with different classi-
fiers applied to the presented features. As a first step in the classifier experiments, we
applied for the multi-class classification problem (classes hard, appropriate, easy)
an SVM, a decision tree (DCT, see e.g., Breiman et al. (1984)) and the k-Nearest-
Neighbour approach (KNN, see e.g. Cover and Hart (1967)) to the features extracted
from the real data set obtained in the above described study. An SVM is a classifier
which searches for a hyperplane which optimally — with maximal margin — separates

Table 5 Log-file features for recognising the perceived task-difficulty per task i

Features Formulas
fo: Time spent for a task i ti
f1: Number of hints seen of all hints for task i ;%
f>: Time until first hint request hf;
. > ohe (x) (x)
f3, f4, f5: Average, minimal, maximal time distance #’ miny (ht;””), max, (ht;”")

between hint requests for task i

f6: Number of wrong inputs for task i wrong;

Jf7: Number of wrong result checks of all checks for task i “Tf‘
f3: Time until first result check for task i rfi

. (a)
action . a
Z"ni', max, actwnf)
a;

fo, fio: Average, maximal time distance between actions

@ Springer

866 Int J Artif Intell Educ (2016) 26:855-876

Table 6 Best p-value, R? and Adjusted R? value for the log-file features mapped to perceived task-
difficulty labels per task (with p < 0.1, R2 >0.12)

Log-file feature per task p-value R? Adjusted R?
Number of hints seen 2.2e-16 0.2531 0.2499
Time until first hint request 1.2e-12 0.1962 0.1927
Maximal time distance between actions 7.5e-09 0.1344 0.1307

the examples of different classes in the space of the example vectors. By means of the
kernel trick and a kernel function also non-linear problems can be solved by an SVM.
Originally, an SVM solves binary classification problems but it can be extended to
multi-class classification problems (see Chang and Lin (2011)). For our experiments
we used the library LIBSVM and applied SVMs with an RBF-kernel and for each
SVM used we conducted a grid search (according to Hsu et al. (2011)) on each fold to
estimate the optimal values for the hyper parameters. Just as SVMs, DCTs and KNN
can be used for classification. DCTs are tree structures in which inner nodes represent
tests on an attribute, each branch represents the outcome of the test, each leaf node
represents a class label and a path from the root to a leaf represents a classification
rule. In KNN an example is classified by a majority vote of its neighbours, that is the
example is assigned to the class most common among its k nearest neighbours. These
k nearest neighbours are the k closest training examples in the feature space. Also for
DCT and KNN we conducted a grid search on each fold for the hyper parameters. We
used for our experiments the implementations from Weka (Hall et al. (2009)) for DCT
and KNN. For each experiment we applied a leave-one-student-out cross-validation
and oversampling for balancing the data (see the following sections for more details).
Oversampling (see e.g. Barandela et al. (2004)) is needed if the training set is unbal-
anced, i.e. if there are many examples of one class but less examples of another class,
as for the data used in this work. In those cases the class with less examples has to be
oversampled to balance the training set. The results of our experiments are reported
in terms of classification test error (number of incorrectly classified examples of all

Table 7 p-value, R? and Adjusted R? for the best combination of log-file features per task

Log-file features per task p-value R? Adjusted R?

7 Time spent on the task, 2.2E-16 0.4059 0.3875
number of hints seen,
time until first hint request,
average time distance between hint requests,
minimal time distance between hint requests,
time until first result check,

average time distance between actions

@ Springer

Int J Artif Intell Educ (2016) 26:855-876 867

examples within the test data) and F-measure. The F-measure is the harmonic mean
of Recall and Precision:

true positives . true positives
Recall = — ——, Precision = — —
true positives + false negatives true positives + false positives

Precision - Recall
F-measure = 2 - — 3)
Precision 4+ Recall
In formula (2) true positives are examples of a class ¢ which are correctly classified
as belonging to class c, false negatives are examples of a class ¢ incorrectly classified
as not belonging to class ¢ and false positives are examples of another class than ¢
which are incorrectly classified as belonging to class c. Hence, Recall reports how
many of all examples of a class ¢ (true positives + false negatives) are correctly
recognised as members of that class. Precision shows how many of the examples
classified as belonging to class ¢ (true positives + false positives) actually belong
to class c. These first experiments delivered an average classification test error of
25.24 % for the SVM, of 29.62 % for KNN and of 30.62 % for the DCT as well as
F-measures for the 3 classes of 0.67, 0.68, 0.84 for the SVM, of 0.66, 0.67, 0.80 for
KNN and of 0.60, 0.63, 0.83 for the DCT (see Table 9). These results show, that the
features are suitable for recognising the perceived task-difficulty per task and that
SVM performed best. However, for the application in a real system the errors still are
not satisfactory. Hence, in the next section we present an approach for improving the
perceived task-difficulty recognition performance.

Improving Perceived Task-Difficulty Recognition Performance

For improving the multi-class perceived task-difficulty recognition performance of
SVM, DCT and KNN we generalised the SVM plait approach of Janning et al.
(2014e). The generalised structure is shown in Fig. 4. For the generalised classifi-
cation plait the classifiers (Clasf in Fig. 4) — which can be SVM, DCT or KNN
— are i enough.nterweaved within a plait structure by combining the classification
decisions of classifiers in previous plait layers with the feature vectors and feeding
these combined new feature vectors into further classifiers. In this way the classifica-
tion performance is improved over the plait layers, as classifiers in subsequent layers
learn how to consider the classification decisions of previous classifiers to improve
their own classification performance. The feature vectors for the classifiers Clasf(o),

Clasfgo), Clasfgo) in the first plait layer Py stem only from the original feature vec-

tor X; = (x?, R xf), (. + 1) = number of features. The original feature vector X;
is divided into as many vectors as there are classifiers in one plait layer, i.e. the first
input vectors are:

Clasf” (1-h
W =x =0,) @
Clasf? (1-5H+1 @b
xP=x2 = x0T, &)
Clast® (s=D-DH+1
X = = D) (6)

@ Springer

868 Int J Artif Intell Educ (2016) 26:855-876

If [is too small then the input vectors xW x@ X ® also may overlap to ensure
that there are enough feature values within one vector for a good classification
performance of the single classifiers. The input feature vectors for the subsequent

layers within the plait structure are different. That is, the input feature vectors
@) (d) @
Clasf Clasf - .
) 0 e *h ,...,x?]asﬁ‘ for the classifiers Clasfﬁd) ,Clasf;d), ..., Clast? in
plait layer P, are enhanced by (s — 1) additional inputs:
(- Clasty™" «Clast@™D
=(x?,...,xi S

@)

Clasf\? (Clast” .Clast{/™" ~Clast@="
i i » i v g

Clasf{” Clasfy’ Clasf® " Clast{'™" ~Clasf@™
b AR/ R (A FAAEl ®)
by @by Clast™" Clasf ™" ~Clast!‘~"

=(xl """xi ,y, ,y, 1~-~’y,')

d—1 (d—1) d—1 (d—1)
Clast{ _ (Clast” Clast{"" 901%&271))_ L(G=D | AClasté~D AClasf(.if]))

i i Y IREEER = (x; s Xy Y s Y
©

Hd—1) Hd—1) -1
.. . AClasf A Clasf ~Clasf! .
These additional inputs 3, ' .3 * ,...,9 " are the outputs, i.e the

predicted class labels, of the classifiers Clasf(ldfl), Clasf(zdfl), e Clasf‘gd*l) of the

previous plait layer P _1). This means that Clasfﬁd), Clasféd), e, Clasfﬁd) take into
account the classification decisions — wrong or correct — of the previous classifiers
Clasf(ld_l) , Clasfgd_l), e Clasf§d_1) to improve their own classification. The gen-
eralised classification plait possesses 3 hyper-parameters: (1) the number (g + 1) of
plait layers, (2) the number s of classifiers within one plait layer, and (3) the number
n of features as input for one classifier within the plait.

For a better understanding of the plait we will explain it by an example. Lets
assume the number of plait layers is 7 (¢ + 1 = 7), the number of classifiers within
one plait layer is 3 (s = 3) and the number of features as input for one classi-
fier is 4 (n = 4), like in the experiments below. There are 11 log-file features for
perceived task-difficulty recognition per task (Table 5): fo, ..., fl0- Ass = 3 and
n =4, (fo, ..., fio) is split into 3 input vectors with 4 features each: (fy, ..., f3),
(F3sooos fo)s (f1, oo, f10) 6D x@ x3) in Fig. 4). When an example has to be
classified, its values for the 11 features are fed by means of these 3 input vectors into
the 3 different classifiers (Clasf\”’, Clasfy’, Clasf{ in Fig. 4) in the first plait layer
Py. The outputs y, y2, y3 of these classifiers, i.e. their classification decisions (1 for
hard, 2 for appropriate or 3 for easy), are added to the original input vectors, deliv-
ering 3 new input vectors for the classifiers Clasf(l), Clasfgl), Clasfgl) in the second
plait layer Pi: (fo, ..., f3, ¥2, ¥3), (f3, ..., f6, Y1, ¥3), (f7, ..., f10, Y1, ¥2). In this
way these classifiers take into account the classification decision of the classifiers
in the previous layer to improve their own classification decision. If y{, y}, y; are

the improved outputs of Clasfgl), Clasfg), Clasfgl), the classifiers Clasfgz), Clasféz),

Clasff) in the next plait layer P; are fed with the 3 input vectors (fo, ..., f3, 5. ¥3).

(f3, o fo: 1, ¥3)» (f7..... f10. 1. ¥5). This approach is repeated until the sev-
enth layer. Subsequently, the outputs y{', y5, y of the classifiers in the seventh layer

@ Springer

Int J Artif Intell Educ (2016) 26:855-876 869

are concatenated to a new vector (y{, y5, y3) which is fed into a second stage classi-
fier delivering the final classification decision y. The above described plait approach

will be proven by experiments in the following section.
Multi-Class Classification with SVM, DCT and KNN plait

In a second step we conducted experiments for solving the multi-class classifica-
tion problem by using the presented general plait structure with different classifiers
(SVM, DCT and KNN) to show that the plait structure also works for multi-class
classification problems and with different classifiers. The data set for our experi-
ments consists of 234 examples, 20 with label hard, 93 with label appropriate and
121 with label easy (as mentioned above, we consider only examples of tasks which
were not skipped, i.e. examples with label foo hard and too easy are not considered).
The numbers per student are shown in Table 8. According to Janning et al. (2014e)
we used for the experiments 3 classifiers within one plait layer as well as 4 features as
input for one classifier within the plait. We applied the plait in each case with 20 plait
layers and observed that the classification test error converges to one certain error
value (after at most 7 layers). As in the first experiments we conducted a leave-one-
student-out cross-validation and we applied oversampling for balancing the data (see
Table 8). We compared SVM, KNN and DCT plait against applying one single SVM,
KNN or DCT (applied to the full input feature vector) as well as the two ensemble
methods majority vote, which takes the majority decision of several single classifiers
(3, according to the number of SVMs within one plait layer) as classification output,
and stacking, which learns to combine the classification decisions of several single
classifiers (also 3) by a further classifier which gets the outputs of the other clas-
sifiers as input (like Clasfy in Fig. 4). The inputs for the 3 single classifiers of the
ensemble methods are the same as for the single classifiers within the first plait layer.
The results of the experiments are shown in Table 9, Figs. 2 and 3. In Table 9 the
average classification test errors and F-measures of a single SVM, DCT and KNN, of
majority and stacking ensembles and of SVM, DCT and KNN plait are reported. As

Table 8 Numbers of train (original and after oversampling) and test examples per student and class (1:
hard, 2: appropriate, 3: easy) for the experiments

Student 1 2 3 4
Accumulated label appropr./easy appropriate hard/appropr. easy

Test (class 1, 2, 3) 1,9,30 3,20, 10 10, 14,7 0,2,31

Train (class 1, 2, 3) original 19, 84,91 17,73, 111 10,79, 114 20,91, 90
Train (class 1, 2, 3) oversampling 91, 91, 91 111, 111, 111 114, 144, 144 91, 91, 91
Student 5 6 7 AVG
Accumulated label hard appropr./easy appropr./easy

Test (class 1, 2, 3) 6,19,0 0,23, 14 0, 6,29 3,13, 17
Train (class 1, 2, 3) original 14,74, 121 20, 70, 107 20, 87,92 17, 80, 104
Train (class 1, 2, 3) oversampling 121, 121, 121 107,107,107 92,92,92 104, 104, 104

@ Springer

870 Int J Artif Intell Educ (2016) 26:855-876

Table 9 Average classification test errors and F-measures of a single SVM, DCT and KNN, of majority

and stacking ensembles and of SVM, DCT and KNN plait (best results in bold)

SVM KNN DCT
Single classifier classification test error (%) 25.24 29.62 30.62
Single classifier F-measures (class 1, 2, 3) 0.67, 0.68,0.84 0.66, 0.67, 0.80 0.60, 0.63, 0.83
Majority ensemble classification test error (%) 24.47 30.85 33.53
Majority ensemble F-measures (class 1, 2,3) 0.73, 0.69,0.85 0.67, 0.66, 0.81 0.59, 0.59, 0.77
Stacking ensemble classification test error (%) 20.41 22.67 28.93
Stacking ensemble F-measures (class 1, 2,3) 0.71,0.76,0.87 0.64,0.73, 0.85 0.61, 0.64, 0.77
Plait classification test error (%) 14.54 12.84 20.57
Plait F-measures (class 1, 2, 3) 0.89, 0.84,0.90 0.83, 0.86, 0.95 0.67, 0.75, 0.83
Class. test error improvement compared 42 % 57 % 33 %

to single classifier

F-measure improvement compared to 33 %,24 %,7 % 26 %,28 %,17 % 12 %, 19 %, 0 %

single classifier

one can see, SVM performed best as single classifier. SVM, DCT and KNN stacking
outperform the single classifiers as well as majority ensemble, whereas SVM, DCT
and KNN plait outperform all other classification models and improve the classifi-
cation performance substantially. The best performing plait on average is the KNN
plait, except for class hard where the SVM plait performed best. Overall, both SVM
and KNN plait performed similarly good whereas DCT plait showed a weaker per-
formance. Figure 2 displays the classification test errors per student of single SVM,
KNN, DCT, of SVM, KNN, DCT majority and stacking and of SVM, KNN, DCT
plait. One can see in Fig. 2 that in each case the plait outperformed the other models,
except for SVM and DCT applied to the data of student 7. In Fig. 3 one can see the
F-measures per student of single SVM, KNN, DCT, of SVM, KNN, DCT majority
and stacking and of SVM, KNN, DCT plait for each class. Also this figure shows
that in most cases the plait performed best and builds an upper bound. Only in the
case of DCT the plait seems not always to work well. However, on average also the

SVM

DCT

KNN

-- sw ?
3

Majority | 1",

- Stacking | s
— SVMplait

Classification test error (%)
Classification test error (%)

pCT
Majority

Stacking
DCT plait

- - KNN
Majority

- Stacking
— KNN plait

Classification test error (%)

Student

Student

Student

Fig. 2 Classification test errors per student of single SVM, KNN, DCT, of SVM, KNN, DCT majority
and stacking ensemble and of SVM, KNN, DCT plait

@ Springer

Int J Artif Intell Educ (2016) 26:855-876 871

21 class 1 21 class 1 21 class 1
\ DCT
- Majority
- Stacking
@] . DCT plait .
o o o
5 5 5
3 3 3
8 8 8
8 o 3 o 3 o
o e e
d u d
SVM g : . KNN
34 - Majority 34 R . 34 * Majority
-~ Stacking P . -~ Stacking
— SVMplait Y . — KNN plait
T T
1 2 3 4 6 7 1 2 3 4 6 7 1 2 3 4 6 7
Student Student Student
2 class 2 2 class 2 2 class 2
o o o
5 5 5
3 3 3
8 8 8
8 o 8 o 8 o
£ &4 . £ &4 £ &4
i ~. L i
~
-- SWM -- DCT - - KNN %
4 |-+ Majority 4 |-+ Majority E . 4 |- Majority
--- Stacking --- Stacking N --- Stacking
— SVMplait — DCT plait N — KNN plait
1 2 H 4 5 6 7 1 2 3 4 s 6 7 ' 2 3 4 s 6 7
Student Student Student
2{ class3 2{ class3 2 W
N 7 /,". = | o S o
e e e e N
2 2 2
8 8 8
8 o 3 o 3 o
e e e
d d d
-- swM -- DCT - - KNN
34 - Majority 34 - Majority 34 - Majority
-~ Stacking - Stacking -~ Stacking
— SVM plait — DCT plait — KNN plait
T T
1 2 3 4 E 6 7 1 2 3 4 E 6 7 1 2 3 4 E 6 7
Student Student Student

Fig. 3 F-measures per student of single SVM, KNN, DCT, of SVM, KNN, DCT majority and stacking
ensemble and of SVM, KNN, DCT plait for each class

DCT plait can improve the F-measures (see Table 9). In summary, the results of the
experiments show that the plait approach (Fig. 4) is able to improve the classification
performance substantially (in terms of classification test error as well as F-measures).

Future Work in Supporting Task Sequencing by Perceived
Task-Difficulty Recognition

As mentioned above, the proposed perceived task-difficulty recognition shall support
the task sequencing approach for adaptive intelligent tutoring systems described in
Schatten and Schmidt-Thieme (2014) (see also Schatten et al. (2014), Schatten et al.
(2015)). This approach applies a performance prediction for future tasks and decides
by means of the predictions and the Vygotsky Policy (based on Vygotsky’s Zone of
Proximal Development) which task is chosen next. The performance prediction in
Schatten and Schmidt-Thieme (2014) is done by matrix factorization which is trained

@ Springer

872 Int J Artif Intell Educ (2016) 26:855-876

Fig. 4 Architecture of the y
generalised classification plait.
The plait is composed of ¢ + 1 I
layers Py, Py, ..., P,(gisa
hyper parameter). Each layer [Clasf; |
contains s classifiers (Clasf), _
which get different feature TR
vectors of length n as input (also
s and n are hyper parameters). :
In every plait layer from P; on e / zk\ *
the classifiers are retrained with (Clasf, @) (Clas,@) - - - (Clasf,@) Pq
enhanced input feature vectors. \ _/) / \¥/§
The enhancement is information / ‘(:~‘\‘\ji~~ ~~»:"'/YT*; e
from the previous layer, namely - - -
the outputs (the predicted class X
labels) of the classifiers in the e -~ / K*‘\ e ° .
previous plait layer. After the [Clast,®] | - [Clast,?) - - - [Clasf®) P,
last plait layer P, a further \\\/ ‘/ \44
classifier (Clasfy) is attached to / BN RS
achieve one common output y
delivering the final classification
result -~ s ’.\\\ Ve -

Clasf,") (Clast,V) - - - [Clast,™) P,

} / /\> _/ _/
*\
- (Clasf,?) P,
A
x(x@ - x®

with former performances of all students and learns how to predict the performances
of a student for future tasks by means of the performance information about other
students and the performance history of the considered student. That is, the output
are predicted performances for each task not yet seen by the student. In a next step
the approach applies the Vygotsky Policy: it compares each of these performance pre-
dictions with a threshold which stands for the performance of a student in the Zone
of Proximal Development, and chooses that task as next task which is closest to this
threshold. The threshold is a constant obtained from the outputs of a sensitiveness
analysis with simulated students (Schatten and Schmidt-Thieme (2014)) and discus-
sions with teachers and intelligent tutoring system experts (Schatten et al. (2015)).
The idea behind this approach is to keep students within the Zone of Proximal Devel-
opment, and therefore those tasks are chosen from that we predict that the student will
achieve a performance showing that the student is within the Zone of Proximal Devel-
opment. We aim to support this approach by perceived task-difficulty recognition in
three different ways:

e providing a personalised and adaptive threshold for the Vygotsky Policy,
e correcting the Vygotsky Policy threshold value,
e detecting misconceptions.

@ Springer

Int J Artif Intell Educ (2016) 26:855-876 873

Personalised Adaptive Threshold The threshold for the Vygotsky Policy in Schat-
ten and Schmidt-Thieme (2014) is the same constant value for every student.
However, the performance value related to the Zone of Proximal Development may
be different for different students and even different for different tasks for the same
student. Hence, using a personalised and adaptive threshold for each student would
supposedly be better. By means of our proposed perceived task-difficulty recognition
we can provide such a personalised adaptive threshold. The first step is to identify
students similar to the considered student, where similar means with similar per-
formances for the tasks the considered student has already worked on. For these
similar students a perceived task-difficulty recognition has to be done for all the tasks
which they worked on. The value for the threshold representing the Zone of Proximal
Development for the considered student can then be computed by taking the aver-
age of the performance scores which the k most similar students reached when they
felt appropriately challenged (task was appropriate), as we assume that a student
who does not feel over-challenged (class hard) nor under-challenged (class easy),
but appropriately challenged is in the Zone of Proximal Development. The similar
students identification and the computation of the personalised adaptive threshold
value for the Vygotsky Policy can be done by means of methods like k-Nearest-
Neighbour. Additionally, the average of the performance values which the considered
student reached when he/she felt appropriately challenged in former tasks can be
incorporated by including it into the average computation.

Correcting the Vygotsky Policy Threshold Value If the perceived task-difficulty
recognition classifies the student as over-challenged, although the Vygotsky Policy
sequencer has chosen a task with a predicted performance related to the Zone of
Proximal Development, then the threshold value may have been too small. So the
threshold value should be corrected to a higher value, i.e. the student gets next a
task with a larger predicted performance which is assumed to be easier for the stu-
dent. Conversely, if the perceived task-difficulty recognition classifies the student as
under-challenged, although the Vygotsky Policy sequencer has chosen a task with a
predicted performance related to the Zone of Proximal Development, then the thresh-
old value may have been too large. In this case the threshold value should be corrected
to a lower value, i.e. the student gets next a task with a smaller predicted performance
which is assumed to be more difficult for the student.

Detecting Misconceptions The comparison between (a) the performance of the stu-
dent, and (b) the recognised perceived task-difficulty can indicate situations in which
the student may not fully understand the underlying principles of the task to work
on although he/she thinks so. This could be the case, when the student felt to be
under- or appropriately challenged but performed very badly. In those cases the sys-
tem should provide hints or assign the student a next task that rather helps the student
to understand the underlying concepts. In the opposite case instead, when the stu-
dent felt over-challenged but performed very well, the system should provide positive
feedback to the student.

@ Springer

874 Int J Artif Intell Educ (2016) 26:855-876

Conclusions

We presented an approach for recognising the perceived task-difficulty of students
interacting with an intelligent tutoring system. For this purpose we proposed fea-
tures easily extracted from the log-file. These features report about the actions of the
students like average and maximal time distance between actions, where the under-
lying idea is that the longer the time distance between actions of the student the more
he/she probably thinks about the task and the more challenging is that task for the stu-
dent. By means of statistical tests and different classification experiments we showed
that these features are able to describe the perceived task-difficulty of a student. The
statistical tests showed that there are statistically significant feature combinations
and the classification experiments delivered good classification performances. Nev-
ertheless, additional tests and experiments with larger data should be conducted to
make the observations of this work generalisable. Additionally, we presented a kind
of ensemble method for the different tested classification models and showed that
this ensemble method is able to further improve the classification performance and
therefore the perceived task-difficulty recognition substantially. Finally, we presented
concepts for supporting task sequencing in adaptive intelligent tutoring systems by
the proposed perceived task-difficulty recognition. Future steps will be to integrate
the presented perceived task-difficulty recognition into an intelligent tutoring system
and evaluate the proposed approaches for supporting task sequencing by the output
of the perceived task-difficulty recognition.

Acknowledgments The research leading to the results reported here has received funding from the
European Union Seventh Framework Programme (FP7/2007 — 2013) under grant agreement no. 318051 —
iTalk2Learn project (www.italk2learn.eu).

References

Ai, H., Litman, D.J., Forbes-Riley, K., Rotaru, M., Tetreault, J., & Purandare, A. (2006). Using Sys-
tem and User Performance Features to Improve Emotion Detection in Spoken Tutoring Dialogs.
INTERSPEECH 2006, pp. 797-800.

Arroyo, 1., Woolf, B.P., Burelson, W., Muldner, K., Rai, D., & Tai, M. (2014). A Multimedia Adaptive
Tutoring System for Mathematics that Addresses Cognition, Metacognition and Affect. Int. J. Artif.
Intell. Educ. (24), (pp. 387-426): Springer.

Baker, R.S.J.D., Gowda, S., Wixon, M., Kalka, J., Wagner, A., Salvi, A., Aleven, V., Kusbit, G.,
Ocumpaugh, J., & Rossi, L. (2012). Towards Sensor-Free Affect Detection in Cognitive Tutor Alge-
bra. Proceedings of the 5th International Conference on Educational Data Mining (EDM 2012), pp.
126-133.

Barandela, R., Valdovinos, R., Siichez, J., & Ferri, F. (2004). The imbalanced training sample problem:
Under or over sampling? Structural, Syntactic, and Statistical Pattern Recognition, Springer, Lecture
Notes in Computer Science, pp. 806-814.

Boser, B.E., Guyon, 1., & Vapnik, V. (1992). A training algorithm for optimal margin classifiers. Pro-
ceedings of the Fifth Annual Workshop on Computational Learning Theory, (pp. 144-152): ACM
Press.

Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification and regression trees.
Wadsworth International Group, Belmont CA, ISBN 0-412-04841-8.

Chang, C.C., & Lin, C.J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2(3), 1-27.

@ Springer

www.italk2learn.eu

Int J Artif Intell Educ (2016) 26:855-876 875

Cichocki, A., Zdunek, R., Phan, A.H., & Amari, S.I. (2009). Nonnegative matrix and tensor fac-
torizations: applications to exploratory multi-way data analysis and blind source separation:
Wiley.

Cooper, D.G., Muldner, K., Arroyo, 1., Woolf, B.P., & Burleson, W. (2010). Ranking feature sets for
emotion models used in classroom based intelligent tutoring systems. User Modeling, Adaptation, and
Personalization (UMAP 2010), (pp. 135-146): Springer.

Cortes, C., & Vapnik, V. (1995). Support-vector network. Machine Learning, 20, 273-297.

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. EEE Transactions on Information
Theory, 13(1), 21-27. doi:10.1109/TIT.1967.1053964.

D’Mello, S., Picard, R., & Graesser, A. (2007). Towards An Affect-Sensitive AutoTutor. I[EEE Intelligent
Systems, 22(4), 53-61.

D’Mello, S.K., Craig, S.D., Witherspoon, A., McDaniel, B., & Graesser, A. (2008). Auto-
matic detection of learner’s affect from conversational cues. User Model User-Adap Inter.
doi:10.1007/s11257-007-9037-6.

D’Mello, S.K., & Graesser, A. (2012). Language and Discourse Are Powerful Signals of Student Emotions
during Tutoring. IEEE Transactions on Learning Technologies, IEEE Computer Society, 5(4), 304—
317.

Epp, C., Lippold, M., & Mandryk, R.L. (2011). Identifying Emotional States Using Keystroke Dynamics.
Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems (CHI 2011),
pp. 715-724.

Forbes-Riley, K., & Litman, D.J. (2004). Predicting emotion in spoken dialogue from multiple knowledge
sources. In Proceeedings of HLTNAACL 2004 (pp. 201-208).

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, .H. (2009). The WEKA Data
Mining Software: An Update. SIGKDD Explorations, 11(1).

Hsu, C.W., Chang, C.C., Lin, C.J., & A Practical Guide to Support Vector Classification. Technical report,
D.epartment.o.f.C.omputer.S.cience. National Taiwan University. (http://www.csie.ntu.edu.tw/cjlin/)
(2011).

Hu, X., Tang, L., Tang, J., & Liu, H. (2013). Exploiting Social Relations for Sentiment Analysis in
Microblogging. Proceedings of the Sixth ACM WSDM Conference (WSDM °13).

Janning, R., Schatten, C., & Schmidt-Thieme, L. (2013). HNNP — A Hybrid Neural Network Plait for
Improving Image Classification with Additional Side Information. Proceedings of the IEEE Inter-
national Conference on Tools with Artificial Intelligence (ICTAI 2013), Washington DC, USA, pp.
24-29.

Janning, R., Schatten, C., & Schmidt-Thieme, L. (2014a). Automatic Subclasses Estimation for a Better
Classification with HNNP Proceedings of the 21th International Symposium on Methodologies for
Intelligent Systems (ISMIS 2014), Lecture Notes in Artificial Intelligence: Springer.

Janning, R., Schatten, C., & Schmidt-Thieme, L. (2014b). Multimodal Affect Recognition for Adap-
tive Intelligent Tutoring Systems. Extended Proceedings of the 7th International Conference on
Educational Data Mining (EDM 2014), pp. 171-178.

Janning, R., Schatten, C., & Schmidt-Thieme, L. (2014c). Feature Analysis for Affect Recognition Sup-
porting Task Sequencing in Adaptive Intelligent Tutoring Systems. Proceedings of the European
Conference on Technology Enhanced Learning (EC-TEL 2014), pp. 179-192.

Janning, R., Schatten, C., & Schmidt-Thieme, L. (2014d). Local Feature Extractors Accelerating HNNP
for Phoneme Recognition Proceedings of the 37th German Conference on Artificial Intelligence (KI
2014), Lecture Notes in Artificial Intelligence: Springer.

Janning, R., Schatten, C., Schmidt-Thieme, L., Backfried, G., & Pfannerer, N. (2014e). An SVM Plait for
Improving Affect Recognition in Intelligent Tutoring Systems. Proceedings of the IEEE International
Conference on Tools with Artificial Intelligence (ICTAI 2014).

Janning, R., Schatten, C., & Schmidt-Thieme, L. (2015). Recognising perceived task difficulty from
speech and pause histograms. Proceedings of the 17th International Conference on Artificial Intelli-
gence in Education (AIED 2015).

Litman, D.J., & Forbes-Riley, K. (2004). Predicting Student Emotions in Computer-Human Tutoring Dia-
logues. Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL'04),
pp. 351-358.

Luz, S. (2013). Automatic identification of experts and performance prediction in the multimodal math
data corpus through analysis of speech interaction. Second International Workshop on Multimodal
Learning Analytics, Sydney Australia.

@ Springer

http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1007/s11257-007-9037-6
http://www.csie.ntu.edu.tw/cjlin/

876 Int J Artif Intell Educ (2016) 26:855-876

Mavrikis, M. (2008). Data-driven modelling of students’ interactions in an ILE. Proceedings of the
International Conference on Educational Data Mining (EDM 2008), pp. 87-96.

Moore, J.D., Tian, L., & Lai, C. (2014). Word-level Emotion Recognition Using High-Level Features.
Computational Linguistics and Intelligent Text Processing (CICLing 2014), pp. 17-31.

Morency, L.P,, Oviatt, S., Scherer, S., & Weibel, N. (2013). ICMI 2013 grand challenge workshop on mul-
timodal learning analytics. Proceedings of the 15th ACM on International conference on multimodal
interaction (ICMI 2013), pp. 373-378.

Pardos, Z.A., Baker, R.S.J., San Pedro, M., Gowda, S.M., & Gowda, S.M. (2014). Affective States and
State Tests: Investigating How Affect and Engagement during the School Year Predict End-of-Year
Learning Outcomes. Journal of Learning Analytics, 1(1), 107-128. Inaugural issue.

Purandare, A., & Litman, D. (2006). Humor: Prosody Analysis and Automatic Recognition for F * R * I
*E*N*D * S * Proceedings of the 2006 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2006), pp. 208-215.

Qi, F, Bao, C., & Liu, Y.A. (2004). novel two-step SVM classifier for voiced/unvoiced/silence classifica-
tion of speech. International Symposium on Chinese Spoken Language Processing, pp. 77-80.

Robison, J., McQuiggan, S., & Lester, J. (2009). Evaluating the consequences of affective feedback in
intelligent tutoring systems. 3rd International Conference on Affective Computing and Intelligent
Interaction and Workshops (ACII 2009), pp. 1-6.

Sadegh, M., Ibrahim, R., & Othman, Z.A. (2012). Opinion Mining and Sentiment Analysis: A Survey.
International Journal of Computers & Technology, 2(3).

Saif, H., He, Y., & Alani, H. (2012). Semantic Sentiment Analysis of Twitter. Proceedings of the 11th
International Semantic Web Conference (ISWC 2012).

San Pedro, M.O.C., Baker, R.S.J.D., Bowers, A., & Heffernan, N. (2013). Predicting College Enrollment
from Student Interaction with an Intelligent Tutoring System in Middle School. Proceedings of the
6th International Conference on Educational Data Mining (EDM 2013), pp. 177-184.

Schatten, C., & Schmidt-Thieme, L. (2014). Adaptive Content Sequencing without Domain Information.
Proceedings of the Conference on computer supported education (CSEDU 2014).

Schatten, C., Janning, R., Mavrikis, M., & Schmidt-Thieme, L. (2014). Matrix Factorization Feasibil-
ity for Sequencing and Adaptive Support in Intelligent Tutoring Systems. Proceedings of the 7th
International Conference on Educational Data Mining (EDM 2014), pp. 385-386.

Schatten, C., Janning, R., & Schmidt-Thieme, L. (2015). Integration and Evaluation of a Matrix Factor-
ization Sequencer in Large Commercial ITS. Proceedings of the 29th AAAI Conference on Artificial
Intelligence (AAAILS).

Schuller, B., Batliner, A., Steidl, S., & Seppi, D. (2011). Recognising realistic emotions and affect in
speech: State of the art and lessons learnt from the first challenge. Speech Communication: Elsevier.

Ting, K.M., & Witten, L.H. (1999). Issues in stacked generalization. Journal of artificial intelligence
research, 10, 271-289.

Vygotsky, L.1.S. (1978). Mind in society: The development of higher psychological processes: Harvard
university press.

Wang, Y., & Heffernan, N. (2011). Extending Knowledge Tracing to allow Partial Credit: Using Contin-
uous versus Binary Nodes. Artificial Intelligence in Education, Lecture Notes in Computer Science,
7926, 181-188.

Woolf, B., Burleson, W., Arroyo, 1., Dragon, T., Cooper, D., & Picard, R. (2009). Affect-aware tutors:
recognising and responding to student affect. International Journa of Learning Technology, 4(3/4),
129-164.

Worsley, M., & Blikstein, P. (2011). What’s an Expert? Using Learning Analytics to Identify Emergent
Markers of Expertise through Automated Speech, Sentiment and Sketch Analysis. Proceedings of the
4th International Conference on Educational Data Mining (EDM ’11), pp. 235-240.

@ Springer

	Perceived Task-Difficulty Recognition from Log-file Information for the Use in Adaptive Intelligent Tutoring Systems
	Abstract
	Introduction
	Related Work
	Log-File Features
	Recognising Accumulated Perceived Task-Difficulty
	Recognising Perceived Task-Difficulty per Task

	Improving Perceived Task-Difficulty Recognition Performance
	Multi-Class Classification with SVM, DCT and KNN plait

	Future Work in Supporting Task Sequencing by Perceived Task-Difficulty Recognition
	Personalised Adaptive Threshold
	Correcting the Vygotsky Policy Threshold Value
	Detecting Misconceptions

	Conclusions
	Acknowledgments
	References

