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Abstract Advanced learning technologies are reaching a new phase of their evolution
where they are finally entering mainstream educational contexts, with persistent user
bases. However, as AIED scales, it will need to follow recent trends in service-oriented
and ubiquitous computing: breaking AIED platforms into distinct services that can be
composed for different platforms (web, mobile, etc.) and distributed across multiple
systems. This will represent a move from learning platforms to an ecosystem of
interacting learning tools. Such tools will enable new opportunities for both user-
adaptation and experimentation. Traditional macro-adaptation (problem selection) and
step-based adaptation (hints and feedback) will be extended by meta-adaptation (adap-
tive system selection) and micro-adaptation (event-level optimization). The existence of
persistent and widely-used systems will also support new paradigms for experimenta-
tion in education, allowing researchers to understand interactions and boundary condi-
tions for learning principles. New central research questions for the field will also need
to be answered due to these changes in the AIED landscape.
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Introduction

Initial efforts to bring learning technology into schools faced hardware hurdles, such as
insufficient computing resources. Later efforts encountered serious barriers related to
matching technology to teachers’ beliefs, pedagogy, and resource constraints. While all
of these barriers are still relevant, learning technology is endemic in higher education
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and has made significant footholds in K-12 schools, with estimates of 25–30 % of
science classes using technology as early as 2012 (Banilower et al., 2013).
Correspondingly, an influx of investment into educational technology has occurred,
with online learning doubling from a $50b industry to a $107b industry in only three
years (Monsalve, 2014).

Future barriers will not be about getting learning technology into schools: they will
be about competing, integrating, and collaborating with technologies already in
schools. This is not an idle speculation, as it is already occurring. In a recent multi-
year efficacy study to evaluate a major adaptive learning system, some teachers started
using grant-purchased computers to use other math software as well (Craig et al.,
2013). After working for many years to get teachers to use technology, the point may
come where they are using so many technologies that it is difficult to evaluate an
intervention in isolation.

Some research-based artificial intelligence in education (AIED) technologies have
already grown significant user bases, with notable examples that include the Cognitive
Tutor (Ritter et al., 2007), ALEKS (Falmagne et al., 2013), and ASSISTments
(Heffernan et al., 2006). Traditionally non-adaptive systems with large user bases, such
as Khan Academy and EdX, have also started to add basic adaptive learning and other
intelligent features (Khan Academy, 2015; Siemens, 2013).

Large-scale online platforms are not just the future of learning, but they are also the
future of research. Traditional AIED studies have been limited to dozens to hundreds of
participants, sometimes just for a single session. While such studies will remain
important for isolating new learning principles and collecting rich subject data (e.g.,
biometrics), large-scale platforms could be used to run continuously-randomized trials
across thousands of participants that vary dozens or even hundreds of parameters
(Mostow and Beck 2006; Liu et al., 2014). Even for AIED work not based on such
platforms, it is increasingly feasible to “plug in” to another system, with certain systems
serving as active testbeds for 3rd-party experiments (e.g., ASSISTments and EdX).

The difference is qualitative: rather than being limited to exploring a handful of
factors independently, it will be possible to explore the relative importance of different
learning principles in different contexts and combinations. In many respects, this means
not just a change to the systems, but to the kinds of scientific questions that can and will
be studied. These opportunities raise new research problems for the field of AIED. A
few areas related areas will reshape educational research: Distributed and Ubiquitous
Intelligent Tutoring Systems (ITS), Four-Loop User Adaptation, AI-Controlled
Experimental Sampling, and Semantic Messaging. Some new frontiers in each of these
areas will be discussed.

Distributed and Ubiquitous AIED

As implied by the title, AIED technologies are approaching a juncture where many
systems will be splitting up into an ecosystem of reusable infrastructure and platforms.
The next generation of services will be composed of these services, which may be
hosted across many different servers or institutions. More specifically, we may be
reaching the end of the traditional four-component ITS architecture with four modules:
Domain, Pedagogy, Student, and Communication (Woolf, 2010). While the functions
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of all these modules will still be necessary, there is no reason to think that any given ITS
must contain all these components, in the sense of building them, controlling them, or
owning them. The future for ITS may be to blow them up so that each piece can be
used as a web-service for many different learning systems.

With respect to other online technologies, learning technology is already behind. On
even a basic blog site, a user can often log in using one of five services (e.g., Google,
Facebook), view adaptively-selected ads delivered by cloud-based web services that
track users across multiple sites, embed media from anywhere on the internet, and
meaningfully interact with the site on almost any device (mobiles, tablets, PC). In short,
most web applications integrate and interact with many other web services, allowing
them to be rapidly designed with robust functionality and data that no single application
would be able to develop and maintain.

The underlying drive and principles for breaking AIED down into components and
services is hardly new. Work on this area started over two decades ago (Brusilovsky,
1995; Futtersack & Labat, 1992) and lack of progress was noted not long after
(Roschelle & Kaput, 1996). The principles discussed at that time for integrating
distributed systems still remain valid today (e.g., whiteboard architectures, agent-
oriented designs). The failure to embrace those designs was likely due to a lack of
absolute need: the use of educational technology was low, there were not many
platforms to integrate, and architectures for distributed web-based services were still
in their infancy. By comparison, in the modern day, a high school student could take a
tutorial and set up an Amazon micro-service within a day.

From the standpoint of AIED now, moving toward distributed systems is an
existential necessity. Without pooling capabilities or sharing components, seri-
ous academic research into educational technologies may be boxed out or
surpassed by the capabilities of off-the-shelf systems (which may or may not
report generalizable findings). Academic institutions and research-active com-
mercial systems should be motivated to share and combine technologies to
build more effective and widely-used learning technology. This model of
collaborative component design stands alone in making platforms that co-exist
with major commercial endeavors, such as web-browsers (FireFox), operating
systems (Linux), and statistical packages (R; R Core Team, 2013). Moreover,
service-oriented computing allows for a mixture of free research applications
and commercial licensing of the same technologies.

The benefits of moving toward service-oriented AIED will be substantial. First, they
should enable AIED research to deeply specialize, while remaining widely applicable
due to the ability to plug in to other platforms with large and sustained user bases. In
such an ecosystem, user adaptation will be free to expand beyond the canonical inner
loop and outer loop model (VanLehn, 2006). Composing and coordinating specialized
AIED services will also demand greater standardization and focus on data sharing
between systems. Approaches for generating ITS tasks based on knowledge bases
should also be complementary (e.g., El-Sheikh & Sticklen, 2002), since these could
potentially plug in to existing services for advanced functionality. While this process
may be painful initially, standards for integrating data across multiple systems would
enable the development of powerful adaptation, analytics, and reporting functionality
that would greatly reduce barriers for developing AIED technology and studying its
effects on learners.
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Four-Loops: Above Outer Loops and Under Inner Loops

One implication of scaling up AIED and moving beyond the standard four-component
ITS model is that adaptation to users may become prevalent at grain sizes larger and
smaller than traditional ITS. VanLehn (2006) framed the adaption from tutoring
systems as consisting of an outer loop (selecting problems) and an inner loop (provid-
ing help and feedback on specific problem steps). These are often referred to as “macro-
adaptivity” and “step-based adaptivity.” However, recent developments have shown the
first steps toward “meta-adaptivity,” where the system adapts to the user by shifting the
learner to an entirely different ITS system (which may then adapt to the user different-
ly). Likewise, research on “micro-adaptivity” has looked at the benefits for using data
to fine-tune interactions below the problem step level (e.g., keystroke-level inputs,
emotion detection, presentation modes or timing of feedback; Graesser, 2011). This
implies a four-loop model for user adaptation, as shown in Fig. 1. To note, there may be
other loops of interest and VanLehn (2015) has likewise more recently framed ITS
behavior more generally as regulatory loops. However, from a design standpoint, the
boundaries between ITS systems, learning activities, and steps of a learning activity are
likely to remain key decision points for adaptive systems (i.e., four natural loops).

Meta-Adaptation: Handoffs Between Systems

Meta-adaptation has only become possible recently, due to increasing use and maturity
of AIED technology. In the past, learning technologies such as ITS were trapped in
sandboxes with no interaction. Due to service-oriented approaches, systems have taken
the first steps toward real-time handoffs of users between systems. For example, in the

Fig. 1 Four-Loop User Adaptation
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recent Office of Naval Research STEM Grand Challenge, two out of four teams
integrated multiple established adaptive learning systems: Wayang Outpost with
ASSISTments (Arroyo et al., 2006; Heffernan et al., 2006) and AutoTutor with
ALEKS (Nye et al. 2015). Other integration efforts are also underway as part of the
Army Research Lab (ARL) Generalized Intelligent Framework for Tutoring (GIFT)
architecture, which is built to integrate external systems (Sottilare et al., 2012) and
version of AutoTutor has also been integrated with GIFT.

These initial integrations represent the first steps toward meta-adaptation: transfer-
ring the learner between different systems based on their needs and performance. This
type of adaptation would allow learners to benefit from the complementary strengths of
multiple systems. For example, learners that benefit most from animated agents might
be sent to systems such agents (i.e., trait-based adaptation). Alternatively, different
types of learning impasses or knowledge deficiencies may respond best to learning
activities in different systems (i.e., state-based adaptation). One problem that this
approach might mitigate is the issue of wheel spinning, where an adaptive system
detects that it cannot serve the learner’s current needs (Beck & Gong, 2013). As such,
one factor for switching between systems might be the estimated learning curves for
different knowledge components, which could identify plateaus (e.g., wheel spinning)
or comparative advantages (e.g., systems that specialize in certain topics or stages of
learning).

Meta-adaptation can also mean referring the learner to a human instructor, tutor, or
peer. This intersects with computer-supported collaborative learning (CSCL), which
has a long history of trying to optimize how and when different educational stake-
holders should interact (e.g., learners, teachers, parents; Kirschner & Erkens 2013;
Stahl, 2010). CSCL research highlights the importance of groups of learners, both for
motivation (e.g., leveraging friendships, authority roles, and other social ties) and as
learning tasks (e.g., guided discussions). An obvious implication to this is that learners
might not switch between systems in isolation, but might instead might transition in
cohorts, switch systems to follow friends, or directed to systems daily by an instructor
(e.g., web-based homework). While a review of different CSCL mechanisms would be
broader than the scope of this paper, research topics such as when to give guidance
(e.g., alert a tutor or instructor) and how to build and maintain effective learning teams
will be highly relevant. These mechanisms would also be particularly relevant for any
possible meta-adaptation for self-directed learning, where teams of learners might need
to be emergent rather than prescribed by a school.

Some intuitions from CSCL are also relevant to the process of meta-adaptation, in
that an effective combination of learning technologies must work similarly to a human
learning team as described by Kirschner & Erkens (2013, pp. 4): “mutual performance
monitoring (keeping track of each other’s task activities), back-up behavior (backing up
other member’s failures) and adaptability (ability to adjust task or team strategies).” In
intelligent systems, these three measures are might framed as sharing data, averting
wheel spinning (i.e., the failure of a system to help a learner), and adaptively coordi-
nating multiple systems. Moreover, this also implies that, much as introducing a new
learner to a team involves these costs, introducing learners to a new system, activity, or
interface has similar costs. This means that the gains from system transitions need to
exceed these overhead costs. As such, conceptualizing an ITS as a new “member” of a
CSCL team of learners can uncover potential pitfalls (e.g., when learning an interface
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exceeds the benefits for faster learning in a new system) and may be one useful way to
frame meta-adaptivity until more specialized theories emerge.

In general, meta-adaptation involves passing students and knowledge between
different adaptive learning contexts (both AI-based and human). Based on that view,
it is important to consider how meta-adaptation currently occurs. For example, in
traditional classes, teachers are the meta-adaptive controller: they choose between
systems and student interactions, apply them during the curriculum, and try to learn
about how and when they help students. Computer-based meta-adaptation (e.g., data
trends, recommendations) for teacher-support might be a natural advance, and would
also allow modeling how teachers make their decisions for choosing systems (e.g., a
living “What Works Clearinghouse” for interleaving multiple systems in a course).

Meta-adaptation is the maximum possible grain size, which makes it somewhat
different from standard adaptation because users are transferred to an entirely different
system. This type of adaptation likely requires either distributed adaptation or brokered
adaptation. Distributed adaptation would involve individual systems deciding when to
refer a learner to a different system and possibly trusting the other system to transfer the
student back when appropriate. This would be analogous to doctors in a hospital, who
rely on networks of specialists who share charts and know enough to make an
appropriate referral, but may use their own judgment about when and how they make
referrals. On the converse, brokered adaptation would require a new type of service
whose purpose is to monitor student learning across all systems (i.e., a student model
integrator) and make suggestions for appropriate handoffs. This service would be
consulted by each participating AIED system, probably as part of their outer loop. In
the long term, such a broker may be an important service, because it could help
optimize handoffs and ensure that students are transferred appropriately. Such brokers
might also play a role for learners to manage their data and privacy settings. Other
models for coordinating handoffs might also emerge over time.

Micro-Adaptation: Data-Optimization and Event Streams

In addition to adaptivity at the largest grain size (selecting systems), research on the
smallest grain sizes (micro-adaptation) is also an important future area. Micro-
adaptation involves optimizing for and responding to the smallest level of interactions,
even those that are not associated with a traditional user input on a problem step. For
anything but simple experiments, this type of optimization and adaptation is too fine-
grained and labor-intensive to perform by hand at scale, meaning that it will need to
rely on data-driven optimizations such as reinforcement learning. Chi et al. (2014) used
reinforcement learning to optimize dialog-based ITS interactions in the Cordillera
system for Physics, which showed potential gains of up to 1σ over poorly-optimized
dialog or no dialog. Dragon Box has taken a related approach by optimizing for low-
level user interface and click-level data, by applying trace-based models to find
efficient paths for learning behavior and associated system responses (Andersen et
al., 2013).

These lines of research represent the tip of the iceberg for opportunities for micro-
adaptation. Avariety of low-level data streams have not yet been leveraged. Continuous
sensor data, such as emotion sensors or speech input waveforms, may present rich
opportunities for exploring fine-grained user-adaptation based on algorithmic
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exploration of possible response patterns. Low-level user interface optimization may
also help improve learning, such as human-computer interaction design or keystroke-
level events or mouse-over actions (i.e., self-optimizing interfaces).

Both the strength and the drawback of micro-optimization is that it is will tightly fit
the specific user interface or content (even down to specific words in text descriptions).
Optimizing for a particular presentation of a problem can lead to learning efficiency
gains by emphasizing parts that are salient to learning from that specific case, while
skipping or downplaying other features. However, micro-level optimization will likely
suffer from versioning issues (e.g., changes to small problem elements potentially
invalidating prior data and policies) and also transferability issues (e.g., an optimized
case not transferring well from a desktop to a mobile context).

Solutions to this problem are non-trivial and will require serious advances for both
machine learning and knowledge representation. Services for micro-adaptation can be
thought of as a few types: ones that model relatively universal patterns (e.g., emotion
detectors based on biometrics such as pupil dilation) and ones that model context-
specific interactions that require burn-in data before they work effectively (e.g., most
natural language classifiers). At present, many models for micro-optimization (e.g.,
reinforcement learning) have not transferred well to new tasks or contexts, even for the
same domain (Chi et al., 2014). Research on how to weight the relevance of prior data
will be required to address issues related to altered problems or new contexts (e.g.,
mobile devices, classroom vs. home, different cultural contexts). This contains three
problems that are only partially-solved: how to estimate the scope over which model
components can be generalized (e.g., multi-level cross-validation), how to integrate
context-specific evidence into a generalized model, and how much to weigh evidence
which differs along different dimensions of context (e.g., learner, system, task, prob-
lem, age of the evidence). With that said, even in the pessimistic cases where micro-
level adaptation only works for a specific version of a specific problem, if the number
of sessions needed to collect useful burn-in data is fairly small (e.g., less than one
hundred), there could still be strong benefits for many systems.

AI-Controlled Experimental Sampling

Techniques for micro-adaptation may also reshape experimental methods. Artificial
intelligence can play a major role in the experimental process itself, which is a type of
efficient search problem. Educational data mining research has already started looking at
dynamically assigning subjects to different learning conditions based on multi-armed
bandit models (Liu et al., 2014). Multi-armed bandit models assume that each treatment
condition is like a slot machine with different payout distributions (e.g., student learning
gains). Likewise, cognitive experiments to test different models have used adaptive design
optimization to search the space more efficiently (Cavagnaro et al., 2010). Adaptive
sampling methods are common in medical research, where it is important to stop
treatments that show harms or a consistent lack of benefit. For intelligent systems, they
can be used to explore new strategies, while pruning ineffective ones.

The field is only taking its first baby steps for these types of experimental designs.
Fundamental research is needed to frame and solve efficient-search problems present in
AIED experiments. Based on varying different parameters and interactions in the
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learning experience, learning environments can search for interpretable models that
predict learning gains. In the long term, models for automated experimentation may
even allow comparing the effectiveness of different services or content modules, by
randomly selecting them from open repositories of content.

The most difficult aspect of this problem is likely to be the interpretability. While
multi-arm bandit models can be calibrated to offer clear statistical significance levels
between conditions, models that traverse the pedagogical strategy space are often too
granular to allow for much generalization. For example, some popular models for large
learning environment focus on efficient paths or traces of learning behavior and
associated system responses (Andersen et al., 2013). Unfortunately, these models are
often not easily generalizable: they may capture issues tied to the specific system or
may tailor instruction to specific problems so tightly that it is difficult to infer
theoretical implications (Chi et al., 2014). However, other approaches focusing on
model comparison (e.g., Cavagnaro et al., 2010) avoid these pitfalls, but with the
limitation that they require pre-existing hypothesized models to compare. Approaches
that lie between these two extremes are likely to be most productive (i.e., automating
the process of theoretically-guided exploration), but such methods are not yet mature.

New techniques are needed that can automatically explore the space of pedagogical
designs, but that can also output interpretable statistics that are grounded in theories and
concepts that can be compared across systems. This is a serious challenge that probably
lacks a general algorithmic solution. Instead, such mappings will probably be deter-
mined by the constraints of learning and educational processes. A second major
challenge is the issue of integrating expert knowledge with statistically-sampled infor-
mation. Commonly, expert knowledge is used to initially design a system (e.g., human-
defined knowledge prerequisites), which is later replaced by a statistically-inferred
model after enough data is collected. However, in an ideal world, these types of
heterogeneous data would be gracefully integrated (e.g., treating expert knowledge as
Bayesian prior weights). Future research in AIED will need to identify where this sort
of expert/statistical hybrid modeling is needed, and match these problems with tech-
niques from fields of AI and data modeling that specialize in these issues.

Ultimately, a goal of this work should be to blur the lines between theory and
practice by building systems that can both report and consume theoretically-relevant
findings. It should be possible to build general service-oriented experimental frame-
works that help determine a policy to determine the assignment of independent
variables for an experimental participant, based on a space of possible experimental
variables and data on results from those variables. By assigning theoretical constructs to
the input and output variables for such an optimization, this approach would allow
directly comparing theories and also for exploring interactions between theoretically-
grounded constructs. The payoff for such research would be much richer theory: rather
than merely causal connections, efficient exploration could be used to find relative
strengths, function approximations, and other relationships.

Semantic Messaging: Sharing Components and Data

To share technology effectively, AIEDmustmove toward open standards for sharing data
both after-the-fact (i.e., repositories) and also in real-time (i.e., plug-in architectures). The
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first steps in these directions have already been taken. Two notable data repository
projects with strong AIED roots exist: the Pittsburg Science for Learning Center
(PSLC) DataShop (Koedinger et al., 2010) and the Advanced Distributed Learning
(ADL) xAPI standards for messaging and learning record stores (LRS; Murray &
Silvers, 2013). The IMS Global Specifications are also a move in this direction (IMS
Global, 2015). Notably, these standards focus primarily on what happened (e.g. event
streams), rather describing how the learning task works (e.g., metadata classifications).

Due to solid protocols in messaging technologies, the technical process of exchang-
ing data between systems at runtime is not onerous. The larger issue is for a receiving
system to actually apply that data usefully (e.g., understand what it means). Hidden
beneath this issue is a complex ontology alignment problem. In short, each learning
technology frames its experiences differently. When these experiences and events are
sent off to some other system, the designers of each system need to agree about what
different semantics mean. For example, one system may say a student has “Completed”
an exercise if they viewed it. Another might only mark it as “Completed” if the learner
achieved a passing grade on it. These have very different practical implications.
Likewise, the subparts of a complex activity may be segmented differently (e.g.,
different theories about the number of academically-relevant emotions). While efforts
have been made to work toward standards, this seldom solves the problem: the issue
with standards is that there tends to be so many of them.

So then, ontology development must play a key role for the future of ITS interopera-
bility. These standards must first cover learner data (e.g., events, assessments), but in order
to leverage theoretical principles, should eventually cover different types of learning tasks,
pedagogical theories, and subject matter domains (Mizoguchi & Bourdeau, 2000). There
are multiple ways that this might occur. Assuming the number of standards is countable, it
would be sufficient to have an occasional up-front investment to develop and update
explicit mappings between ontologies by hand. While this is low-tech, it works when the
number of terms is fairly small. For larger ontologies of AIED behavior and events, it may
be possible to align ontologies by applying both coding systems to a shared task (e.g., build
benchmark tasks that are then marked up with messages derived from each ontology).

By collecting data on messages from benchmark tasks, it may be possible to
automate much of the alignment between ontologies, particularly for key aspects such
as assessment. Research on Semantic Web technologies is also very active, and may
offer other effective solutions to issues of ontology matching and alignment (Shvaiko &
Euzenat, 2013). The final approach is to simply live without standards and allow the
growth of a folksonomy: common terms that are frequently used. These terms can then
become suggested labels, with tools that make their use more convenient and prevalent.
The one approach that should not be taken is to try to develop a super-ontology or new
top-down standard for the types of information that learning systems communicate.
While there are roles for such ontologies, top-down ontologies have seldom achieved
much support within research or software development communities.

Discussion: Challenges and Research Questions for AIED

Across the prior sections, certain challenges emerged as major challenges for the next
few decades of the field. Many of these questions are related to modeling pedagogical

764 Int J Artif Intell Educ (2016) 26:756–770



expertise and pedagogical domain knowledge (a longstanding focus of the field), but
are reframed due to issues of scaling up (e.g., bigger data sets, varied data, greater
content coverage). The following research questions will be increasingly important
over the next two decades:

Data Integration:

1. How can learning data from different representations be integrated?
2. How can learning data from different contexts be integrated?

Meta-Adaptation:

1. How and when should data sharing occur between different systems?
2. Who should control handoffs of students between systems, when should they

occur, and when should such handoffs be declared to the learner?

Micro-Adaptation:

1. When should researchers optimize for certain types of reward functions?
2. What micro-optimizations produce increased learning?

Pedagogy vs. Domain Expertise in Authoring:

1. What are the key differences between domain knowledge and pedagogical domain
knowledge?

2. How can domain pedagogy experts and master authors be identified?

As systems are more commonly combined and interoperating, data science will be a
major topic to integrate this data. This topic covers a range of problems, some of which
are obvious and some of which more subtle. A longstanding problem for data integra-
tion has been mapping between different representations (data structures) and ontol-
ogies (semantics). This has already been noted earlier and is already a focus of the
AIED community. The general consensus on this problem is that there is no silver
bullet, and that either explicit or implicit ontology mapping underlies this problem.
Greater integration with Semantic Web and agent-based communication research may
be valuable for approaching this problem, but it may remain a longstanding challenge.

With that said, different representations for data do not onlymean different data formats
or semantic relationships for data in computer systems. They may also mean the qualita-
tively different kinds of knowledge used by machines versus humans. For example, it is
often hard to integrate human expert’s mental models with machine learning models. The
underlying problem is that machine learningmodels tend to be statistical inferences from a
certain number of observed examples, while expert models tend to be symbolic or
subsymbolic representations that were inferred from both an unknown number of ob-
served examples and also other experts’ symbolic representations with some assumed
level of credibility. A common “solution” to this problem is to collect expert data, then
collect training examples for machine learning, and finally throw out the expert data once
the machine learning model outperforms the experts on some task. This process describes
the de-facto standard for determining knowledge components and their prerequisite
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relationships for a set of tasks, as well as other major research topics in AIED. Ideally,
future research will need to find models that gracefully integrate both types of data.

A related problem that will become more critical is the issue of integrating data from
different contexts. Learning contexts may differ due to the learning tasks (e.g., different
AIED systems, different versions), student backgrounds (e.g., culture, goals), time-
based issues (e.g., forgetting, changing domain content, stale data), and a variety of
other differences. For example, in which cases will data collected in 2015 be mean-
ingful for inferences about students in 2035? To efficiently leverage data, we need to
understand how to weigh the relevance of different data sources for making certain
inferences. At present, this is often done by what amounts to a hand-picked Boolean
filter: data sets are selected for inclusion in an analysis. As data sources expand, this
will not be a reasonable option: algorithms will need measures to weight or exclude
data based on its relevance or importance for certain types of inferences.

In addition to data integration, data sharing will also be a major issue for
meta-adaptation. Meta-adaptation will raise serious issues at both the technical
and the societal level. At the technical level, this research needs to find
principles or standards for the grain size of information to share. This question
boils down to: what kinds of data do different types of learning systems need,
and when do they need it? At present, due to the lack of research on the topic,
it is not even entirely clear what types of data are useful to improve learning
when shared. Estimates of mastery for different knowledge components are
probably useful, but beyond that point is quite murky (e.g., Is it useful to
know how long a user has been in their most recent session? Would a learner’s
typing speed be useful to pass along?). This problem is somewhat analogous to
the earlier issue of weighting data: how can we estimate the relevance of data
in one system to another, and what thresholds for relevance are reasonable for
practical applications?

A second major technical issue is that real-life educational systems have
many stakeholders with legitimate reasons to control handoffs of students
between systems. AIED adaptive systems, teachers, and students themselves
all have an opinion on the next learning activity that they think a student
should do. Even with a single ITS and a single teacher, it can be difficult to
balance the teacher’s desire to teach certain topics to a class (e.g., curriculum
pacing) against the macro-adaptive loop of an ITS trying to maximize
learning for a specific student. Meta-adaptation increases such complexity by
an order of magnitude: students might switch between multiple adaptive sys-
tems, each with their own macro-adaptive goals, and each student might be
either learning independently or as part of a class cohort. There are also
questions about when such transitions should be seamless (e.g., like choosing
resources in an LMS) or explicit (e.g., like moving between websites using
links). Understanding the types of handoffs that both improve learning and are
acceptable to educational stakeholders is critical.

At the societal level, managing privacy concerns and data ownership will be another
major issue for meta-adaptation. While most academic data is fairly mundane, some
types can be quite sensitive. For example, a gaming detector might report that a student
is a rampant cheater and an emotion detector might report that a student is quick to
anger. Using data to improve learning outcomes must also be balanced with protecting
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students, but ethics for data sharing are still being revised to accommodate an
increasingly-connected educational world.

Micro-adaptation raises its own serious questions that tie-in strongly to the very
nature of educational research: what does it mean to improve education? Reward
functions for machine learning have close ties to assessment issues, where significant
research is still weighing the implications different measures such as near transfer tasks,
far transfer tasks, preparation for later learning, persistence in learning, and motivation
for later learning. However, computational reward functions will not accept a paragraph
of well-reasoned debate: reward payoffs for different types of tasks will need to be
assumed and tuned (e.g., inverse reinforcement learning). Such research will be
informed by research on educational assessment, but should also inform how we
interpret assessments across education. In the distant future, such questions may even
reach the political realm, where legislative debates consider the appropriate reward
metrics that educational technology should target.

Micro-adaptation will also open the door for exploring of optimizing different
features of the learning experience. This research has strong ties to research on user
interfaces, emotion recognition, and dialog-based tutoring, but may eventually explore
entirely new data sources and avenues for adaptation. Eventually, such research should
outline the holy grail of educational technology: maps of the types of features that are
meaningful to adapt to and relative value of different adaptive behaviors for certain
learning tasks and contexts.

Next, scaling up AIED will need to push the boundaries of authoring systems for
creating content. Currently, work on AIED authoring tends to be atheoretic and lacks
standardized processes for assessment and evaluation. Significant work has looked at
authoring tools (Murray, Blessing & Ainsworth, 2003), but much more work will still
be needed to understand effective methods for authoring different types of AIED
learning activities. Moreover, little work has looked at the converse: what makes an
effective AIED author? This ties in to the longstanding and controversial question of
tutoring expertise: how does one define an expert tutor or teacher? Assessments for
identifying domain experts have a long history and are well-established for many
domains. However, assessments for domain pedagogy experts (e.g., master teachers,
expert tutors) are significantly less clear. This exposes fundamental questions over the
dividing lines between domain expertise, domain-independent pedagogical expertise,
and domain pedagogy expertise. Understanding the differences between these types of
expertise and knowledge for different domains will be an important step for modeling
effective instruction in future AIED systems. This is because efficient development of
AIED depends on reuse: identifying the space for applying different instructional
techniques and domain knowledge is at the heart of that process.

Related to this, to create the best AIED content at a large scale, it will be necessary to
develop techniques to identify the best authors: experts in domain pedagogy who are
capable to expressing such knowledge using a set of authoring tools. At present, the
field lacks validated methodologies to approach this problem. Instead, this tends to be
handled as a human resources problem (e.g., hiring based on credentials and inter-
views) rather than a genuine research challenge for identifying potential experts who
know the domain, know how to teach it, and can also master the tools to record such
knowledge. In most domains, we have assessments for at most one of these skill sets
(i.e., domain expertise) and neither of the other two (i.e., domain pedagogy or
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expressing such pedagogy). To create the most effective content, the best authors must
be identified. This is because learning gains from AIED adaptation will still be
constrained by the underlying content: a useless hint remains a useless hint, no matter
when it is presented. As such, methods for discovering “master authors” should be an
important area for future research.

In general, moving toward services comes with costs and risks. For example,
designing effective distributed services requires different programming expertise:
service-oriented and agent-oriented programming means that asynchronous operations
become the norm rather than the exception. Second, distributed services increase the
risk that a key service may fail or be discontinued. This is particularly relevant for
research projects, which seldom have a funding stream for long-term support. Finally,
integrating distributed services is a type of collaboration, which requires investment to
understand others’ work. While these risks can be mitigated, practices to do so in
educational technology are not yet mature.

Closing Remarks

The future for AIED should be a bright one: expansion of learning software into
schools will ultimately result in unprecedented diversity and size of user bases. The
areas noted in this paper are only the first wave for new AIED opportunities. In time, it
will be possible to explore entirely new classes of questions, such as mapping out
continuous, multivariate functional relationships between student factors and pedagog-
ical effectiveness of certain behaviors. Systems such as personal learning lockers for
data would allow for longitudinal study of learning over time, either in real-time or
retrospectively. A major game-changer for future learning research will probably be
data ownership and privacy issues: data will exist, but researchers will need to foster
best-practices for data sharing, protection, and archiving.

With this wealth of data, researchers will be able to connect learning to other
relationships and patterns from less traditional data sources. In 20 years, the range of
commonly-available sensor data will be dizzying: geolocation, haptic/acceleration,
camera, microphone, thermal imaging, social ties, and even Internet-of-Things devices
such as smart thermostats or refrigerators. Moreover, the ecosystem of applications
leveraging this data will likewise be more mature: your phone might be able to tell a
student not only that their parents left them a voicemail, but that they sounded angry.
This event might then be correlated with a recent report card, and the consequences of
the interaction might be analyzed. Learning is a central facet of the human experience,
cutting across nearly every part of life. To that end, as life-long learning becomes the
norm, the relationship between life and learning will become increasingly important.
By consuming and being consumed in a distributed and service-oriented world, AIED
will be able to play a major role in shaping both education and society.
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