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Abstract Engagement influences participation, progression and retention in game-
based e-learning (GBeL). Therefore, GBeL systems should engage the players in order
to support them to maximize their learning outcomes, and provide the players with
adequate feedback to maintain their motivation. Innovative engagement monitoring
solutions based on players’ behaviour are needed to enable engagement monitoring in a
non-disturbing way, without interrupting the game-play and game flow. Furthermore,
generic metrics and automatic mechanisms for their engagement monitoring and
modelling are needed. One important metric that was used for engagement modelling
is TimeOnTask, which represents the duration of time required by the player to
complete a task. This paper proposes ToTCompute (TimeOnTask Threshold Compu-
tation), a novel mechanism that automatically computes - in a task-dependent manner -
TimeOnTask threshold values after which student engagement decreases with a given
percentage from his initial level of engagement (e.g., after 2 min student engagement
will fall with 10 % from his initial level). In this way the mechanism enables
engagement modelling at a higher granularity and further enables engagement-based
adaptation in GBeL systems. ToTCompute makes use of game-playing information and
EEG signals collected through an initial testing session. The results of an experimental
case study have shown that ToTCompute can be used to automatically compute
threshold values for the TimeOnTask generic engagement metric, which explains up
to 76.2 % of the variance in engagement change. Furthermore, the results confirmed
the usefulness of the mechanism as the TimeOnTask threshold value is highly
task-dependent, and setting its value manually for multiple game tasks would
be a laborious process.
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Introduction

An important motivation indicator is engagement that represents learner’s psycholog-
ical investment in learning, the effort directed towards learning, understanding or
mastery of the knowledge, and the willingness, need, desire and compulsion to
participate and be successful in the learning process (Saeed and Zyngier 2012).
Therefore, game-based e-learning (GBeL) systems should be able to engage the players
in order to support them to maximise their learning outcomes. Moreover, GBeL
systems should integrate engagement modelling and monitoring in order to provide
the player with adequate feedback and to personalise the game-play experience so to
maintain the player engaged for the duration of the game-play.

There are two main approaches that could be used for monitoring player’s engage-
ment: disturbing and non-disturbing (Ghergulescu 2013; Yearsley and Pothos 2014).
The first approach uses questionnaires and requires the player to fill in questionnaire
while playing the game (for example after each individual game task). However,
interrupting the game with questionnaires can negatively impact on the player’s
game-playing experience, their engagement and eventually their learning outcomes
(Cowley et al. 2008). Therefore, engagement monitoring should be performed in a non-
disturbing way, without interrupting the game-play. Non-disturbing methods make use
of game-play interaction monitoring and log information about the player’s behaviour,
and may use additional equipment (e.g., EEG, eye-tracking). Various metrics for
engagement monitoring have been proposed in the e-learning area, with the most
common being time-related metrics (Arroyo et al. 2010; Bica et al. 2006; Cocea and
Weibelzahl 2009, 2011; Ghergulescu and Muntean 2012a, 2012b; Johns and Woolf
2006). However, most metrics present a number of drawbacks such as being learning
material and system dependent, as well as being difficult to use for engagement
modelling without defining specific threshold values for the metrics’ interpretation.

This paper addresses the challenges mentioned above by proposing a novel solution
for modelling and monitoring the player’s engagement that makes use of the
TimeOnTask generic engagement metric and electroencephalography (EEG).
TimeOnTask represents one of the most important metrics in education for over
50 years, since being indicated as a key factor contributing to student learning
outcomes in Carroll’s model of school learning (Carroll 1963, 1989). From an engage-
ment modelling point of view, TimeOnTask is interpreted based on predefined thresh-
old values that indicate how much time a player may require to complete different game
tasks. Spending too much time on a task without sufficient progression, may decrease
the player engagement and brake the game-flow (Gilleade and Dix 2004). However,
manually setting the threshold values for multiple tasks within a game is a time
consuming and laborious process that requires good knowledge of the particular game.
To the best of our knowledge, no automatic solution for threshold values computation
has been previously proposed.

Therefore, this paper proposes a novel TimeOnTask Threshold Computation
(ToTCompute) mechanism that automatically computes task-dependent threshold
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values of the TimeOnTask metric for different relative engagement changes. A relative
engagement change represents a change in the player’s engagement expressed as the
percentage of its engagement at an initial (i.e., reference) moment (e.g., 5, 10, 15 %).
The threshold values represent upper limits above which the player’s engagement
decreases with a specific relative engagement change. ToTCompute enables engage-
ment modelling at a higher granularity and makes use of game-playing information and
EEG signals collected through an initial testing session (see ToTCompute Overview
section for more details). This paper builds on our previous research (Ghergulescu and
Muntean 2014a) that demonstrated the feasibility of using EEG-based engagement
signals in order to measure the player’s motivation, when compared to traditional
motivation assessment questionnaires. The research showed that the traditional
questionnaire-based methodology is limited to analysing the motivation on short
game-playing durations, while losing its feasibility when analysing the overall motiva-
tion over a long game-playing duration (Ghergulescu and Muntean 2014a).

The results of an experimental case study show that the proposed ToTCompute
mechanism can be used to automatically compute threshold values for the TimeOnTask
generic engagement metric, with regression analysis indicating that TimeOnTask
explains up to 76.2 % of the variance in engagement change. Furthermore, the results
confirmed the usefulness of the mechanism as the TimeOnTask threshold value is
highly task-dependent, and setting its value manually for multiple game tasks would be
a laborious process.

The following distinction between engagement modelling and monitoring is made in
the context of this paper. Engagement modelling refers to the process of applying
ToTCompute to automatically build an engagement model for a certain game. This
model consists of task-dependent TimeOnTask threshold values after which player’s
engagement decreases with a given percentage from his initial level of engagement
(e.g., after 2 min student engagement will fall with 10 % from his initial level). As an
additional contribution, this research paper specifies how engagement decrease levels
can be modelled based on the relative engagement changes and the corresponding
TimeOnTask threshold values for different game tasks. Engagement monitoring refers
to the process of applying the engagement model in real-world scenarios. Based on
player’s engagement decrease levels certain game adaptation strategies may be applied
such as feedback, reward, challenge and/or autonomy (e.g., if the player’s engagement
decreases by 10 % feedback adaptation is applied to avoid user’s decrease in
engagement).

The rest of the paper is structured as follows. Section 2 presents previous research
work in the areas of motivation and engagement monitoring, and electroencephalogra-
phy (EEG). Section 3 details the principle of the proposed ToTCompute mechanism,
and section 4 presents the setup and the results of the evaluation case study. Section 5
discusses the outcome of the study and the applicability of the proposed solution within
adaptive game-based e-learning systems, whereas section 6 concludes the paper.

Literature Review

This section presents the literature review on the two main areas related to this research
work: motivation and engagement monitoring on one side, and electroencephalography
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(EEG) on the other side. The literature review was conducted from a game-based e-
learning perspective, being focused on methods of gathering information for engage-
ment and motivation monitoring and modeling in general, and engagement and
motivation detection using EEG in particular.

Engagement and Motivation Monitoring

Motivation represents a psychological attribute described as the energy to achieve a
goal, to initiate and to sustain participation (Bandura 1994; Ryan and Deci 2000b). In
the learning context, motivation is referred to as the energy to accomplish the goal of
knowledge achievement, to initiate, and to maintain participation in the learning
process (Zimmerman et al. 1992). Motivation plays a significant role in the success
of the learning process in general and of the game-based e-learning in particular
(Ghergulescu and Muntean 2014b). At the same time, motivation is a driving agent
behind both participation and progression in gaming environments (Konetes 2010).

Engagement represents learner’s psychological investment in and effort directed
towards learning, understanding or mastery of the knowledge and the willingness,
need, desire and compulsion to participate in, and be successful in the learning process
(Saeed and Zyngier 2012). A direct link between motivation and engagement exists;
the more motivated a person is the more engaged he/she is (Saeed and Zyngier 2012).
Engagement is also seen as an important motivation indicator (Ryan and Deci 2000a;
Vansteenkiste et al. 2006). Given the direct connection between the two concepts and
the lack of clear consensus among researchers, motivation modelling and monitoring
often overlap with engagement modelling and monitoring in the e-learning area
(Boulay 2015). Therefore, the literature review will present related works on both
engagement and motivation modelling and monitoring. Information on player’s en-
gagement and motivation can be gathered using different methods that can be divided
in two main categories: disturbing and non-disturbing (Ghergulescu 2013; Yearsley
and Pothos 2014).

Disturbing Methods

Disturbing methods are methods that require the interruption of the game-play. These
are mainly dialog-based interaction methods, which consist of presenting different
questions to the player and asking them for a response, a rating or a self-report about
their motivation or engagement state and beliefs. Dialog-based interaction methods
have the main benefits of being well defined and the information collected can be easily
assessed. Examples of well-known methods include:

& Instructional Materials Motivational Survey (IMMS) (Keller 1987) based on the
ARCS model (Keller 1987), and used in research studies such as (Huang et al.
2010, 2014; Liu and Chu 2010; Woo 2014);

& Intrinsic Motivation Inventory (IMI) (IMI 2008) based on the self-determination
theory (Ryan and Deci 2000b), and used in research studies such as (Eseryel et al.
2014; Farrell and Moffat 2014; Liu et al. 2011; Vos et al. 2011);

& Self-efficacy Scale (Bandura 2006), used in research studies such as (Eseryel et al.
2014; McQuiggan et al. 2007; Meluso et al. 2012).
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While most of the research studies use one or more of these well-known scales, other
researchers used different instruments or scales. For example, Tüzün et al. have used a scale
for measuring both the intrinsic and extrinsic motivation with subscales along three
dimensions: preference for challenge, curiosity, and independent mastery (Tüzün et al.
2009). Miller et al. analysed the impact of a multimedia science game on student’s
motivation to pursue a science career using a custom scale with five specific questions
(Miller et al. 2011). Chen and Chan (2008) developed a motivation measuring instrument
on four dimensions (i.e., attention, relevance, enjoyment, and challenge), which was used
with a game for learning Chinese idioms. Bernard and Cannon (2011) used a 5-item
emoticon-anchored scale ranging from ‘highly unmotivated’ to ‘highly motivated’, for
measuring students’ motivation during a classroom study with a management retail
simulation game. Most of the research studies assess the player’s motivation only at the
end of the educational game (Miller et al. 2011; Tüzün et al. 2009), or both at the beginning
and at the end of the game (Eseryel et al. 2014; Kebritchi et al. 2010; Vos et al. 2011).

The primary drawback of dialog-based assessment methods is that they interrupt the
player and game-play. Moreover, these methods do not capture changes in the player’s
motivation during the game-play. In order to overcome these drawbacks, Ghergulescu
and Muntean (2010a) have proposed to integrate dialog-based motivation assessment
within the game-playing process. In particular the authors proposed to measure player’s
self-efficacy, by embedding a questionnaire item in the player’s conversations with
non-player characters. However, this method cannot be used in games were the
introduction of a non-player character is not feasible (Ghergulescu et al. 2014). Another
limitation of dialog-based interaction methods is that they measure the perceived
motivation as reported by the students, which can be a biased measure of the actual
student motivation (e.g., what they say is not what they actually do).

Non-Disturbing Methods

Non-disturbing methods are automatic methods that do not rely on direct user self-
report. The main strength of these methods is the fact that game-play and game-flow
are not interrupted. The non-disturbing methods are mainly based on analysing the
game-play interaction or on using additional equipment to measure user physiological
reaction and behaviour cues. Game-play-based interaction methods consist of monitor-
ing and logging information about player’s behaviour while playing the game. This is
performed automatically, without interrupting the player, by logging player’s actions
and activity in the game or by embedding a monitoring mechanism in the game.
Gathering information through game-play interaction is a non-disturbing method that
does not interrupt the game-flow. Using these methods is more challenging as com-
pared to dialog-based methods, because of the diversity and multitude of data that can
be collected, as well as the difficulty to analyse the data. The metric interpretation (i.e.,
assessment of collected data) is the most challenging part, as it requires clear assess-
ment rules on how to interpret the metric values and map them to player’s motivation.

Significant research work was conducted on defining motivation measurement metrics
as well as on defining assessment rules for thesemetrics in the e-learning area (Arroyo et al.
2010; Cocea and Weibelzahl 2011; Munoz-Organero et al. 2010), and game-based e-
learning in particular (Ghergulescu and Muntean 2011; Mattheiss et al. 2010). The
motivation measurement metrics that were previously proposed in the e-learning area
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can be grouped into three main categories: time-related metrics, task repetition-related
metrics, and additional support-related metrics (Ghergulescu and Muntean 2012a). Exam-
ples of time-related metrics are: time spent on reading a page, time spent on solving a
problem, time spent on solving an exercise, time spent on tests and time spent on quizzes.
Examples of task repetition-relatedmetrics include: number of times a page is read, number
of times doing an exercise, number of times doing a test, and number of times watching a
video. Examples of additional support-related metrics are number of help requests, and
number of hint requests. More information and details on motivation measurement and
assessment can be found in (Ghergulescu and Muntean 2012a, 2012b).

Generic metrics were proposed for each category type: TimeOnTask, NumRepeatTask
and NumHelpRequest (Ghergulescu and Muntean 2012b). The three generic metrics
enable player’smotivationmonitoring in away independent of the game. The TimeOnTask
metric is defined as the duration of time required by the player to complete a task. The
NumRepeatTaskmetric accounts for howmany times a player repeats a particular task. The
NumHelpRequest metric represents the number of times the player asks for help or a hint.
In order to use the generic motivationmetrics, the game creator or researcher would have to
identify clear and independent tasks within the game, for which the metrics can be
computed. For example, game events could be used in order to determine when a particular
task starts and when this is completed by the player.

Additional equipment (e.g., eye tracker, EEG, heart monitor) may be used in order to
get information on player’s physiological reaction and behaviour cues (e.g., electro-
physiological (EEG) data, heart rate, galvanic skin response). While this approach may
be more invasive as compared to game-play-based interaction methods, it is less
disturbing as compared to dialog-based methods. Limitations of these methods that
need to be considered are the additional cost of the equipment, and the difficulty to
incorporate the equipment within every day game-based e-learning scenarios.

Since the proposed ToTCompute mechanism is computing the TimeOnTask thresh-
old values based on EEG data, the following section provides more details about EEG
in general, and EEG-based engagement and motivation detection in particular.

Electroencephalography

Electroencephalography (EEG) represents the process of Brecording of electrical brain
activity from the human scalp^ (Harmon-Jones and Amodio 2012, p. 503). The result of
the recording called electroencephalogram is defined as Belectrical activity of an alternating
type recorded from the scalp surface after being picked up by metal electrodes and
conductivemedia^ (Teplan 2002, p. 1). The EEG signal is composed ofmultiple individual
oscillations at different frequencies, which were grouped into five frequency bands or brain
waves: delta, theta, alpha, beta, and gamma. While oscillations for all these waves may be
present in the overall EEG signal at the same time, one or another is usually dominant
during certain states of awareness or different activities.

Delta waves are EEG oscillations of low frequency within 0.5 and 4 Hz, that are the
dominant activity in infants up to 2 years of age, and are associated with deep dreamless
sleep, unconscious states such as during anaesthesia, or as a result of brain trauma or
damage such as tumours (Pizzagalli 2007). Theta waves are EEG oscillations between 4
and 8 Hz. Theta waves that show widespread distribution have been associated with states
of decreased awareness such as drowsiness or drifting down into sleep and dreams. Theta
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waves localised in the frontal region during wakefulness have been associated with
attention, mental effort, and effective stimulus processing, as well as memory and emo-
tional regulation (Knyazev 2007; Pizzagalli 2007). Alpha waves are EEG oscillations
between 8 and 13 Hz, which increase during wakefulness states such as relaxation,
meditation, daydreaming, or when closing the eyes, and can greatly decrease by sudden
alerting or eyes opening as well as when the alertness decreases to drowsiness levels
(Pizzagalli 2007). While there is much confusion and many question marks surrounding
the role of the alpha waves, various research studies have indicated that they may play an
important role in operations such as visual input regulation (Romei et al. 2010), memory
and transfer of information between long-term and short-term memory (Sauseng et al.
2002), as well as attention and motivation during cognitive activities (Coan and Allen
2004; Cooper et al. 2003; Hanslmayr et al. 2011; Knyazev 2007; Palva and Palva 2007).
Beta waves are EEG oscillations between 13 and 30 Hz, that have higher intensity while
engaged in activities and conversations, and were associated with sensori-motoric brain
operations (Gourab and Schmit 2010; Lalo et al. 2007; Pogosyan et al. 2009), as well as
active, concentrated or anxious cognitive activities (Baumeister et al. 2008; Putman 2011;
Wang et al. 2012). Gamma waves are high frequency EEG oscillations above 30 Hz,
associated with increased neuronal activation, such as focused attention, higher memory
load, arousal and mental process, including learning and perception (Hughes 2008;
Pizzagalli 2007; van Vugt et al. 2010).

During EEG signals recording, the electrodes are usually positioned on the scalp
following the international 10–20 system recommended by the International Federation
of Societies for EEG and Clinical Neurophysiology (American Electroencephalographic
American Electroencephalographic Society 1994). In the international 10–20 system the
electrode names consist of one or two letters and a number, with the exception of the
electrodes placed on the central axis of the skull between the Nasio (Nz) and Inion (Iz)
reference points. The electrodes on the left side of the head are indicated using odd
numbers, while the electrodes on the right side are indicated using even numbers. The
letters are derived from the names of the brain lobes or anatomical landscape (i.e., A -
Ear lobe, C –central, Pg=nasopharyngeal, P - parietal, F - frontal, Fp - frontal polar, O -
occipital).

As player’s engagement represents an important motivation indicator, and the
research presented in this paper makes use of the player’s engagement detected using
EEG, related work on both engagement and motivation detection using EEG are
presented in the subsection ‘Engagement and Motivation Detection using EEG’.

EEG Equipment

Various EEG hardware-software equipment has been produced recently. The EEG
equipment can be divided in two main categories: traditional EEG equipment and
consumer-grade EEG equipment. The traditional EEG equipment (e.g., equipment
produced by BioSemi,1 Neuroscan,2 Brain Products,3 Electrical Geodesics4) provide

1 BioSemi - http://www.biosemi.com/
2 NeuroScan - http://www.neuroscan.com/
3 Brain Products - http://www.brainproducts.com/
4 Electrical Geodesics - http://www.egi.com/
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high accuracy and various useful features, but they are usually very expensive with
complete solutions including sensors, amplifiers and software, having a total price of
over ten thousand Euros. Apart from the prohibitive price, another disadvantage may be
their intrusiveness as the participants are usually required to wear caps with tens of wet
sensors which are connected through wires to the signal amplifier and recording
equipment. More recently a number of consumer-grade EEG equipment (e.g.,
NeuroSky, Emotiv EPOC) have started to be commercialised. While these present a
number of limitations such as less sensors and features, their affordable price and
reduced intrusiveness draw the attention of an increasing number of researchers.

The NeuroSky system (Luo and Sullivan 2010; Yasui 2009) is a wireless computer
interface that records EEG signal from one dry sensor. NeuroSky5 provides measures
such as RAW EEG signal, EEG power spectrum (alpha, beta, etc.), as well as
proprietary measures such as attention and meditation. The usability of NeuroSky
MindSet to detect attention level in an assessment exercise was assessed in an evalu-
ation study (Rebolledo-Mendez et al. 2009). The results suggested that NeuroSky
provides accurate readings regarding attention as there was found a positive correlation
between measures and self-reported attention levels. Furthermore, different research
studies have evaluated NeuroSky and showed that the headset can be used to measure
meditation (Crowley et al. 2010), or cognitive load (Haapalainen et al. 2010). NeuroSky
attention signals were also used in order to adapt the games. Patsis et al. (2013) have
used the attention level detected by NeuroSky to adapt the level of challenge to the
player’s abilities in a Tetris game. The Beta wave detected by NeuroSky was used in a
game that simulated a car drive with numerous distractions designed in order to improve
and teach the user to avoid certain distractions (Cheng et al. 2014).

The Emotiv EPOC6 system is a wireless brain computer interface device that records
EEG signals through 14 electrodes and has two additional sensors that serve as CMS/
DRL reference channels (see Fig. 1). The channels are located according to the
international 10–20 system location. Additionally, the Emotiv EPOC SDK provides a
set of libraries that permit expression detection (Expressiv Suite), real-time detection of
the emotional state experienced by the user in terms of engagement, instantaneous
excitement, long term excitement, frustration, meditation (Affectiv Suite), brain con-
trolled actions (Cognitiv Suite), as well as EEG logging and processing (with the help
of TestBench software).

The research studies that have used the Emotiv EPOC can be grouped in:

& usage of the Emotiv EPOC headset as a remote control for smartphone, tractor or
robot arm (Gomez-Gil et al. 2011; Petersen et al. 2011);

& further development of the EEG signal processing and analysis methods (O’Regan
et al. 2010);

& further development of emotion detection (Anderson et al. 2011; Petersen et al. 2011);
& educational related studies that used the engagement, frustration, excitement

and meditation measures provided by the Emotiv EPOC Affectiv Suite
(Gonzalez-Sanchez et al. 2011; Inventado et al. 2011).

5 NeuroSky Brainwave kit - http://store.neurosky.com/products/brainwave-starter-kit
6 Emotiv EPOC - https://emotiv.com/epoc.php
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The emotions provided by the Emotiv EPOC Affectiv Suite have been validated
using questionnaires by third-party researchers, that have shown that Emotiv EPOC is
capable to accurately detect emotions (Cernea et al. 2011, 2012; Kuber and Wright
2013). Another study (Goldberg et al. 2011), evaluated the effectiveness of the Emotiv
EPOC using various scenarios and self-report measures of engagement. The results
have shown that Emotiv EPOC provides reliable measures of engagement and excite-
ment. Moreover, other research studies showed that the raw signals recorded with
Emotiv EPOC can be used for assessing engagement (McMahan et al. 2015a), as well
as to differentiate between varying stimulus modalities and accompanying cognitive
processes (McMahan et al. 2015b).

Stamps and Hamam (2010) rated the usefulness for research of low-cost EEG
equipment on a 1 to 10 scale by comparing them in terms of features such as: number
of EEG channels available, ADC (analogue to digital converter) resolution, support for
multiple neurological mechanisms, ADC and CMRR (common-mode rejection ratio)
hardware design flexibility, sample rate flexibility above 128 KHz, embedded system
inerrability, commercial reducibility, ease of electrode placement by the user, portabil-
ity, and support for dry or hydrated electrodes. Based on this feature set, the authors
concluded that Emotiv EPOC has the highest usefulness for researchers. Therefore,
Emotiv EPOC was chosen for the case study presented in this paper.

Engagement and Motivation Detection using EEG

Various research studies have explored the possibility of using EEG for detecting
engagement levels and/or differentiating engagement from other emotions (Chanel et
al. 2011; Kamiński et al. 2012; Mampusti et al. 2011). Engagement was detected in
different testing scenarios: during game-playing (Chanel et al. 2008, 2011), during an e-
learning course (Shen et al. 2009), while performing various tasks (Mampusti et al.
2011; Prinzel et al. 2000), while presented with auditory and visual stimuli (Kamiński
et al. 2012), or while watching videos (Belle et al. 2011).

Fig. 1 Sensor locations on Emotiv
headset
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Analysing the studies that have investigated emotion detection, one can note that the
majorityof themhavepreferred to increase thenumberofstimuliperparticipant (e.g., images
andvideosviewedbyaparticipant), insteadofahighernumberofparticipants.Thisapproach
may influence the performance results, showingahigher detectionperformance across users
because of the low number of participants. Twomain approaches are used for detecting user
engagement:directcomputationanddatamining.Directcomputationquantifiesengagement
as a function of the user brain waves. Data mining quantifies engagement using classifiers,
statistical methods, or clustering procedures.

Engagement computed as the beta wave divided to the sum of alpha and theta waves is
the most common function used and has shown to reflect best engagement (Pope et al.
1995; Prinzel et al. 2000). In (Mampusti et al. 2011), engagement was detected through
statistical features of the EEG signals, namely: mean and standard deviation of the signal,
mean of absolute first and second differences, and standardized mean of absolute first and
second differences. Support vector machines (SVM), multi-layer perceptron (MLP) and k-
nearest neighbours (kNN) classifiers were used, with the classification accuracy being
54.09, 46.86 and 40.72 % respectively. SVM was also used to assess EEG signals and
engagement in (Belle et al. 2011). The analysis was done in the time-frequency domain, by
extracting the 5 bands (delta, theta, alpha, beta, and gamma) using Discrete Wavelet
Transform (DWT). The overall classification accuracy was 86.86 %.

Several studies have analysed multiple electrodes or pairs of electrodes in
order to assess which electrodes or pairs offer better motivation recognition. For
example, pairs of electrodes such as F3-F4, F7-F8, C4-C3, T4-T3, and P4-P3
have been taken into consideration in order to study which pair enables a better
detection of the motivation using the alpha asymmetry measure (the difference
between the right and left side in the alpha band). The majority of research on
motivation detection using EEG has primarily focused on approach motivation
and frontal alpha asymmetry (FAA). Approach motivation is conceptualised as
the energy that directs the behaviour towards approaching and starting an
activity or continuing an activity. Approach motivation is related to the task
engagement conceptualised as the effortful striving to reach a desired goal
(Fairclough et al. 2013). A direct relationship between approach motivation
and FAA was found by various researchers. The main conclusion was that
higher values of FAA correspond to higher right than left alpha power. This
further corresponds to higher brain activity in the left than in the right frontal
region of the brain, corresponding to increased approach motivation. However,
only the alpha asymmetry computed at F3-F4 and F7-F8 electrode pairs has
correlated with approach motivation given by the BAS scale (Coan and Allen
2003; Fairclough and Roberts 2011). So far, no study has presented a general
method for quantifying the approach motivation on different levels (i.e., FAA
range values for motivation levels).

Derbali and Frasson (2010) have studied the detection of attention, a motivation
indicator during educational games using linear regression. The authors observed that
the alpha wave decreased, the theta wave increased and the motivation decreased
during the game-playing. The model given by linear regression had a prediction
accuracy of 73.6 %. Kleih et al. (2010) have investigated the relation between motiva-
tion and the P300 metric of brain response to a stimulus event. The participants had to
perform a spelling words task. They were divided in three groups (low monetary
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reward, high monetary reward, and no monetary reward). The results have shown a
positive correlation between self-reported motivation and P300 amplitude at Cz elec-
trode, and that motivation can be significantly predicted by P300.

Engagement Modelling and Monitoring using Timeontask Generic Metric

This section presents the proposed solution for modelling the player engagement based
on the generic TimeOnTask metric. This is done by mapping the relative change of
player’s engagement to TimeOnTask threshold. The section describes the generic
TimeOnTask metric and the novel ToTCompute mechanism that can be used in order
to automatically compute task-dependent threshold value of the TimeOnTask metric for
different relative engagement changes.

Generic TimeOnTask Metric

The generic TimeOnTask metric (Carroll 1963, 1989) represents the duration of time
required by the player to complete a task. Since the player may repeat a particular task
multiple times during the game, at a task level the TimeOnTask metric is computed as
the duration of time required by the player to successfully complete the task for the first
time. Once a mandatory task is completed successfully it is the player’s option if he/she
repeats it or not. For the entire game or for a game level the TimeOnTask metric
represents the duration of time required by the player to complete the game or to
complete the particular game level respectively.

TimeOnTask is a generic metric as its measurement does not depend on a particular
game-based e-learning system or on a particular game-playing action. TimeOnTask is
interpreted based on predefined task-dependent threshold values. The generic
TimeOnTask metric can be used to assess the relative changes in engagement. For a
given task tx and a particular relative engagement change ΔE (e.g., 5, 10, 15 %), an
upper threshold value Thtx;ΔE can be defined. As presented in Eq. (1), if a student takes
longer than the threshold value, his engagement is considered to decrease with ΔE.

IF TimeOnTask≥Thtx;ΔE

� �
THEN Engagement decreased with ΔE ð1Þ

Multiple TimeOnTask threshold values Thtx;ΔE can be computed for different
predefined ΔE relative engagement changes in order to increase the engagement
monitoring granularity. Depending on the chosen granularity the TimeOnTask generic
metric can be computed for the entire game, for a game level or for each individual
game task. When the value of the metric reaches or passes above a certain threshold an
event specific to the particular metric and the particularΔE relative engagement change
could be generated or an adaptation strategy could be triggered (Ghergulescu and
Muntean 2010b). An exemplification of the predefinedΔE values and the correspond-
ing TimeOnTask threshold values for a single game task is provided in Table 1.

Since different games, game levels or game tasks have different characteristics, for
the same player the TimeOnTask metric will take different values across different
games, as well as across different game levels or tasks. Furthermore, different players
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could have different engagement for the same task and thus the metric will have
different values across participants. Therefore, the threshold values for the generic
engagement metric indicating upper limits above which the engagement decreases with
a specific relative value, vary from task to task, and they need to be set accordingly.

One approach indicated by the literature review is that the game developer sets the
threshold values, or an expert provides threshold values for the metric (Bica et al. 2006;
Johns and Woolf 2006). The threshold values are then further used for engagement
assessment or game adaptation. This approach however, requires a good knowledge of
the game (something an expert might not have), as well as of the relationship between
player’s behaviour and their engagement (something the game creator might not have).
Furthermore, manually setting the threshold values for multiple tasks within a game is a
time consuming and laborious process. Therefore, this paper presents an automatic
solution for computing task-dependent threshold values for the TimeOnTask metric.

ToTCompute: An Automatic Mechanism for TimeOnTask Threshold Value
Computation

Overview

ToTCompute is a mechanism that enables the game creator to automatically compute
TimeOnTask threshold values for various game tasks. The prerequisites of the
ToTCompute mechanism require the game creator to conduct an initial testing session
for collecting game-playing and engagement data while the players wear the Emotiv
EPOC headset. The initial testing session, would be similar to beta testing that are
commonly conducted during the game development process (Davis et al. 2005; Gold
and Wolfe 2012). In advance of the testing session, the game creator will have to
identify independent game tasks for which TimeOnTask threshold values should be
computed. During the initial testing session, a group of participants will be required to
play the game. Since the threshold values are computed based on the player’s relative
engagement change, a number of at least 30 participants (Sneed 2006) should be
sufficient.

We operationalise the physiological engagement term by the engagement measure
provided by the Affectiv Suite of the Emotiv EPOC headset. The Emotiv EPOC
Affectiv Suite was validated by different research studies that have shown that the
Emotiv EPOC headset can be used to accurately detect and monitor engagement
(Cernea et al. 2011, 2012; Goldberg et al. 2011; Kuber and Wright 2013; McMahan
et al. 2015a). Therefore, the engagement related data is used by the ToTCompute
mechanism in order to automatically compute the TimeOnTask threshold values for

Table 1 Exemplification of the
predefined relative engagement
changes and the corresponding
TimeOnTask threshold values for
a particular game task

ΔE [%] Thtx ;ΔE [sec]

5 60

10 110

15 180

20 250

25 330
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different game tasks. The block-level representation of the proposed solution for
engagement modelling based on the TimeOnTask generic engagement metric is illus-
trated in Fig. 2.

During the game-play testing session, the participants’ engagement levels are
continuously extracted by the Emotiv EPOC Affectiv Suite’s EmoEngine based on
EEG signal data recorded with the Emotiv EPOC headset. The participants’ engage-
ment can be visualised in real-time in the Control Panel software provided by Emotiv,
and also it can be retrieved for further processing through the Emotiv API (i.e., part of
the SDK provided with the Emotiv EPOC headset). The Engagement Logger retrieves
the engagement values through the Emotiv API, and saves them into log files (En-
gagement Logs Database).

At the same time, information with regard to participants’ game-playing behaviour
such as timestamp of the starting and ending moment of a task is logged by the Game-
Playing Logger and saved in the Game-Playing Events Database. The Game-Playing
Logger is integrated with the game engine in order to monitor and record information
regarding players’ actions during the game-play and other events within the game (e.g.,
game event name, start and stop timestamps). This information is used in order to
determine the TimeOnTask timeline for the individual game tasks.

The Relative Engagement Change Computation is applied after the testing session
has finished. It takes as input the information collected from multiple participants and
stored in the Engagement Logs Database, and the Game-Playing Events Database, and
computes the participants’ relative engagement change for the TimeOnTask timeline.
Participants’ relative engagement changes are computed for each second over the
TimeOnTask timeline, being approximately equal with the granularity at which the
Emotiv EPOC Affectiv Suite provides the engagement values. This is necessary in
order to verify if participants’ engagement decreases over the TimeOnTask timeline,
and thus to compute threshold values above which the engagement decreases with
specific relative value starting from a reference moment. ToTCompute provides a
solution to automatically compute task-dependent threshold values for the TimeOnTask
generic engagement metric, above which the player’s engagement decreases by a
relative engagement change predefined by the game evaluator.

Fig. 2 Block-level representation of proposed solution for engagement modelling based on TimeOnTask
generic engagement metric
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Principle

The reference moment is particular for each game task and also differs across
game-playing tasks. In case of the TimeOnTask metric, which represents the
time required by the player to complete the task for the first time, the reference
moment for a particular task represents the moment of time when the player
successfully completed the previous task and starts to do the current task.
Therefore, the relative engagement change during the TimeOnTask timeline is
computed for each participant as in Eq. (2).

ΔE j ¼ E j−E0

E0
⋅100 %½ �; j ¼ 1;N ð2Þ

where, E0 represents the participant’s engagement at the beginning of the task,
while N represents the number of values from the TimeOnTask timeline (e.g.,
N= 50 iterations in case of 50 s long TimeOnTask, for a 1 s computation
granularity of the relative engagement change).

The Threshold Computation component of the ToTCompute mechanism,
takes as input the predefined relative engagement change (ΔEp), along with
the relative engagement changes (ΔEj) computed for all participants, for each j
value from the TimeOnTask timeline. The TimeOnTask is a task-related metric,
and thus its thresholds are computed for each individual task of a game or
game level. The set of tasks T, corresponding to a game or game level, for
which the threshold values are computed is expressed as in Eq. (3), where X
represents the number of tasks.

T ¼ tx; x ¼ 1;X
n o

ð3Þ

Figure 3 illustrates the principle used by the ToTCompute mechanism in
order to compute the TimeOnTask threshold values Thtx corresponding to a
predefined relative engagement change ΔEp, for a list of game tasks T. In order
to enable engagement monitoring at a higher granularity the ToTCompute
mechanism can be used in a similar way to compute TimeOnTask threshold
values for multiple ΔEp relative engagement changes (e.g., 5, 10, or 15 %),
which can be specified by the game designer depending on the desired
granularity.

The algorithm used by ToTCompute in order to compute the threshold value Thtx
corresponding to a certain relative engagement change ΔE, for a particular game task tx
is presented next.

TimeOnTask Threshold Computation Algorithm

The pseudo-code for the TimeOnTask threshold computation algorithm is described for
the case of a single predefined relative engagement changeΔEp and a single game task
tx, in Algorithm 1.
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Along with the predefined relative engagement change ΔEp the TimeOnTask
threshold computation algorithm takes the following inputs:

& A set of TimeOnTask timeline’s values (ToTtxÞ corresponding to a game task tx,
computed for each participant i as represented in Eq. (4).

ToTtx ¼ ToTtx;i; j; i ¼ 1;P; j ¼ 1;Ntx;i

n o
ð4Þ

where, P represents the number of participants and j indexes the iterations of the
TimeOnTask metric ranging from 1 s to the maximum possible iteration Ntx;i,
which represents the actual TimeOnTask needed by the participant i to complete
successfully a game task tx.

& A set of computed relative engagement changes (ΔEtx) corresponding to the tx game
task, computed for each participant i, and each iteration j of the TimeOnTask metric,
as represented in Eq. (5).

ΔEtx ¼ ΔEtx;i; j; i ¼ 1;P; j ¼ 1;Ntx;i

n o
ð5Þ

START

Set first task x = 1

STOP

x <= X

Compute ToTtx and Etx time series 

Run TimeOnTask Threshold 

Computation Algorithm
Output Thtx

No

ToTCompute Initialisation:

- Get predefined relative engagement change Ep
- Get list of tasks T, and number of tasks X
- Get data from Engagement Logs DB and 

Game-Playing Events DB

Set next task x = x + 1

Yes

Fig. 3 ToTCompute threshold values computation principle for multiple game tasks
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The output of the algorithm for a game task tx, consists of a TimeOnTask threshold value
Thtx , corresponding to the predefined relative engagement change ΔEp. The first step of
the TimeOnTask threshold computation algorithm is to create a time series of the computed
relative engagement changes, by averaging the ΔEtx;i; j across all i participants for each j
TimeOnTask iteration. Time series analysis (Yanovitsky and VanLear 2008), is used
because the ΔEtx;i; j values corresponding to a game task tx and a participant i, represent
successive measures of the same variable (relative engagement change), taken regularity
over the entire TimeOnTask period at an interval of 1 s. Specific analysis, statistical
modelling and inference methods have to be used for time series analysis (Yanovitsky
and VanLear 2008). Since for the same game task tx, the TimeOnTask metric can vary
across different participants, the relative engagement changes are averaged across multiple
participants in order to obtain amore reliable threshold value. Furthermore, the created time
series contains all the averaged relative engagement change values obtained from at least
two individual time series, the minimum number required for time series aggregation.
Aggregation of time series data is a commonly used procedure in time series analysis
(Anderson et al. 2011; Silvestrini and Veredas 2008; Yanovitsky and VanLear 2008).
Examples of multiple time series aggregation methods that have been previously used,
include averaging or summing the data points taken at the same moment of time across the
time series (Iacoboni et al. 1999; Shi et al. 2011).

After the average engagement change time series is created, the next step in the
algorithm procedure is to conduct an autocorrelation test (ACT), in order to test if
adjacent data samples correlate significantly and in consequence the data is not random
(Chatfield 2003; Filliben and Heckert 2012). If the autocorrelation test returns that the
data is not random, the time series linear model (TSLM) is computed. ToTCompute

Algorithm 1: TimeOnTask Threshold Computation Algorithm.

1 INPUT:

2 ∆ – predefined relative engagement change 

3 – set of TimeOnTask iterations for all participants

4 – set of computed relative engagement changes corresponding to , for all participants

5 PROCEDURE:
6 Start
7 TS = createTimeSeries( , ∆ )

8 ACT = autocorelationTest(TS)

9 if (ACT is statistically significant) then
10 TSLM = timeSeriesLinearModel(TS)

11 if (TSLM is statistically significant) and (trend(TSLM) < 0)  then
12 = predictValue (TSLM, -∆ )

13 else
14 = NA

15 end if
16 else
17 = NA

18 end if
19 Stop

20 OUTPUT:

– TimeOnTask threshold value corresponding to 
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will return NA (Not Available) value if the autocorrelation test indicates random data.
The algorithm continues by checking if the TSLM is statistically significant and if this
has a negative trend (engagement decreases with the TimeOnTask iterations). If the two
conditions are verified, the TimeOnTask threshold Thtx is computed by the TSLM, for
the predefined engagement changeΔEp. If any of the two conditions is not verified, the
algorithm returns NA (Not Available) value, indicating that the threshold value could
not be computed. Similarly, NA value is returned if the autocorrelation test indicates
random data.

ToTCompute Applicability

By using the proposed mechanism to compute TimeOnTask threshold values for
different relative engagement changes from the initial moment (e.g., 5, 10 or 15 %),
engagement modelling at a higher granularity is made possible. The player’s engage-
ment decrease level could be computed in real time based on the events generated when
the TimeOnTask metric would reach a predefined value on the predefined mapping
with the relative engagement changes. A game monitoring component could trigger
specific events when a metric reaches or exceeds a certain threshold value correspond-
ing to a relative engagement change thus informing the game adaptation engine about
the metric and the relative engagement change reached.

The mapping between the relative engagement changes and the engagement de-
crease levels is provided by the game designer. The game designer provides also the set
of relative engagement changes for which events could be generated during the
monitoring process. The set of relative engagement changes is expressed as in Eq. 6,
while the set of engagement decrease levels is expressed as in Eq. (7). The mapping
between the relative engagement changes and the engagement decrease levels is
represented in Fig. 4.

ΔE ¼ ΔEk; k ¼ 1; k
n o

ð6Þ

EDL ¼ EDLk; k ¼ 1;K
n o

ð7Þ

The number K of the engagement decrease levels, and thus the granularity of the
engagement level computation is provided by the game designer as they specify the set

ΔE1 ΔE2 ΔE3 ΔEKΔEK-2 ΔEK-1

EDL1 EDL2 EDL3 EDLK-1 EDLK

0 ΔEk-1 ΔEk

EDLk Demotivated

Fig. 4 Mapping between relative engagement changes and engagement decrease levels
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of relative engagement changesΔEk. The game designer also has to specify the relative
engagement change boundaries (ΔEk − 1, ΔEk) for each engagement decrease level
EDLk. An exemplification of the mapping between the engagement relative changes
and the engagement decrease levels is provided in Table 2.

Depending on the engagement events received and based on the existing mapping,
the corresponding engagement decrease level will be outputted. If a player’s engage-
ment decreases with a relative value higher than ΔEK, the player can be considered as
disengaged. This is because the engagement decrease level reaches the highest level
provided by the game creator. The relative engagement changes, the engagement
decrease levels and the mapping between these (see Fig. 4), are represented from a
general point of view. In this way, the proposed solution permits engagement modelling
at a higher granularity and further enables engagement-based adaptation.

Experimental Case Study

Overview

An experimental case study was conducted in order to evaluate the proposed
ToTCompute mechanism that provides automatic computation of task-dependent
threshold values for the TimeOnTask generic engagement metric. During the study,
the participants had to play two parts of an educational game and to answer a number of
questionnaires (i.e., demographic questionnaire, initial/post motivation questionnaire
before/after the game-play, motivation assessment questionnaire for each game part).
More details about the questionnaire can be found in (Ghergulescu andMuntean 2014a).

Additional information was recorded during the testing session. The start and stop
timestamps needed for computing the TimeOnTask generic engagement metric were
recorded for each game-playing task by embedding automatic logging in the educa-
tional game. The participants’ EEG data and the affective data (i.e., engagement,
frustration, excitement and meditation) were recorded using the Emotiv EPOC headset.
Game playing related data and the EEG data collected from 50 participants (eight
female and 42 male) were used for the analysis. The participants age ranged from 18 to
55 years old, where the average age was 27 years old (SD=7). Both native English
speakers and non-native speakers have participated in the study. The participants had
different nationalities. 64 % of the participants have reported being a casual game
player, 22 % being a novice game player and 14 % being an expert player.

Table 2 Exemplification of
mapping between relative en-
gagement changes and engage-
ment decrease levels

ΔE [%] EDL [#]

5 1

10 2

15 3

20 4

25 5

>25 Disengaged
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Fire Protocol Educational Game

The Fire Protocol game from the < e-Adventure > (e-Adventure Project n.d.) platform
was selected for the experimental study. This game was considered to offer a good
compromise between the number of distinct game tasks and the time required to
complete the game. Fire Protocol is a first-person game that aims to teach the player
the fire safety evacuation protocol from a practical perspective. The player takes the
role of Pablo, a member of the Faculty of Informatics from Complutense University of
Madrid.

During the experimental study the participants had to play the two parts of the Fire
Protocol game. The individual tasks corresponding to the two game parts are
summarised in Table 3. The first part of the game consists of two mandatory tasks
PhoneConversation and ReadProtocolBook. The player has to answer the phone, and
since he is new in the university he is instructed to learn about the evacuation procedure
during a fire by reading the fire protocol book placed on his desk. The first part of the
game ends when the player finishes the reading and proceeds further in the game.

The second game part consists of three mandatory tasks and the optional task of
reading the protocol book that can be done anytime during the game play. After
checking for fire in office 411, the player has to activate the fire alarm, and then to
check the teacher offices. In office 414, the player meets the non-player character Balta,
and through a conversation informs him about the fire and asks him to leave the
building. Once the player has checked all four offices he can proceed to leave the
building. In order to successfully complete the evacuation procedure the player has to
do all the tasks, and leave the building on stairs rather than taking the elevator. The
game provides the player with feedback when he makes a mistake such as trying to
proceed without activating the alarm.

Methodology

Testing Session Description

The testing session was conducted with one participant at a time, and was designed
to last around 45 min on average. The participants attended the study on a
voluntary basis and although they could withdraw from the study at any moment

Table 3 Overview of the main tasks of the ‘Fire Protocol’ educational game

Game Part 1 Tasks Description

PhoneConversation The player answers the phone call and reads the instructions regarding studying the fire
evacuation protocol.

ReadProtocolBook The player reads the fire evacuation protocol book.

Game Part 2 Tasks Description

CheckOfficeFire The player checks if the fire exists in office 411.

ActivateAlarm The player activates the fire alarm.

CheckTeacherOffices The player checks the offices on the building wing to warn the teachers about the fire.
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none of them did so. Before starting the testing session each participant was
provided with written information and instructions about the testing procedure,
as well as with additional verbal instructions if they had any questions. Following
that, the Emotiv EPOC headset was setup making sure good signal was received
from all sensors. Before playing the two parts of the game, each participant filled in
a demographic questionnaire that was used in collect background information such
as age and gender.

Test Setup

Figure 5 illustrates the testing setup for the experimental study. The testing computer
(PC1) was used by the participants to play the educational game as well as to fill in the
motivation assessment questionnaire at the end of each of the two game parts. The Fire
Protocol educational game provided through the< e-Adventure>platform was used.

The Fire Protocol game, which integrates the functionality of generating game
reports, was extended using< e-Adventure> in order to report information required to
compute the TimeOnTask metric for individual game tasks (e.g., game event name,
start and stop timestamps). The Fire Protocol game runs on the Java platform and
launches a window in the middle of the screen. In order to reduce the participants’ head
movements and thus the artefacts in the EEG recordings, the questionnaire used for
assessing the participants’ motivation for the two game parts was implemented as Java
application and displayed also on the PC1 screen.

A second computer (PC2) was used for EEG data recording. The EEG data is
captured using the Emotiv EPOC headset and sent via a wireless connection to PC2,
where the data can be displayed and recorded using the proprietary TestBench and
Control Panel software programs provided by the Emotiv EPOC system. TestBench
displays in real time raw EEG signals of the sensors located on the headset device, as
well as alpha/beta/gamma/theta brain waves computed by the Emotiv system. The
Control Panel displays affective data (e.g., engagement, frustration, excitement and
meditation), expressive data (e.g., blinks, facial expression), and cognitive data (if the
system was trained to recognise player’s intention).

Fig. 5 Testing setup for the experimental case study
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However, only the raw EEG signals can be saved as binary.edf files through the
proprietary software. To overcome this limitation and to facilitate the data processing
and analysis, two software programs were developed in Java, saving the raw EEG data
and the affective data using the Emotiv API into.csv text files. The programs save the
data at the sampling rates provided by the Emotiv API, which are 128 samples per
second in case of raw EEG data and approximately 2 samples per second for the
affective data.

The experimental study was conducted in two universities Dublin City University
(DCU) and National College of Ireland (NCI). Similar conditions were maintained
between the two testing environments. To facilitate the data processing the computers
were automatically date and time synchronised with the Internet time server
Btime.windows.com^. The screens of PC1 and PC2 were also recorded using the
TechSmith Camtasia Studio software, in order to extract additional data for analysis
that cannot be automatically recorded into log files.

Procedure

In order to compute TimeOnTask threshold values corresponding to a particular game
task and a predefined relative engagement change (e.g., 5, 10 or 15 %), ToTCompute
first computes the relative engagement changes for all participants every second (i.e.,
every TimeOnTask iteration) over the entire duration of time they played the task for
the first time. A participant’s relative engagement change for a particular TimeOnTask
iteration is computed relative to his/her engagement level measured at the beginning of
the task.

Based on the computed relative engagement change data, ToTCompute outputs the
TimeOnTask threshold value (in seconds), above which players’ engagement will
decrease with the predefined relative engagement change. For this experimental study,
participants’ TimeOnTask metric values were computed based on the timestamps saved
in the game reports for each game event (e.g., start task, end task), while participants’
engagement during the game-play was measured and recorded continuously during the
game-play using the Emotiv EPOC system. The TimeOnTask threshold computation
algorithm was implemented using functions from the forecast package (Hyndman
2012) for the R statistics software. The TimeOnTask threshold computation was
conducted for two tasks from game part 1 (PhoneConversation and
ReadProtocolBook), and for three tasks from game part 2 (CheckOfficeFire,
ActivateAlarm and CheckTeacherOffices).

Data Analysis

This section presents the results of the experimental case study evaluating the proposed
ToTCompute mechanism. Three analyses were conducted in this sense. The first
analysis investigates the non-randomness of the average relative engagement change
time series for the five game tasks, a prerequisite for computing threshold values using
the ToTCompute mechanism. The second analysis investigates the performance of the
ToTCompute’s threshold value computation for the TimeOnTasks metric across differ-
ent game tasks. The third analysis investigates the variation of the TimeOnTask
threshold value across different game tasks.
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Time Series Randomness Results

Time series analysis is based on the assumption that successive observations in a time
series are usually dependent and thus the time series is not random. If successive
observations are dependent, future values can be predicted from past observations
(Chatfield 2003). Autocorrelation, the correlation of a variable with itself, was used
in order to test the dependencies of successive observations of the average relative
engagement change time series. This is necessary to verify that the time series are not
random and can be used by the ToTCompute mechanism for detecting threshold value
for the TimeOnTask metric. Autocorrelation plots (corelograms) illustrating the auto-
correlations computed for data values at different successive time intervals or lags, are
constructed to facilitate the assessment of time series’ randomness. In order for a time
series to be random, the autocorrelations should be near zero for any and all time-lag
separations (Filliben and Heckert 2012).

Figure 6 presents the autocorrelation plots for the five game tasks. The x-axis of each
diagram represents the lags, while the y-axis represents the autocorrelation coefficient.
The bars represent the value of the autocorrelation coefficient at specific lags. A one-
second time interval between successive lags corresponding to the one second interval
between successive engagement values was considered. The dotted blue lines in the
autocorrelation plots represent the 5 % significance level (95 % confidence band) for
the statistical test of autocorrelation. Any autocorrelation values that fall outside of the
dotted lines are statistically significantly different from zero.

The autocorrelation results show that the average relative engagement change time
series are not random for all five game tasks considered in the evaluation, as the degree
of autocorrelation between adjacent and near-adjacent observations of the time series is
high (above the significance level indicated by the dashed blue lines). The results also
show that the time interval between average relative engagement change time series
observations that are independent (i.e., do not correlate) varies across the different game
tasks considered in the evaluation. The number of lags for which the autocorrelation is
statistically significant is 27 for the PhoneConversation task, 28 for the
ReadProtocolBook task, 17 for the CheckOfficeFire task, 8 for the ActivateAlarm task,
and 50 for the CheckTeacherOffices task.

The results of the first analysis have confirmed the importance of performing a
randomness test before proceeding to compute threshold value for the TimeOnTask
generic engagement metric using the ToTCompute mechanism. For the five game tasks
considered in this evaluation study the average relative engagement change time series
were not random. The variation between the five tasks however, indicates that random
time series that would compromise the results are possible in case of other games and
game tasks. By integrating this autocorrelation pre-check the ToTCompute mechanism
provides a way to identify situations when the time series are random. ToTCompute
will return NA (Not Available) value for the threshold if the autocorrelation test
indicates random data.

Time Series Regression Model Results

In order to compute the threshold values for the TimeOnTask generic engagement
metric, the proposed ToTCompute mechanism computes the linear regression model of
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the average relative engagement change time series. By using regression, the mecha-
nism also provides a measure of its performance, on how accurately the TimeOnTask
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Fig. 6 Autocorrelation plots for the average relative engagement change time series of the five tasks
corresponding to the two game parts

Int J Artif Intell Educ (2016) 26:821–854 843



threshold value is detected for different game tasks in the form of the coefficient of
determination R2. This coefficient indicates how well the average relative engagement
change time series data points fit the linear model.

Figure 7 presents the variation in time of the average relative engagement change
across the 50 participants, for the five game tasks corresponding to the two game parts
considered in this paper. The average relative engagement change is represented by the
black line, while the blue line represents the fitted time series linear model. The 85 and
95 % confidence intervals are also illustrated for the next 100 values forecasted from
the time series linear model. The forecasted engagement change values are within the
dark grey upper and lower limits with 85 % confidence, and within the light grey upper
and lower limits with 95 % confidence. The ToTCompute mechanism detects threshold
value when player’s engagement is decreasing with a specific level. Therefore, the
forecasting and the TimeOnTask threshold computation is not done for game tasks for
which the average relative engagement time series presents an increasing trend, which
is the case for the ActivateAlarm task in this evaluation.

While the average engagement presents variations over the TimeOnTask duration,
the results show that overall the engagement presents a decreasing trend for four out of
the five game tasks considered in the evaluation. Furthermore, the results show that the
average relative engagement change also varies across the different game tasks.

The results of the time series linear regression presented in Table 4, show that the
regression models and thus the TimeOnTask threshold values computation is statistically
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significant (p< .001) for the PhoneConversation, ReadProtocolBook, CheckOfficeFire and
CheckTeacherOffices tasks. The linear regression results also show that the performance of
the ToTCompute mechanism and in particular the goodness of fit of the regression models
varies across thedifferentgame tasks.TheadjustedR2coefficientofdetermination, indicates
that TimeOnTask explains 76.2 % of the variance in engagement change for the
PhoneConversation task, 73.8 % for the ReadProtocolBook task, 43 % for the
CheckOfficeFire task, and 70 % for the CheckTeacherOffices task. As the average relative
engagement timeseriesforActivateAlarmtaskpresentsanincreasingtrend,a thresholdvalue
cannot be computed for this task.

The results of the second analysis have shown that the proposed ToTCompute mech-
anism can be used to automatically compute threshold values for the TimeOnTask generic
engagement metric, for four out of the five game tasks considered in this evaluation study.
For the other task the threshold value cannot be computed as the average relative
engagement change time series for this task presents an increasing trend, while the
ToTCompute mechanism works only for the case when the engagement decreases.

The results also show that at the beginning of the task, participants’ engagement
tends to increase before starting to decrease. This fact is more visible in case of the
ActivateAlarm task, and to less extent in case of the PhoneConversation and
CheckOfficeFire tasks. Although in case of the ActivateAlarm task the relative en-
gagement change also starts to decrease sharply towards the end, this does not change
the overall increasing trend in engagement, thus TimeOnTask threshold values cannot
be computed for this particular task.

TimeOnTask Threshold Values Relative to ΔEp

Table 5 presents the threshold values for the TimeOnTask generic engagement metric,
computed by the ToTCompute mechanism for three different predefined relative
engagement changes, 5, 10 and 15 % provided as input.

The results show high variations between different game tasks. For example, the
threshold value corresponding to the 5 % predefined relative engagement change
ranges from 34 s in case of the ReadProtocolBook task to 103 s in case of the
CheckTeacherOffices task. The variation is caused by the diversity of the game tasks
and the fact that each task is unique in its own way.

The results of the third analysis confirm that the TimeOnTask threshold value is
task-dependent, and setting it manually for multiple game tasks (e.g., by an expert)
would be a laborious process.

Table 4 TimeOnTask time series linear regression results

Task Time series linear regression results Trend

PhoneConversation Adj. R2 = 0.762, p < 2.2e-16*** Decreasing

ReadProtocolBook Adj. R2 = 0.738, p < 2.2e-16*** Decreasing

CheckOfficeFire Adj. R2 = 0.430, p = 8.3e-14*** Decreasing

CheckTeacherOffices Adj. R2 = 0.700, p < 2.2e-16*** Decreasing

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1
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Discussion

This section discusses the results, the benefits and the applicability, as well as the
limitations of the proposed solution for engagement modelling and monitoring.

Benefits

The ToTCompute mechanism provides automatic computation of threshold values for
the TimeOnTask generic engagement metric. ToTCompute makes use of data from a
testing session and computes threshold values based on the measured engagement data
using the Emotiv EPOC system, but also predicts threshold values based on the existing
data even when the participants engagement did not decrease below specific predefined
relative engagement change. Furthermore, ToTCompute uses a threshold validation
internally and outputs the threshold only when there are statistically significant rela-
tionships between the values of the measured generic metric and the participants’
relative engagement change. The internal validation represents an added benefit be-
cause the person who is using the mechanism can trust the threshold values, as the
mechanism will not provide threshold values when there were no statistically signifi-
cant relationships (e.g., because of the low number of participants), or the participants’
engagement for a specific task presents an increasing trend.

The results have shown that the proposed ToTCompute mechanism can be used to
automatically compute task-dependent threshold values for the TimeOnTask generic
engagement metric, with regression analysis indicating that TimeOnTask explains up to
76.2 % of the variance in engagement change.

The results have also shown high variations between different game tasks, with the
thresholdvalue corresponding to a5%predefined relative engagement change ranging from
34 s in case of theReadProtocolBook task to 103 s in case of the CheckTeacherOffices task.
The variation is caused by the diversity of the task and the fact that each task is unique in its
ownway.Thisconfirmsthat theTimeOnTaskthresholdvalueis task-dependent,andsettingit
manually for multiple game tasks (e.g., by an expert) would be a laborious process.

The initial testing session has to be performed for each particular game, and the
ToTCompute mechanism has to be run on the collected data in order to define specific
thresholds for each of the game tasks identified by the game creator or researcher. More
research is needed in order to investigate the relationship between different game types and
game tasks from a time spent on task point of view.

Table 5 TimeOnTask threshold values computed by ToTCompute for different relative engagement changes
ΔE

Task Threshold [sec] for ΔEp

5 % 10 % 15 %

PhoneConversation 67 97 126

ReadProtocolBook 34 70 106

CheckOfficeFire 78 124 170

CheckTeacherOffices 103 172 240
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Limitations

One of the limitations of this solution represents the prerequisites of using ToTCompute
that is to conduct an initial test session during which a number of participants need to
play the game, the TimeOnTask metric needs to be logged, and the participants’ EEG
signals need to be recorded using the Emotiv EPOC headset. As the practical feasibility
of such an initial testing session might affect the generalizability of the proposed
solution, it is recommended that the data collection to be conducted as part of the beta
testing for individual games.

Another limitation that could be a generalisation issue is in the case when the game
is very well designed and the player’s engagement does not decrease and they will not
become disengaged. In this case the metrics will not indicate a decrease in player’s
engagement. However, the ToTCompute mechanism addresses the issue, as the mech-
anism is capable to determine if a threshold for the metrics above which the engage-
ment level decreased with a certain percentage can be computed or not.

A robust definition for what a task means and how long a task could take is not
available. This research refers to task as to an activity that needs to be done by the
player. This research leaves to the game designer (or the person who wants to integrate
the engagement monitoring in the game) to decide the task granularity and complexity.
On one side, this is very useful because it does not limit the applicability of the
proposed solutions to specific types of activities or granularity. On another side, a
generalisation issue of the applicability of the ToTCompute mechanism can be raised,
in situations when two or more tasks overlap between each other or a clear distinction
of the tasks cannot be made. The TimeOnTask Threshold Computation Algorithm
requires the time series of the Engagement computed by the Emotiv EPOC internal
mechanism during the task period for which to compute. Therefore, this research
recommends in such cases to decrease the task granularity for which the engagement
monitoring to be done by grouping the multiple interpolated tasks in a single task. The
minimal duration for a task in order to apply the method is 50 s as, 50 or more
observations provide reasonably accurate estimates in time series analysis (Velicer
and Joseph 2003).

Although Emotiv EPOC was reported as having high validity for detection of
engagement and other emotions, special attention has to be taken while conducting
the initial testing session and measuring the EEG signal. First, the Emotiv EPOC
headset has to be setup making sure that good signal was received from all sensors.
Second, head movements should be reduced as these could introduce noise in the EEG
signal. Therefore, the proposed solution is limited to game-based e-learning scenarios
where the players are seated. Traditional equipment could be used in order to solve the
signal and noise issues. However, the traditional equipment might be very intrusive and
disturbing.

Conclusions

Engagement modelling and monitoring has become an important research topic in the
e-learning and game-based e-learning areas. However, in game-based e-learning,
engagement monitoring has to be done in a non-disturbing way and without braking
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the game flow and immersion. Furthermore, automatic mechanisms for facilitating the
engagement related metrics assessment, and further to enable engagement monitoring
independent of particular game-based e-learning system or of particular game-playing
tasks, are needed.

This paper has proposed the TimeOnTask Threshold Computation mechanism
(ToTCompute), a novel mechanism that automatically computes task-dependent thresh-
old values for the TimeOnTask generic engagement metric assessment. The threshold
value is computed using time series analysis technique based on game-playing data and
EEG engagement data collected with the Emotiv EPOC headset.

An evaluation case study on 50 participants was conducted in order to evaluate the
performance and the utility of the proposed ToTCompute mechanism. Five different
game tasks corresponding to two game parts were considered. The results of the
evaluation case study have shown that the proposed ToTCompute mechanism has a
good performance for automatically computing task-dependent threshold value for the
TimeOnTask generic engagement metric. The results have shown that TimeOnTask
explains 65.75 % of the variance in relative engagement change, on average across the
four game tasks for which the participants presented a decreasing engagement. A
limitation of this paper represents the fact that the threshold values obtained in this
case study have not been validated by a second case study.

Furthermore, the results have shown the utility of an automatic threshold value
computation solution such as ToTCompute, as the TimeOnTask metric in general and
its threshold value after which a player’s engagement decreases with a specific relative
value are highly dependent on particular game tasks. Therefore, setting the threshold
value manually for multiple game tasks would be a laborious process, especially when
high engagement monitoring granularity is also desired.

By automatically computing task-dependent threshold values of the generic
TimeOnTask metric for different relative engagement changes from the initial moment
(e.g., 5, 10 or 15 %), the mechanism enables engagement modelling at a higher
granularity and further enables engagement-based adaptation in GBeL systems.
ToTCompute may enable engagement-based monitoring and adaptation where engage-
ment related factors such as feedback, rewards, challenge and/or autonomy can be
adapted based on the relative engagement change. Furthermore, higher granularity of
the engagement monitoring and modelling could be achieved by taking different
subcategories of users (e.g., male, female, novice player, casual player, expert player)
and applying the mechanism on data collected by subgroups of users.
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