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Abstract The Next Generation Science Standards (NGSS) and other national
frameworks are calling for much more sophisticated approaches to STEM educa-
tion, centered around the integration of complex experimentation (including real
labs, not just simulations), data collection and analysis, modeling, and data-driven
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argumentation, i.e., students can behave like real scientists. How to implement such
complex approaches in scalable ways is an unsolved challenge - both for presen-
tial and distance education. Here we report on the iterative design and large-scale
deployment of an open online course with a “biology cloud experimentation lab”
(using living cells) that engaged remote learners (> 300 students) in the scientific
practices of experimentation, modeling and data analysis to investigate the photo-
taxis of a microorganism. We demonstrate (1) the robustness and scalability of the
cloud lab technology (> 2, 300 experiments run), (2) the design principles and syn-
ergistic integration of multiple UI and learning activities and suitable data formats
to facilitate NGSS-aligned science activities, and (3) design features that leverages
the natural variability of real biology experiments to instigate authentic inquiry. This
platform and course content are now suited for large-scale adaptation in formal K-16
education; and we provide recommendations for inquiry-based science learning in
general.

Keywords Inquiry-based learning · Cloud lab · Remote experimentation ·
Computer-communication networks · Distributed systems · Life science · Biology ·
Interactive biotechnology · Euglena · Phototaxis · Simulation and modeling · Data
analysis · Human Computer Interaction (HCI) · User interface · User studies ·
Learning analytics · Massive Open Online Course (MOOC) · edX · Education ·
Computer uses in education

Introduction

Inquiry-based learning is defined as “an educational strategy in which students fol-
low methods and practices similar to those of professional scientists in order to
construct knowledge” (Pedaste et al. 2015). In authentic inquiry activities, students
design and carry out experiments of varying complexity, formulate and test models,
analyze and interpret their own, rich data and results. In the last few years, sev-
eral national science learning frameworks, e.g., NGSS (Chi 2009; Quinn et al. 2012;
Williams 2013; Pedaste et al. 2015), have been released, advocating to improve prac-
tices for STEM teaching and to make inquiry-learning more authentic. To realize this
vision, a seamless integration of experimentation, data collection, analysis, modeling,
and data-driven argumentation is needed. Without this integration, authentic science
inquiry remains challenging to achieve (Chinn and Malhotra 2002), both for pre-
sential and distance education, especially when authentic real (instead of simulated
only) experimentation is to be integrated (Van Joolingen et al. 2007). Technologies
provide promising means to that end, however, the design of technological sup-
ports for such complex integrative approaches is still in its infancy, especially when

4 Engineering and Production, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA

5 VPTL Teaching Practice, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA

6 Bioengineering, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA



480 Int J Artif Intell Educ (2018) 28:478–507

we consider the need for scalable, low-cost infrastructures. Various real and virtual
labs in both presential and remote form have been developed and tested (Heradio
et al. 2016; Zacharia et al. 2015); each type having its distinct, context dependent
advantages, and research is pushing to utilize their synergy (De Jong et al. 2013).
At the same time, with online and blended education on the rise (Yousef et al.
2014; Blikstein et al. 2014; Kizilcec et al. 2013; Hansen and Reich 2015; Thille
et al. 2015), it remains unclear how to integrate in internet-enabled learning systems
experimentation-, modeling- and data analysis-practices based on real experiments
and data at scale. Other existing remote labs have attempted to facilitate inquiry-
based learning, but we are not aware of any that were designed to be accessed
concurrently by many users at scale (Heradio et al. 2016). This paper addresses this
issue and investigates how to enable and scaffold authentic scientific inquiry tasks
remotely and at scale (van Joolingen et al. 2007) while utilizing a new biology cloud
lab paradigm (Hossain et al. 2016).

This paper builds on a real-time and interactive biology cloud lab that we recently
developed and successfully deployed in small, teacher-led classrooms (Hossain et al.
2016). Students in middle schools and in higher education ran interactive experiments
to investigate how Euglena gracilis, a single-celled phototactic organism, senses and
reacts to environmental stimuli such as light (Fig. 1). We demonstrated the poten-
tial of this cloud lab for NGSS-aligned science learning in classrooms (Quinn et al.
2012) in ways that were previously not possible in biology education, not even on-site
(given the limitations of passive microscopy, which is prevalent in K-12 education).
One user study in Hossain et al. (2016) integrated experimentation with data analysis
by letting students analyze the automatically-generated Euglena tracks quantitatively
with Matlab. Another user study in Hossain et al. (2016) integrated experimentation
with modeling by means of a modeling interface that enabled students to alter bio-
physical parameters in virtual Euglena and compare that data to real Euglena akin
to bifocal modeling (Blikstein 2014). However, in our prior work, we have neither
integrated experimentation-, modeling- and data analysis-based practices in a holis-
tic manner nor deployed the system in settings larger than normal-sized classrooms
and without an instructor being physically present.

Live

Batch Data
Analytics

Visual
Analytics Modeling

Experimentation

Inquiry-Based Learning
(Online Course)

Online Students
(300+)

Real-time Biology Cloud Lab
(2300+ Experiments)

Fig. 1 Integration of a scalable biology cloud lab into a MOOC (> 2, 300 experiments run by > 300
students). We explored the affordances and design rules of online experimentation science labs to enable
inquiry-based learning
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In order to frame the research described in this paper, we start by reviewing
some of the technological challenges for providing real experimentation at scale.
Remote labs face more significant technological challenges of implementation than
simulations, even more so when it comes to the life-sciences where noisy biolog-
ical specimen need to be maintained in a functional state (Hossain et al. 2015).
Consequently, a majority of existing remote labs have been developed for physics
and engineering content (Fabregas et al. 2011; Heradio et al. 2016). In addition,
many are not robust or scalable enough for larger enrollments courses (MOOC-
scale) as they are neither designed nor intended to be accessed concurrently by
thousands of students. In our review, we found only one project that systemati-
cally tried to scale up an electronics lab in a MOOC environment (Dı́az et al.
2013). This scaling problem motivates the distinction between remote labs and cloud
labs. Here the former is more akin to remote computer sharing of a single instru-
ment by one user (Heradio et al. 2016), while the latter follows the modern cloud
computing paradigm (Fox et al. 2011; Hossain et al. 2015; Hossain et al. 2016) that
provides ubiquitous, on-demand access to a shared pool of configurable and dis-
tributed computing resources. The architecture of any given lab is likely to fall on
some sliding scale between simple remote access and full realization of the cloud
paradigm. Our biology lab followed this cloud paradigm: It is fully automated,
low-cost, and scalable by design; the platform architecture load-balances concur-
rent experimental tasks with a cluster of back-end instruments (biotic processing
units, BPUs) in a distributed and fault-tolerant manner, such that each BPU can run
∼ 100, 000 experiments per year for < $0.01 per experiment.

The main contribution of the present paper is to demonstrate that this cloud lab
technology can support authentic science inquiry-based learning at large scale, and
to distill design principles from the core technology, the user interface and the course
for successful deployments of online labs and courses for inquiry-based learning. We
used a popular online learning platform, Open edX (Stanford Online Lagunita 2016),
that integrates our cloud technology to deploy a short course (on the scale of 4 hours)
that engages students in scientific inquiry. This required the use and further devel-
opment of existing as well as novel novel user interfaces and technologies so that
students could design and execute experiments of varying complexity, model scien-
tific phenomena, analyse, and interpret the obtained data. We report results from the
iterative design process and public release with over 300 users. We primarily con-
cern ourselves with the course design and the related Human Computer Interaction
(HCI) technologies that enabled the fundamental activities for inquiry-based learn-
ing to occur through the Internet at scale, i.e., online students are enabled to perform
activities similarly as real scientists would do. A thorough investigation regarding the
learning outcomes due to this cloud lab and online course is planned for the future.

We organized this paper in the following logical sections: First, we review inquiry-
based learning and discuss all its key phases. We introduce the biological phenomena,
phototaxis of Euglena gracilis, which is the central learning theme of the course. We
then discuss the key technological improvements compared to our previous cloud
lab (Hossain et al. 2016) and how we integrated multiple HCI components to allow
a larger scale deployment in a MOOC environment; we then also estimate the total
capacity and throughput of this improved cloud lab implementation. For each of the
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seven units of the MOOC, we discuss content layout, scaffolding and the HCI design
principles that facilitates inquiry-based learning; these design principles were derived
by analysing student logged activities and feedback during the multiple course itera-
tions and from previous pilot studies. We present a case study to demonstrate how a
single user experienced inquiry-based learning as she went through the course from
the start to the end. We assess the outcome of this MOOC deployment using students’
logged activities and voluntary feedback along multiple dimensions. Finally, we sum-
marize lessons learned and discuss future work including a potential path towards
massive deployment in formal school contexts. (Note: A Supplementary text and
movie illustrate the course content and HCI modules.)

Rational for Research Design, Online Course Layout, and Technology
Implementations

We adopted an iterative design-based research approach (Anderson and Shattuck
2012; Edelson 2002) to develop, deploy, and evaluate an open online course for
inquiry-based science learning. We chose the format of a mini-course with the
intended student effort of ∼ 4h over one week. This allowed us to rapidly iterate
course features based on study outcomes over multiple week-long course offerings.
We refined our cloud lab technology and user interfaces by incorporating lessons
from our previous pilot studies (Hossain et al. 2016) in order to accommodate users
at MOOC scale. We implemented this course in the Open edX framework (Stanford
Online Lagunita 2016) with a diverse target audience that ranged from middle-school
to university students and science teachers. To engage students in all the key phases
of the inquiry-based learning (Fig. 2a) in the context of learning about the target bio-
logical concept - phototatic behavior of Euglena cells (Fig. 2b) - we were required to
holistically combine all the experimentation, modeling and data analytics UIs (Fig. 3)
within a single cloud lab platform. We will now describe in detail these three key
facets of the current work: 1) inquiry-based learning, 2) the target biological con-
cept (phototaxis), and 3) the underlying cloud lab technology with its interface and
interaction design.

First, we turn to the phases of inquiry-based learning as defined by the
NRC (Singer et al. 2006), which also defined learning goals and best practices for
science labs: (1) posing questions and formulating testable hypotheses, (2) design-
ing and carrying out investigations, (3) using tools to make observations, gather and
analyze data, (4) building, evaluating, testing or verifying explanatory models in light
of empirical data, (5) interpreting and communicating results. In order to coordinate
and contextualize these phases, we based our course design on a recently synthesized
model of the inquiry cycle (Pedaste et al. 2015) (Fig. 2a; Table 1 column 2). However,
without proper scaffolds and guidance, inquiry-based activities are hardly effective
for learning and can overwhelm students (van Joolingen et al. 2007; Zacharia et al.
2015). Units #1 to #5 are therefore structured to guide students through the inquiry
cycle with a given set of questions and investigations to perform: students started
with passive observations to conceptualize the problem and moved on to active exper-
imentation, engaged in qualitative data analysis, proceeded to model exploration and
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Fig. 2 Scientific inquiry and target biological concepts of the online course: (A) The course takes students
through the different phases and sub-phases of a full inquiry cycle in an integrated manner. We adapted
the schematic from Pedaste et al. (2015) with emphasis on exploration and experimentation both with real
specimen and models. (B) Euglena Gracilis is a single-celled organism that performs negative phototaxis,
orienting and moving away from light, by rolling around its long axis but also turning sideways via a
feedback coupling between the eye spot and the flagellum. Image of Euglena is adapted with permission
from a photo taken by Rogelio G. Moreno in Flickr

parameter fitting, and then advanced to quantitative data processing and graphing.
In unit #6 this then culminated in a self-guided project where students formulate
and investigate their own hypothesis. With each phase, this course structure intro-
duces a new corresponding user interface (UI) tool (Fig. 3), while providing multiple
opportunities to revisit earlier activities.

Second, the target biological concept of the course revolve around Euglena pho-
totaxis (Diehn 1973) (Fig. 2b; Table 1 column 2). It exemplifies the general taxis

A  Landing Page/Routing B  Live Real-time Experiment C Script for Batch Experiment

D  Visual Analytics E  Data Analytics F  Modeling

Fig. 3 HCI modules to deliver procedural learning goals of the course in an unsupervised MOOC setting.
(A) Landing page to route students among a suite of online microscopes. Students can either choose to
get auto-routed to the best microscope or choose a specific one. (B) Realtime Euglena biology lab in live
interactive mode. (C) An experiment script in CSV format for the batch mode. (D) A playback movie
viewer for visual analytics via automatically tracked Euglena cells. (E) Google Sheets application for data
analytics, including statistical analysis and graphing of Euglena traces. (F) Modeling applet simulating
Euglena overlaid on pre-recorded video
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Table 1 Final course layout. Note that each unit essentially introduces a tool (“instrument”), and engages
students in a different inquiry practice with a new bit of biological content

Unit # Scientific/Inquiry task Target biology concept Technology

1 Passive observation Euglena are single cells Online microscope

2 Active experimentation Euglena respond to light Real-time interactive &
batch experiments

3 Visual analytics Euglena roll around their
axis while swimming

Post-experiment video
analysis

4 Exploration and concep-
tualization of models;
parameter fitting

From structure to function:
feedback loop between
eye spot and flagellum

Modeling applet

5 Data processing; interpret-
ing graphs

Euglena speed does not
change (much) when light
is turned on

Google Sheets

†6 Self-guided project; gen-
erate and test hypotheses

Learn more about Euglena
phototaxis

All the previous tools as
necessary

7 Summary, reflection and feedback

†In unit #6, students were asked to postulated testable hypotheses about Euglena phototaxis, but to pursue
the actual experimentation and analysis was left optional

principle applying to many cell types and stimuli, e.g., Euglena gravitaxis (Lebert
et al. 1997) or bacterial chemotaxis (Berg 1975). Euglena has an eye spot that senses
light coming from one direction only; furthermore a flagellum that allows the cell
to swim forward and rotate around their axes. The photoreceptor is coupled with the
beating pattern of the flagellum. Appropriate coupling of strength and directionality
allows the cell to stably swim toward or away from the light. As to be expected
from biological systems, not all cells behave exactly the same, i.e., these microscopic
cells exhibit variability and individuality. This biological noise and variability merits
particular consideration for this cloud lab, as it can interfere with a consistent user
experience. At the same time, dealing with real experimental data with natural vari-
ability can also be a very productive learning experience (Blikstein 2014), and was
identified as a key laboratory experience by NRC (Singer et al. 2006; Wellington
2007). In this course, we used a sequence of target biological concepts starting with
basic cell behaviors and progressed to more advanced ones like feedback regulation
and noise, and ultimately encouraged students to embark on a self-driven research
investigation as an optional final project.

Third, for an effective engagement with the inquiry activities, students must be at
ease with various instruments and user interface tools to execute experiments (free
form exploration as well as controlled), explore models, collect experimental data,
and infer results via visual and data analytics (Fig. 3; Table 1 column 3). We had
to centralize all these tools in a way that reduces extraneous effort and switching-
cost between phases and sub-phases of the inquiry cycle (Fig. 2a), thus providing
a seamless laboratory experience (Singer et al. 2006). Compared to our previous
work (Hossain et al. 2016), we made significant additional technical and HCI strides.
First, we increased the experimentation throughput of the system by over two-fold by
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making all the backend server system asynchronous with respect to each other. This
was crucial for a large scale deployment such a MOOCs as it cut down the aver-
age wait time of students by half. Secondly, we made crucial HCI advancements to
make the system more accessible to a broader audience as discussed in the following.
We adopted ubiquitous file formats such as CSV and MS Excel for programming
experiments and experimental data exports respectively (Fig. 3c and e). The MS Excel
format can also be imported into the freely available software such as Google Sheets,
which opened up our system to a much broader audience compared to the Matlab-
based data analytics interfaces in our previous pilot studies (Hossain et al. 2016). The
movies resulting from the experiments were augmented with various visualization
elements (Fig. 3d). We adapted our previous modeling and parameter fitting interface
(Hossain et al. 2016) using a predetermined stimulus sequence instead of joystick-
induced stimuli to reduce cognitive load (Fig. 3e). For the more technical details of
the cloud lab system, we refer readers to our previous work (Hossain et al. 2016).

We implemented the course with 7 units (Table 1). Each unit introduces students
to a new inquiry phase (task) (Fig. 2a), a new biological target concept (Fig. 2b), and
a new HCI module (Fig. 3). Units were designed to take 20-60 min each. The unit
#6 encourages students to postulate a testable hypothesis and voluntarily pursue a
self-guided research by going through the whole inquiry cycle on their own. Unit #7
provides a summary and collects students’ feedback. We purposely made exposure
to biological variability a central theme of the course content. Before launching the
course, we iteratively tested and updated this course with 1 − 3 students at a time
for a total of ∼ 20 students, with the goal to optimize the progressive increment of
the complexity for the learner and also make the course duration as short as possible,
leading eventually to the week-long course layout described in Table 1.

Course Deployment at Scale, Iterative Refinement, User Study Results,
and Design Lessons

The course was repeatedly offered six times (six weeks) with minor updates between
successive offerings (Fig. 4a). Students were recruited via monthly Open edX
newsletters; additionally, 300 teachers were contacted directly. (We refer to all
participants as students from now on.) A total of 993 students signed up (sessions
distribution: 97, 259, 296, 157, 76, 48), of which 325 (35%) started the course and
created an account in our cloud lab. The completion rate was 33%, (108 students)
which we based off of the students who had answered at least one question in every
unit (except for unit #6, which was partly optional). (Note that this is a much more
conservative estimate compared to what we had reported in our work-in-progress
paper (Hossain et al. 2017), i.e., completion rate had been estimated previously as
the ratio of number of students answering at least one question in unit #7 compared
to answering at least one question in unit #1.) Students came from 46 countries
(Fig. 4b), mostly from the USA (42%) with a median age of 32 (IQR=19), 47% of
whom were female. Students took 3.5 ± 1.1h (Mean ± Stdev: we will use this nota-
tion throughout the paper unless stated otherwise) to finish the course, with each of
the seven units taking ∼ 30 mins to complete, except unit 5, which took ∼ 1h.
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Fig. 4 Long term usage of the cloud lab: (A) BPU (online microscope) demand during the first 6 weeks
(S1,S2 and so forth) was well below the supply at all time except for a singular incident (marked with
arrow) when a student had to wait for her turn. (B) System access pattern over 24h period during 6 weeks.
The traffic was mostly amortized over the entire day with peak activity seen during the middle of the night
(PST). The inset shows the origin of the traffic based on countries with the US providing most students

Students were able to run experiments in both interactive live mode (Fig. 3b) (1
minute long) and pre-programmed batch mode (Fig. 3c) (capped to maximum 5 min-
utes long). In live live mode, students would interact with Euglena in realtime using
a software joystick with a live video stream feedback, while in the batch mode stu-
dents would submit a preprogrammed script (in JSON or CSV) of a light sequence,
instead of using the joystick, to be executed offline without any live video feedback.
However, in all cases, a timelapse video of the experimental session is recorded and
made downloadable along with other data. A total of over 2,300 experiments were
executed, with 7 experiments on average per student (students who completed the
course ran 12 ± 6 experiments versus students who did not complete the course ran
5±6). During these 6 weeks, students hardly experienced any wait-time (median: 4.8
secs, IQR: 1.55 secs, which is within the system loss time for routing) for live exper-
imentation as the demand for the online microscopes was always below the supply,
except for a single incident (Fig. 4). Due to the worldwide accessibility, the usage of
the cloud lab was effectively amortized throughout a day, 7 days per week (Fig. 4)
though we observed peak traffic typically in the middle of the night (based on the
time zone were most students were situated, i.e., US).

The cloud lab scales linearly with the number of BPUs, and the demand char-
acteristics depend on the deployment scenario, e.g., a week-long MOOC versus
an hour-long classroom session. In this work we only concerned ourselves with a
MOOC deployment with worldwide access, and assumed that the cloud lab was used
continuously throughout. During the 6 weeks of the course, we had 4 − 5 operational
BPUs (Fig. 4a). The total available capacity of the system was 18, 000+ experiments
per week with 4 BPUs (at a rate of 2 experiments per minute and discounting the 8
self-monitoring experiments per hour. See Hossain et al. (2016) for details but note
that the throughput of our current work was improved by 2×. We saw maximum traf-
fic on the third offering (week 3) of the course with 1,000 experiment being executed
by the students. Therefore in terms of raw capacity, our system could have conserva-
tively supported 10× more students assuming an effective system utilization of half
a day. This translates to a conservative estimate of > 500 students/week across the
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globe (10× of 54 active students/week on average - 325 in 6 weeks). Even though
the current work does not concern itself with a school deployment, we estimate that
12 BPUs are sufficient for this purpose: Euglena inside the BPUs are in a responsive
state 61% of the time (empirically measured (Hossain et al. 2016)), e.g., 7 BPUs are
readily available for a typical class of 36 students working in pairs. Experiments take
1 minute, hence each student pair could start a new experiment every three minutes,
with time in between for analysis and planning. Over a whole class period of 45 min-
utes each pair then could run more than 10 experiments, which is sufficient for a
typical content progression (see analysis further below). Lastly, the manual effort to
maintain the cloud lab on the backend was < 1 h/week to exchange organisms and
microfluidic chips.

We will now discuss the design of each course unit (see Table 1), the design ratio-
nale of the corresponding HCI modules and technologies, the evaluation of users’
activities and feedback, to derive general HCI design principles. These generalized
HCI design principles are applicable to other cloud labs with real experimentation,
even beyond biology, with the primary goal to support students’ successful engage-
ment in inquiry practices. The course content structure was developed through
an iterative design process via several pilot studies, including our previous work
(Hossain et al. 2016) and user interviews. Note that therefore the six session offerings
of the course were not fully identical, i.e., the following minor adaptations were made
between sessions: Sessions 1 and 2 were identical. Session 3 had multiple new fea-
tures: (i) We implemented ways to investigate and mitigate issues of potentially low
internet bandwidth by letting users self-test and report their internet speed, further-
more we offered the batch mode as well as post-experiment video analysis already in
unit 1 as an option in case the live mode was unworkable due to low bandwidth. (ii)
We asked users to repeat their experiments on at least two more microscopes to make
sure that they appreciated the biological and instrument variability, furthermore to
give users sufficient opportunity to recognize the relevant Euglena behaviors in case
they did not note those during their first experiment. Also, prior to the first exper-
iment we gave users less guidance, so they had more opportunity to self-discover,
but then right before repeating their experiments two more times, we gave the users
much more detail on what to look for. (iii) We asked users to report the links to
their Google Sheets, and we also asked for volunteers for post course interviews. In
sessions 3-6, we made a number of minor changes that were either based on user
feedback, e.g., adapting text to avoid user misconceptions or to correct typos; fur-
thermore, we incorporated multiple new test questions and then occasionally made
minor changes to the wording or the order of content to make those questions work
properly.

In order to evaluate how conducive this course was to productive inquiry practices,
science learning and positive attitudes towards science, we applied a mixed methods
approach to analyze quantitative data - user logs and surveys - in conjunction with quali-
tative data - open response questions and voluntary student feedback. We extracted behav-
ioral patterns from the logged user interactions in the cloud lab and modeling environment
using descriptive statistics and cluster analyses. We automatically logged details of
every experiment, such as time of submission, time of execution, joystick movements
(live), programmed instructions (batch), and parameter manipulations. The timelapse
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videos produced by every experiment were available on our server for download too.
This data was complemented by multiple choice and open response questions in each
unit that targeted students’ observation of the scientific phenomenon, their content
knowledge and their reasoning about possible hypotheses. We used emergent coding
for each question to extract the broader categories of student responses. We asked
for voluntary student feedback to the unit and technology, which we used to provide
more insight into what was enjoyable, difficult, etc. Analysis of student comments
and feedback was classified by two independent researchers and then consolidated.
We also asked self-identified teachers and students to volunteer for a verbal post-
interview over skype. In order to assess students’ attitudes toward science, we gave a
set of Likert scale questions before and after the course. Finally, in Unit 7 we asked
for students’ user feedback concerning the system and course overall.

Unit 1: Observation (online microscope) Students were introduced to the cloud lab
dashboard interface (Fig. 3a), i.e., how to select an online microscope (BPU), how to
observe the Euglena cells in real time, and how to watch the resulting experimental
video afterwards either directly on the website via streaming or after downloading.
Students were tasked to describe their observations in a free form manner. We deliber-
ately started with a passive observation, rather than asking students to already explore
the light responses, as earlier pilot studies (Hossain et al. 2016) and interviews with
users as part of the iterative design process have shown that premature interactivity
without proper foundation being established could overwhelm students, especially
when working with a noisy biological system. This passive observation was then fol-
lowed by a short description on the basic biology of Euglena: they are photosynthetic
organisms and they can detect light using an eye-spot; there was no mention of pho-
totaxis yet. During the first course offering we found that users with low Internet
bandwidth struggled with the live lab, i.e., below 5 Mbps being unworkable, while
above 50 Mbps would be ideal. In later offerings, we therefore alerted students about
the Internet bandwidth issues upfront, and emphasized about the option to download
the stored experimental video to watch offline. We noticed that then many students
with even sub-optimal Internet bandwidth were able to successfully finish the course
(i.e., 11 users out of the 47 that finished the course and also reported their bandwidth
reported less than 5 Mbps).

Design Rationale The cloud lab dashboard UI provided two methods for selecting
an online microscope: 1) auto-select a BPU based on the best available one in terms of
Euglena responsiveness, which was automatically monitored by the backend system,
and estimated wait-time (Hossain et al. 2016), and 2) manually select a BPU, e.g., in
order to do repeat experiments on the same device. We also implemented an external
camera that provided students with a view on the microscopes in the cloud lab in
order to emphasize that these were real microscopes (Fig. 3b). This was motivated
by several previous studies (Chen et al. 1999; Casini et al. 2003; Ionescu et al. 2013;
Nedic et al. 2003) that have demonstrated increased student motivation when they
perceived that the lab activities were indeed real.

Student Activities and Feedback Student found the online microscope with real
organism to be very useful (7.5 ± 2 on the scale of 0-9, N=52), and voluntarily pro-
vided positive comments during the optional feedback session, e.g. “I liked the focus
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on one organism... I liked the use of live microscopes to study Euglena.” 100% of the
students were able to correctly identify Euglena in a follow-up question where they
had to choose which one of a set of pictures showing various microorganisms related
to what they had observed in the online microscope. Students answered questions
about the quality of live streaming and download speed: 40% percent of students
reported “really nice” (likely due to the Internet speed); another 45% reported that it
was “at least reasonable.”

General Design Principles Students should be enabled to first immerse into the
real aspect of the cloud lab, which is achieved through realtime observation of the
underlying scientific subject (Euglena in this case). The system should also provide
an external camera view of the actual workings of the lab even if that camera does not
have any direct consequence on the experimentation, but to increase the credibility
of the system. Furthermore, the system should provide a timelapse recording of the
experiments, along with other data, so that students can investigate offline at a later
time, which also helps mitigate lower bandwidth issues.

Unit 2: Experimentation (interactive and scripted) Unit 2 introduced students to the
interactive joystick to interact with the online microscope (Fig. 3b) to actuate direc-
tional light stimuli. Students were prompted to then run experiments to explore how
Euglena reacted to light stimuli. We primed students with simple test questions, e.g.,
“In which direction does the light shine when you pull the joystick in this direction?”
to eradicate misinterpretation of the instrument usage early on. In this unit, we also
introduced the batch mode experimentation as an alternative approach to running
experiments (Fig. 3c).

Design Rationale The goal of the live interactive experimentation was to allow
students to intuitively calibrate themselves to the light behavior, the time of reac-
tion and the length scale of the Euglena biology in an easy exploratory manner. The
Euglena phototaxis with respect to light is non-linear, has an implicit time delay
(takes approx. 7 secs for the swarm to respond to light), and only visibly acti-
vates when the light intensity is above 40% (Hossain et al. 2016). In a previous
iLab pilot study (Hossain et al. 2016), which was only based on batch experimen-
tation, we noticed that students had great difficulties in bootstrapping experiments
with the right timing and lighting condition to induce negative phototaxis. Realtime
interaction helps students establish an intuitive sense of the various scales, while
batch experimentation might be better suited for further controlled investigation.
The batch mode also enables students with low Internet bandwidth to participate
with the offline timelapse viewer. Biological systems, unlike physical systems, often
undergo unpredictable natural variability (e.g., cells dying, culture contaminated, or
population undergoing circadian rhythm), which makes repeatable and consistent
experimentation challenging. To mitigate that, we implemented auto-monitoring and
self-correction of the biological state for each BPU (Hossain et al. 2016), and then
routed students automatically to the optimal BPUs. On the other hand, the main point
of a cloud lab with real biology from an educational stand point is to expose these
very natural variability for a real life scientists experience, which we initiated by ask-
ing students to repeat their experiments on at least two different, manually chosen
microscopes.
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Activities and Feedback Prompted by the open-ended question: “What do you
see?”, 83% (N=163) of students reported Euglena responded to light, among which
62% recognized negative phototaxis, 10% positive phototaxis, 7% both types of pho-
totaxis and 4% “spinning” without linear motion. These observations indicated that
the Euglena light responses in the experiments were clear enough for the majority
(negative phototaxis is the expected dominant response), and most students were
able to self-“discover” negative phototaxis in light of biological variability. The
remaining 17% of students did not give the expected answer, and we identified in
the students’ experimental data multiple reasons: some students used too low light
stimulus or did not wait long enough for Euglena to respond, whereas some stu-
dents self-selected a microscope with either too few cells on the screen or cells that
were in a state of too much light sensitivity, with higher likelihood for cells to just
spin on the spot. In later course offerings we therefore asked student to run two
additional experiments on different self-selected microscopes, which successfully
mitigated these issues, furthermore emphasized that each instrument is different. Stu-
dents mainly used live experiments (2255 live compared to 69 batch). Students rated
this interactive experimentation to be very useful (8.4±1.5 on the scale of 0-9, N=52)
and expressed enjoyment, e.g. “The ability to see real Euglena and interact with
them (using the LED lights) was really interesting. The real-life interactions made
this course much more fun. I thought it was neat to be able to actually control the
parameters and experiment with the lights.”

We also analyzed the types of light stimulus experiments run by students (Fig. 5).
For every experiment, we collapsed the joystick positions over time into a single
image by convolving a Gaussian distribution on every joystick position and per-
formed hierarchical clustering on 1321 experiments (72% of all live experiments that
had sufficient mouse movements). A judicial cut-off in the hierarchy revealed six
dominant clusters (silhouette score (Rousseeuw 1987): 0.53 in 0 − 1 range; see inlets
in Fig. 5). The corresponding cluster centers correspond to experiments that either
focused on directional responses (C4, C5, C6) or on responses to varying light direc-
tion (C1) or intensity (C3). A Locally Linear Embedding (LLE) (Roweis and Saul
2000) analysis with two components (Fig. 5) reveals the general spread and sub-
tle variations among the experiments. Note that in many experiments students tested
intermediate light intensity values (Fig. 5 C2 and C3) as opposed to full intensity.
This analysis demonstrates that students have freedom of performing different types
of exploration and assess different variables (direction, intensity, duration), and that
the joystick provides an intuitive input; this analysis also points to the potential for
future analysis using learning analytics and data-mining techniques regarding student
experimentation strategies.

General Design Principles The course layout and UIs should allow students to
both “play” with the biology in a free form manner using simple and intuitive
interfaces in live mode, but also provide the possibility for programming experi-
ments in batch mode that allows for better controlled experiments, and which also
mitigates challenges with low Internet speed. A cloud lab platform, especially for
biology, should strive to allocate experimentation equipments (BPUs) that have
higher signal-to-noise ratio (e.g. through auto-monitoring BPUs), thus providing a
clearly observable and repeatable experience. On the other hand, the platform should
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C1(410) C2(333) C3(216)

C4(205) C5(93) C6(64)

Fig. 5 Typical live joystick experiment run by the students and a Locally Linear Embedding
(LLE (Roweis and Saul 2000)) analysis shows the varieties among all the experiments run before unit #3
(N=1321). (Note: The axes are not labeled on purpose as they bear no semantic meaning in LLE, which is
a non-linear dimensionality reduction technique to mainly show the spread in the dataset.) The inset shows
the six dominant clusters extracted using hierarchical clustering (silhouette score of 0.53 in 0-1); numbers
of experiments in each cluster in brackets

leverage the real cloud lab to expose the biological variability of the system to facili-
tate rich exploration based educational experience. Letting students run experiments
on different (but seemingly equivalent) instruments further emphasizes this con-
cept. It is also important to ensure that the students fully understand their inquiry
instruments, rather than just focus on their object of study.

Unit 3: Visual analytics/qualitative data interpretation Unit #3 instructed students
to analyze and explain their movie data more closely (Fig. 3d), where Euglena exhibit
a wobbling, meandering motion as apparent via the overlaid visualizations of their
tracks (Fig. 6). Students then performed simple, direct measurements regarding speed
and rolling frequency - solely based on visual analytics using the overlaid tracks, the
timer and the scale bar.

Design Rationale The visual analytics component was an essential new UI addi-
tion, as during our previous work (Hossain et al. 2016) and during our pre-studies
some students did not recognize negative phototaxis or the wobbling Euglena motion
easily. We therefore generated movies that contained all possible information overlaid
on the original movie (Fig. 3d), i.e., a scale bar, timer, frame number, side bars indi-
cating light direction and intensity (both by intensity of the bar as well as in numbers,
i.e., aiming for redundancy whenever possible), a joystick animation, and finally the
cell tracks, where each cell had a unique ID. This ID could be cross-referenced with
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Fig. 6 Post-experiment movie analysis and back-of-the-envelope measurements. Example shows the
meandering swimming path of Euglena cell #39 in two different image frames; measuring the distance
provides the forward speed of the cell, counting the peaks provides the rotational speed of the cell about
its long axis

a downloadable data file (discussed in unit# 5). We rationalized that students would
be enabled to recognize features that might otherwise go unnoticed, such as the side-
way wobbling of the cells. Furthermore, students could measure several quantities by
simple inspection, e.g., size of Euglena, speed, response lag time due to changes in
light by inspecting when the tracks start to bend, or rotational frequency of Euglena
rolling around its long axis by counting peaks of the path due to the wobbling motion.
These activities were also intended to prime the students for the modeling exercises
in the next unit.

Feedback 50% of the students hypothesized that the wobbling would allow for
better detection of light direction (which we considered to be correct); other answers
included better maneuverability or faster escape from predators. 67% and 15% of
students estimated speed and frequency of wobbling correctly on the first attempt,
respectively, with the latter reflecting a more challenging concept. The median speed
was 60μm/sec (IQR=69.2, N=148), and the wobbling frequency were 0.5rev/sec
(IQR=0.5, N=147). Students appreciated the benefit of visual post experiment analyt-
ics, with a median feedback score of 9 (highest score “very useful”, IQR=3, N=52)
and remarks like, “I also like the fact of being able to download the videos so I could
stop them when I was trying to find something or notice anything I did not see at first
in the experiment.”

General Design Principles Image data is information rich. Extracting, augment-
ing, and visualizing information from the raw data, also in redundant fashion (e.g.,
different ways of symbolizing the stimulus intensity), enables students to effortlessly
explore, and furthermore to focus them on specific details. For example, students
were already able to measure length, velocity and rotation frequency of Euglena
by inspecting the visualization. Such “back of the envelope” measurements based
on semi-processed image data also provide a valuable intermediate between pure
qualitative analysis and full data processing (see unit #5) without having to use
any specialized software or programming. Hence the system should provide suffi-
ciently accessible and augmented qualitative data with a discovery space that is both
high-dimensional but also directly accessible.

Unit 4: Model exploration and evaluation Unit #4 featured a modeling environment
(Fig. 3e) that prompted students to find the best parameter values that fit the model to
the real Euglena path and then explore how to accomplish both positive and negative
phototaxis. Students were introduced to the relevant sub-cellular structure of Euglena



Int J Artif Intell Educ (2018) 28:478–507 493

and the mechanistic explanation of Euglena phototaxis, i.e., the coupling of the eye
spot with the flagellum (Fig. 2b), which causes rolling around the long axis and
side way turning. These activities then also provided a deeper explanation for the
wobbling motion analyzed in the previous unit. Students were also asked to go back
to the real experiment after the modeling and to report on similarities and differences.

Design Rationale The target of this unit was to focus students’ attention towards
the role of the three simple parameters surge (forward velocity), roll (rotation about
its long axis) and coupling (sensitivity to light) that are necessary for phototaxis
mechanism; similar to bifocal modeling (Blikstein 2014), they had to further com-
pare modeling results with the behavior of real Euglena. In contrast to our previous
middle-school study (Hossain et al. 2016), the light sequence was pre-programmed
and students could not influence the light sequence during the simulation, which
enabled them to concentrate on parameter fitting only. A separate controlled
study (Bumbacher et al. 2016) had revealed that without the joystick, students were
significantly more systematic with their parameter exploration. Overall, the modeling
interface was intended to provide students with a deeper insight into the core mech-
anism underlying biological phenomenon, which then makes observation of the real
noisy data more vivid.

Activities and Feedback We found that 48% (N=77) students were successful in
the fitting tasks, i.e., found a parameter set that led to a closely matching swimming
path. When comparing the model to real experiments again, 69% of students noted
that the behavior of real Euglena changed depending on the light intensity, but not
the model behavior: some real Euglena spun in one place (40%), wobbled differently
(19%), seemingly increased in forward or rotational speed (15%), or moved towards
the light (8%). 31% of students noted variations in real Euglena behavior both within
a single cell and in the population. Finally, 15% of students noted that real Euglena
lagged in their reaction to light, whereas the reaction of the model was always instan-
taneous. These observations show that the students recognized subtle yet significant
differences that went beyond what was explicitly discussed in the instructions. We
argue that these differences became obvious mainly due to the juxtaposition of model
and real Euglena. Students rated the modeling activity to be very useful (8.4 ± 1.2
on the scale of 0-9, N=51) and expressed that view in their comments, “The simu-
lation was very interesting and improved the learning s it was easier to observe the
phenomena [sic].”, “I think to learn better a mix of simulation and real videos is the
best option.”

Similar to unit #2, we analyzed how the student approached modeling more
deeply: We identified four strategies that students attempted to explore the parame-
ter space from N = 1531 modeling experiments. For this, we computed the number
of parameter changes between successive runs which can range from 0-3, thus turn-
ing a sequence of experimental runs into a sequence of parameter changes (states).
We removed all the 0 states from this sequence, i.e., discounted all the experiment
repetitions and computed a single Markov transition probability matrix (where Mij

indicates the probability of going from state i to state j , where i, j ∈ {1, 2, 3}) by
counting state changes in the sequence. This transition matrix encodes the sequence
of the modeling experiments run by a particular student. We then extracted four dom-
inant clusters (silhouette score: 0.58 in 0 − 1 range (Rousseeuw 1987)) from the
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Fig. 7 Cluster analysis of parameter fitting strategies for a Euglena model in terms of the transition
among the number of parameters changed between successive runs of the model. The transition matrix is
shown with a grid where gray scale color coding indicates probabilities of transitions (black=0, white=1).
Clusters are arranged from the most efficient to the least efficient strategy (left to right) in terms of how
many modeling experiments students ran (median: 14, 14.5, 17 and 25 respectively) before posting a
near optimal solution. The numbers in parentheses represent student counts while the percentages are net
probabilities of the states

transition matrices of all the students using hierarchical clustering (Fig. 7). Cluster
1 and 2 (Fig. 7) reveals the most efficient strategy as students in these clusters ran
only 14 and 14.5 (median) experiments respectively before posting a near optimal
solution. Students in these clusters predominantly switched to changing 1 parameter
only followed by multiple parameters at a time. In cluster 4, which proved to be the
most inefficient strategy, students ran 25 (median) experiment for the same task. As
evident from the transition matrix visualization (Fig. 7), the key difference between
cluster 4 and the other clusters was that in the rare case when students changed all
3 parameters, this was then predominantly followed up with changing 2 parameters.
Finally, students in cluster 3 mostly changed 2 parameters at a time and required 17
experiments for the task. We did not notice any significant differences in the number
of repeated experiments across clusters. These observations are consistent with the
smaller scale middle-school studies (Hossain et al. 2016; Bumbacher et al. 2016).

General Design Lessons The bifocal modeling framework (Blikstein 2014) that is
centered on the simultaneous comparison of real system and model behaviors pro-
vides a productive way for students to both understand the key properties of the
real system through the model, yet recognize its subtleties by seeing how real and
model behavior diverge. Especially for biological systems that exhibit quite complex
behaviors early on, even simple models that capture only the overall tendencies in
behaviors can provide powerful lenses to better understand the system under study
and appreciate its complexities. In particular mechanistic models, i.e. models that
provide mechanistic explanations of the underlying biological phenomena, can form
the basis for insightful discussion and investigations. Hence real experiments and
modeling should be presented to the student side by side, where the correspondence
between both should be easily understandable (e.g., through equivalent symbolism),
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and where the model should lead to a better understanding of the experiment and vice
versa.

Unit 5: Quantitative data processing and analysis Unit #5 engaged students in the
process of exporting the numerical data into a spreadsheet, graphing that data, and
interpreting the graphs. Students first worked through a highly scaffolded example
to analyze how the Euglena speed depends on Light-On versus Light-Off stimuli,
which has at best a weak effect, (Fig. 8, purple trace). Then the students were asked
to perform a similar analysis on their own, but now to determine graphically whether
the average velocity vectors in x and y changed with directional light stimulus from
the LEDs (Fig. 8, pink and cyan traces). Here the students used a data set where
the velocity of each cell was already decomposed into its cardinal directions, i.e.,
Vx and Vy. Depending on the direction of the light origin, one velocity component
would average to zero, and the other would be either negative or positive. Students
had to design and run a new set of experiments to generate the data for this analysis.
Initially, we had intended to teach units #4 and #5 in reverse order, but based on user
feedback during pilot studies the interactive modeling activity seemed better before
this more complex data analysis.

Design Rationale The purpose of the data analysis component was to export all
numerical data in a way that is approachable across a diverse set of audience - from
middle school to graduate level students. Through multiple pilot studies we evalu-
ated different data formats, JSON, with corresponding higher level APIs for Matlab
and Python. Each had its challenges: Matlab is not free, and the required program-
ming knowledge for Matlab and Python heavily shrinks the potential audience for a
large scale online course. Ultimately, we found that the best solution is to export all
data to MS Excel xlsx format (Fig. 3e), which can also be imported into the Google
Spreadsheet, which has built-in advanced statistical and graphical functions. Google
Spreadsheet is freely available online, many K-12 teachers are using it with their
students, and users in general are familiar with at least some spreadsheet program.
However, the row-column spreadsheet format is not as expressive as JSON. In order
for the student to be able to generate sophisticated plots with a simple row-column
selection and a click of a button, we exported multiple xlsx files, each with a suit-
able data re-arrangement and pre-computation, e.g., the population average velocities
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Fig. 8 Graphing examples by a student. The light intensity of the four LED is given (top, right, bottom,
left). The average Euglena speed (purple) remains stable over time. The average velocity components in x
and y (cyan, red) are clearly either positive or negative or zero depending on the light direction
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along the cardinal directions for each time point were already pre-calculated. We also
exported the data in the single generic JSON file to enable more advanced students
to do more complex analyses.

Activities and Feedback For a more detailed analysis, we choose all 14 students
from session 3 who provided us voluntarily with the links to their Google Sheets.
(We had only asked students for these links from session 3 on; a total of 44 students
provided the links from session 3 to 6.) We found that 6 students ran the appropriate
experiments (i.e., light intensity and duration was such that enough cells exhibited
proper responses that could be read off the graph), and also produced the proper
graphs including formatting and axis labeling. Another 8 students had proper graphs
but their light stimulus protocols had not been optimal. This unit was certainly more
complex and challenging than all the previous ones as indicated by its success rate
and the overall time the students spent on this unit (on average 1h), and expectedly
- due to inherent noise with real biology, some students expressed challenges with
the data analytics, “In general the course explain itself clearly but in some parts like
when it’s about the graphics in google sheets and some observations of it, it was a
little challenging to understand how I should be able to contrast my own experiments
with the examples that are given in the course [sic].”. However students found this
data analytics exercise overall very useful (8.2 ± 1.22 on the scale of 0-9, N=51)
with comments like “I also liked the clear instruction on how to develop useful
graphs!”.

General Design Principles Data formats and analytics UIs should be easily acces-
sible to a broad audience (Google Sheets, CSVs and Excel formats are usually
good options). At the same time complex data manipulation should be enabled for
more advanced investigations (single generic JSON files and processing in Python
seem suitable). Hence we suggest to provide different types of data approaches in
order to reach target audiences with different backgrounds, and to make the activ-
ities even more accessible by already pre-processing and pre-formatting the data
significantly.

Unit 6: Open and self-guided investigations In the final activity unit, students
were led to carry out a self-guided research activity, where they proceeded through
the main parts of the inquiry cycle while applying all or most of the previ-
ously used tools. We prompted students to make an observation (specifically one
that had not been stated by the course material previously), and transform this
observation into a testable hypothesis with experimental designs. Students were
then encouraged (optionally) to pursue the actual experimentation, analysis, and
interpretation.

Design Rationale We holistically combined all the UI components (experimenta-
tion - both live and batch - visual analytics, data analytics, and modeling) under the
same platform to provide an end-to-end system that allowed students to perform sci-
entific activities remotely over the Internet on real biological samples. In the previous
units, we walked students through the key scientific processes and introduced all the
UI components to accomplish various scientific tasks. The batch experimentation
provided students with a key research tool to submit many controlled experiments
to be executed offline. This holistic integration of all the UI components, especially
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with attention given to making the overall system approachable to a diverse audi-
ence allowed us to now encourage students to undertake their own research using
authentic scientific practices. We made the final project activity optional as an open
ended investigation could take significant time, while we wanted to enable students
to complete the course within one week.

Activities and Feedback Students made several meaningful observations, some of
which were also formulated as a causal clause (“It seems that when two Euglenas
crush, their velocities change.”), others were more observational (“Some spin like a
gyroscope and others roll. They seem so random.”). Interestingly, some observations
have been published in the recent literature, e.g., “Many Euglena appear to take at
least 2 seconds to move when exposed to sudden intense light.”, an effect described
as transient freezing (Ozasa et al. 2014). This demonstrates that this course and cloud
lab enables students to make discoveries equivalent to true science.

65 (20%) students formulated a significant number of distinct and testable
hypotheses, 42 (13%) of which were phrased as one variable depending on another
(we did not explicitly tell them that this would be a good strategy.): “The fewer
the Euglena in the container, the faster they respond to the light.”; “It looks
like the rotational speed increases when the light intensity increases.” We char-
acterized all of the meaningful hypotheses based on “If the independent va-
riable is (increased, decreased, changed), then the dependent variable will (increase,
decrease, change).” We identified more than 10 classes of both independent and
dependant variables each: Independent: Light intensity (on/off, threshold), light
direction (two vs. one side), exposure time/minimal time of illumination, cell
size, Euglena density, Euglena crashing into each other, different online micros-
copes; Dependent: Aggregation, stay at one place, directed movement, spinning,
spinning frequency, rotational speed (frequency), speed, response time, delay, fre-
quency of cell-cell touching, behavior, behavioral transition, synchronization, acti-
vation, interaction between Euglena. Other suggestions did not fall into these
categories, such as testing for a correlation between mean and standard deviation of
the speed. Hence, well over 100 hypotheses could be generated and tested with the
platform, as constrained by the stimulus and observation space, which opens a large
possibility space for learners to carry out versatile and self-driven inquiry projects.

21 (6%) students attempted this optional integrated research activity, 15 (5%) of
them did it in a meaningful way completing all phases of the self-guided investiga-
tion. (The students that attempted but failed either reported challenges with loading
their data in Google sheets, or gave completely nonsensical answers.) The two fol-
lowing examples serve as illustration (Fig. 9): One student observed that Euglena
only reacted at light levels of 50% and higher and decided to investigate what per-
centage of Euglena move away from the light in response to increasing light levels.
The student programmed an experiment in batch mode in which light levels sys-
tematically increased in steps (Fig. 9a) and reported: “As the light level increased,
movement across the y axis doubled, whereas the x axis stayed consistent.” The
other student observed that Euglena were not always responsive to light and hypothe-
sized that the cells were desensitized or “exhausted” by the stimulus, especially after
repeated stimulation. The student then designed and ran a batch experiment with a
single light-on step (Fig. 9b) and found that the magnitude of velocity away from



498 Int J Artif Intell Educ (2018) 28:478–507

S
pe

ed
(u

m
/s

ec
)

Light  (%
)

0

100

0

50

Time (sec)
60 

Light VyVx

100

0

100100

50

0

Time (sec)
60 

-50

A B

Fig. 9 Self-guided student projects. A Testing the strength of Euglena response in response to increasing
light levels (velocity component Vy in green vs. light intensity as blue step trace). B Testing whether
Euglena desensitizes after prolonged light stimulus

the light source increased over time but did not desensitize or exhaust the Euglena.
Hence the student disproved his hypothesis, but correctly noted that an experimental
setup that allows to run experiments for longer than one minute might have helped
answer the question better.

General Design Principles To foster inquiry based learning that is in line with
NGSS (Council 2015) and NRC (Singer et al. 2006), a cloud lab should integrate all
the technology and HCI modules within the same platform in order to reduce switch-
ing cost from one inquiry phase to another and reduce as much as possible extraneous
technical work that might be a roadblock for the inquiry work (e.g. handling com-
plex data files.) The course should walk students through every phase, introduce the
relevant technology in each phase, make sure the students appreciate and understand
how to deal with the inherent natural (biological) variabilities in real experimentation
(e.g., repeat experiments on multiple instrument and several times) before encourag-
ing students to embark on self-guided research. Hence the experimentation platform
at its core combined with the supporting HCI tools and the overall course layout
should make it easy for the student to get started on the system, but eventually enable
the student to reach proficiency to perform a variety of experimentation and anal-
ysis tasks that are at the core of scientific inquiry, and where the tools allow for a
wide variety of different and complex investigations - ultimately enabling the stu-
dent to engage in self-motivated exploration, i.e., formulating and testing their own
hypotheses.

Units 1-6: A case study for the whole course So far we have described each course
unit #(1 - 6) and the relevant design principles independently. We now narrate a case
study of a single student’s journey through the course to provide an overall view of
how this scaffolded course design, together with the interactive cloud lab, enabled
key phases of inquiry-based learning through the Internet. We note that there a vari-
ety of ways students approached this course, and a significant portion did not finish
it, but we consider the following as a best case scenario given the current course lay-
out, cloud lab, and user interfaces (Fig. 10). This student is a high-school teacher who
ran 13 real experiments (9 live and 4 batch) and 12 modeling experiments in order
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~3 hours

1. Ease of use microscope:
(This was easy)

9. Your observations:
(The Euglena seemed to 
move faster when the light 
was on, but I didn't see 
them moving towards or 
away from the light.)

10. Your generalized observation from three different experiments.
(In Eug2 the Euglena turned towards the left, right, and bottom lights 
faster than they did towards the top light. These results were the same 
on Eug2, but on Eug0 I had a lag and could not tell. I still saw them 
spin, but could not tell if the frequency was the same.)

47. Make an interesting observation and describe it!
(It was only at about 50% of light being turned on at the 
top that the Euglena started to react.)

49. How would you test this hypothesis?
(I will test a slide at 10 seconds intervals in increasing 
20 level increments and plot the percentage of Euglena 
that rotate away from the light.)

50. Optional: If you want - undertake this research!
(I plotted 0 light on all LEDs for the first 10 sec. 20% on the Top LED 
for 11-20 sec. 40% on the Top LED for 21-30 sec. 60% on the Top 
LED for 31-40 sec. 80% on the Top LED for 41-50 sec. 100% on the 
Top LED for 51-60 sec. As the light level increased, movement across 
the y axis doubled, whereas the x axis stayed consistent)

Modeling Experiments (12)

24. Values of your fit parameters (Modeling)
(Speed:30,Coupling:-25,Roll:3)

Speed(um/sec) Light Intensity (%)
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Fig. 10 Case study of the activity timeline of one student in the course (same student as in Fig. 9a).
Numbers refer the task number in the course (out of 71 tasks total). The colored and grayscale images
depict the stimulus pattern of live and batch experiments, respectively

to complete the course in 3h. She initially ran 5 experiments, including one batch,
before she noted that Euglena moves faster upon light stimulus but the direction of
motion was not clear. Later she executed 3 more experiments on different online
microscopes to experience the biological and system variability. By then, she recog-
nized the response to light but the direction of Euglena motion was not as obvious yet
to her. She then executed 12 modeling experiments to fit the phototaxis parameters to
the correct values, during which time she also executed real experiments to compare
with side by side. Such seamless switching between different modes of experiments
were possible due the holistic integration of the various components for inquiry-based
learning under the same platform. She then ran 3 more experiments before formulat-
ing her hypothesis that “euglena respond when light intensity is above the threshold
of 50%.” To test this hypothesis, she ran 2 more carefully designed batch experiments
in which she ramped up light intensity (top LED only) by 20% every 10s starting
from 0% (Fig. 9a). She analyzed the experimental data, which revealed that Euglena
swarm velocity along the vertical direction increased with the increasing light inten-
sity while the horizontal component remained constant around 0. This observation
confirmed to her that Euglena exhibits phototaxis, which is dependent on light inten-
sity. She voluntarily shared her data plots with us through Google Docs (Fig. 9a),
which indicated sound scientific analysis and communication.

Unit 7: Summary and reflections The final unit summarized the course content for
the students, provided a set of test questions, and collected overall feedback, which
we now discuss with a specific focus regarding some central questions:

Accomplishment of Course Goals The main goal of this course was to enable stu-
dents in large numbers to enact the key components of scientific inquiry through the
Internet, which was successfully achieved by a significant number of participants (see
Fig. 10 for a successful example). The completion rate of 33% is comparably high
for MOOCs. We are aware that our course is relatively short compared to a typical
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MOOC, which likely positively affects the completion rate, but large online courses
have considerable dropout rates even within the first few interactions. In compari-
son to the typical participation profile in open online courses, a 33% completion
rate seems promising, especially considering that the course required much more
than simply passively watching lectures and taking quizzes. We attribute this high
retention rate to the inherent active and live nature of the experimentation in addition
to the versatile course content and intuitive interfaces, all of which underwent signif-
icant user testing and iterations prior to the course release. Overall student feedback
(see below) also speaks to that interpretation. Students self-assessed to have learned
about how microorganism interact with their environment “moderately” (2.9 ± 0.7,
scale of 1-4, N=29), to have learned “somewhat more than expected” (3.9±1.0, scale
of 1-5, N=29), and students also expressed that they would like to pursue this topic
further “very much” (5.8±1.1, scale of 1-7, N=24). While this is promising, we plan
to perform a thorough analysis of the actual learning outcome in the presence of such
a cloud lab as a separate followup study in the future.

Changes in Attitude Towards Science We asked four questions before and after the
course to assess students’ attitudes towards science; N=15 students responded pre and
post. (These questions were introduced only from session 4 onwards. These 15 stu-
dents represent about one third of students that completed these sessions.). Answers
were on a scale of 1-9 (not at all - totally): “Science is interesting” (pre=7.5±1.4 →
post = 7.7 ± 1.8); “I know what it is like to be a scientist” (7.7 ± 1.3 → 7.4 ± 1.7);
“Ordinary people can be scientists” (8.7 ± 0.6 → 7.5 ± 2.0, p < 0.05); and “I can
imagine myself as a scientist” (6.7 ± 1.8 → 8.5 ± 1.3, p < 0.005). The answers
to the first two questions were at a high level and did not change significantly. We
acknowledge that these responses could in part arise due to a self-selection bias, i.e.,
students who had a positive attitude towards science were the ones who completed
the course and also responded. However, even within this small subset, the changes
in the attitude in the third and the fourth questions interestingly revealed that students
perceived themselves of being a scientist more than before, though at the same time
felt science was more challenging than they initially had thought. Such viewpoints
suggest implications that we aim to study separately in the future.

Students Overall Feedback Students liked the course and rated it as interesting and
having the appropriate level of difficulty. All rated their overall experience between
“very” and “extremely positive” (6.3 ± 0.6 on a 1-7 scale, N=34); difficulty was
between “neutral” to “somewhat easy” (4.6 ± 1.1 on a 1-7 scale, N=31); guidance
level was leaning towards “right amount” (2.8 ± 1.1 on a 1-5 scale, N=34). Students
ranked the various lab activities (scale of 1-9, N=52), with “being able to stimulate
cells with light in realtime” (8.4±1.5), “modeling” (8.4±1.2) and “download your
own data and process and graph” (8.2 ± 1.2) among the most interesting.

What Students Liked The student feedback about what they liked captures the
key features we intended to reach with this online lab course: (1) Value of inter-
active and remote microscopy (“The way we could conduct experiments remotely
was very cool!”); (2) Performing deep scientific inquiry (“Feeling like I was part
of real research”; “developing a scientific approach to study things”); (3) Learn-
ing biological content (“how I was able to see diferences [sic] in the behavior
of the Euglena”; “Learning new things about a microorganism”); (4) Synergistic
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integration of different activities and HCI instruments (“Highly interactive meth-
ods of using microscopes, movies, spreadsheets instead of dull passive theory on the
characteristics of Euglena.”); (5) Appropriate course design, content, and length
(“Good amount of material for a short course.”; “I liked the emphasis placed on the
scientific method.”; “I was able to prove myself I was going trough an investigation
and how it was going from the easy things to some challenging”; (6) Lowering access
barriers (“Being from develop country we dont have microscope or all the lab equpi-
ments, this facility has provoked my passion to go for higher studies ...[sic]”; “I was
able to show my child a microscope / microorganisms”); (7) Playfulness, fun, moti-
vation, personalization, and feeling ownership (“The course helps make biology fun
to learn”, “I liked playing around with the online microscope. It was fun looking for
phenomenon on your own!”; “the way this course has been designed itself is moti-
vating to get through the contents”, “The ability to make my own experiments.”);
(8) Advancement beyond what current MOOCs can deliver (“I like the fact you are
using online learning in a different way than most courses.”, “It broke this limitation
of MOOC courses that they were focused on theoritical [sic] lessons and not the ones
requiring laboratory activities”; “I have paid some money in Coursera’s lessons and
i can say that this was the most interesting lesson i have followed [sic].”)

Suggested improvements Students pointed out existing limitations and suggested
future improvements: (1) extension of experiments (other specimens and organ-
isms; other stimuli beyond white light including chemicals; zoom in and out; better
microscope for visualizing the flagellum; longer sessions at the microscope; (2)
more explanation and guidance on the data graphing and interpretations; (3) techni-
cal improvements such ability to download individual data files instead of a larger
compressed file, or the ability to communicate with other students.

The Value of a Real Lab vs. a Simulation A central question is whether the effort
to provide a real, interactive lab is justified compared to using an interactive com-
puter simulation that is potentially easier to develop and disseminate. The purpose
of the present work was not to run a controlled comparative study between a real
cloud lab and simulation, instead to provide both under the same platform. We asked
the students for their self-reported opinions about the value of real-life experiments
over computer simulations, i.e., modeling in unit #4. N=39 students responded and a
majority 72% expressed argument in favor of the real lab. 36% explicitly mentioned
how simulations may be inadequate at capturing fine details while a real lab pro-
vides ground truth data; “Yes, there should be a real microscope as it is impossible
to guarantee that the behaviors of the simulation to be 100% natural/realistic. Using
simulations rather than real cells could possibly mean that some unique phenomenon
are not discovered.” The other 36% discussed about the increased course engage-
ment due to the inherent fun and motivating factor that a real lab ushers; “... using a
real microscope is more exciting than using a computer simulation. Being excited is a
better motivator for doing the course.” The remaining students were ambivalent and
thought a simulation was adequate for the purpose of this course, stating that simu-
lations were easier to distribute over the web, that they could easier visualize aspects
of Euglena movement, and that the results between successive simulations would be
much more consistent as was for the experiments. A comparative study to measure
the actual learning outcome due to simulation versus a cloud lab versus a combination
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of both (our platform can expose each of settings separately) is an option for future
studies.

Potential for Future Integration into K-12 and College Education We extracted
feedback from self-identified teachers (K-12 and college, N=12). These teachers
generally found the system to be powerful in fostering scientific inquiry due
the blending of real biology experimentation with data analysis and modeling;
furthermore, filling a current gap regarding the Next Generation Science Standards
NGSS (Council 2015). Two teachers explicitly expressed interest in integrating this
platform into their high-school biology classes the coming school year: “I believe
that the emphasis on modeling, design, and quantitative analysis would be extremely
helpful to AP Biology students, and I would love to try this in my classes.” “I think
that this would be a great thing to use with my students ... the thinking and feeling of
being a scientist would be powerful for them.” These studies are currently under way.
As pointed out earlier, 12 BPUs would be desired to serve students in a regular class
concurrently.

Discussion

Key Design Principles for a Biology Cloud Lab Several UI design rules have
been postulated in the HCI literature such as Neilson’s Heuristics (Nielsen 1995) and
Shneiderman’s Golden Rules (Shneiderman 2010). In this paper we discussed six
sets of design principles, embedded within each of the first six course units, which
we derived through an iterative design process and several pilot studies. These design
principles are mostly relevant for a MOOC course with a real backend experimenta-
tion lab (even beyond biology), yet some of them could be reformulated in the light
of a much broader general purpose Neilson or Shneiderman’s proposition. There are
two specific design principles that are unique and particularly important due to the
presence of real biology: First, our platform not only mitigated non-deterministic
and noisy biological behavior for consistent experimental results, but also provided
means to exploit its educational value in the context of the inquiry-based learning.
Secondly, biological phenomena are often complex and our design provided a bi-
focal modeling platform with a much simplified modeling UI side by side with real
experimentation to explain the underlying phototaxis mechanism. These design prin-
ciples regarding handling of the natural biological variability and bi-focal modeling
were key to the success of our biology cloud lab for inquiry-based learning.

Achievements and Implications We successfully deployed a real biology lab that
enables authentic inquiry-based learning for life science in an online learning
environment at scale:

(1) We applied the framework of cloud computing to biology experimentation
labs, which is beyond simply putting large numbers of microscopes online. We
demonstrated that this technology works robustly, can scale linearly to large
user numbers (30,000+ experiments/week on 6 BPUs, which represents a two-
fold capacity boost from our previous work (Hossain et al. 2016) due to software
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improvements regarding BPU handling), and at low cost (< 1 ct/experiment)
as the BPUs including their biological material require low maintenance effort,
and where each BPU is hot-swappable while the system overall remains oper-
ational. It is important to realize that this adaptation of a cloud computing-like
architecture (Fox et al. 2011; Sia and Owens 2015) is the key to enabling real
science labs at scale (not only in biology) and constitutes a crucial innovation
of our work. Our previous work (Hossain et al. 2016) showed that simply
“adding microscopes” (or other experimentation devices) to an online course
delivery platform does not scale gracefully without a mechanism for automatic
instrument and biology health monitoring (Euglena responsiveness to light, cell
count, motility), and substantial engineering to perform load balancing in the
backend. Issues of consistency of experimental results, maintenance, reliabil-
ity and redundancy can greatly hinder the learning experience, and our system
addresses those concerns successfully by (i) having many BPUs to run exper-
iments on, (ii) automatically monitoring and routing students to the healthiest
available BPU (i.e. reducing biological variability) but also giving users an
option to self-select a BPU of choice (to expose students to variability on pur-
pose), and (iii) adapting dynamically, e.g. re-routing users, to BPUs and other
server failures (Hossain et al. 2016).

(2) We implemented a scalable form of the interactive biology paradigm (Riedel-
Kruse et al. 2011; Lee et al. 2015; Hossain et al. 2015) to go beyond what is
currently possible and what is the standard for microbiology education: Instead
of passively observing through a microscope, students can now interact with
cells in real time by applying light stimuli and see direct cellular responses.
This also results in rich qualitative and quantitative data (i.e., complex time
lapse movies as well as automatically tracked swimming paths of many cells),
enabling versatile forms of simple all the way to complex data analysis. This
contribution is applicable for both presential (face-to-face) and online learning
environments.

(3) We integrated a set of HCI modules and activities that realizes the NGSS view
of inquiry-based learning at scale, which has not been done with other existing
remote labs previousley (Heradio et al. 2016). This system enabled students to
engage in relevant phases of scientific inquiry within a consistent user interface,
within which the data was transported and processed in between the different
modules to assure students’ focus on the inquiry process and not on extraneous
aspects of data handling. The user-friendly yet powerful data-handling formats and
software interfaces as well as the short duration of experiments made it possible
for students to progress from simple activities all the way to self-driven gener-
ation and testing of many possible hypotheses - also given the various possible
light stimuli and the information richness of image data. This is in alignment
with the low floor, wide wall, high ceiling paradigm of constructionist learning
tool kits (Resnick and Silverman 2005). Students voiced their appreciation for
real labs and the course overall, furthermore indicated positive attitude changes
towards science.
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(4) We converged on key design features (technology and courseware) to not only
mitigate the noisy biological behavior (which is inherent to all biological sys-
tems), but to actually exploit its educational value. We provided ample opportu-
nities for the students to repeat experiments on different setups and pay attention
to variability, furthermore make them recognize the difference between the
determinist model and the real biology (biofocal modeling (Blikstein 2014)).
Recognizing this variability may also increase student interest.

(5) From this work we extract a number of general design principles, discussed
in context of the course units in the preceding section, which would extend to
other STEM courses with real cloud labs in the future: (i) Students should feel
part of a real experimentation environment (e.g. the organisms are real), (ii)
have means to initially interact with the underlying phenomena playfully for
an intuitive understanding, (iii) are able to execute controlled experiments in
batches, (iv) interpret experimental results with minimal effort through visual-
ization, and analyze the data with accessible and familiar tools, (v) understand
the mechanism of the underlying phenomena in a noiseless simulated envi-
ronment and juxtapose the findings with real, noisy experimentation (bifocal
modeling (Blikstein 2014)), and (vi) are able to test various hypotheses using
the system in a self-guided exploratory manner that may go beyond the lesson
scope of the course.

(6) We also found that the tight co-development and integration of science activ-
ities, biology content, and user interfaces (instruments) is key (Table 1). This
also requires many course iterations with small focus groups early on, further-
more the weekly wrap around of new course offerings. Using this approach we
were able to deliver and test 5 significant course iterations into 2 months.

Future Work There are a number of important avenues for future research and
development with this cloud lab and course: (1) Refine and test the course content for
specific relevant learner groups, such as middle and high-school biology, ultimately
paving the way for usage by potentially millions of students annually. (2) Include
other relevant scientific practices such as collaborative team work or model build-
ing (rather than just parameter exploration) activities. (3) Have participants do more
complex projects all the way to geographically-distributed team projects, including
sharing experimental data among groups of users, or reanalyzing other students’ data.
(4) Explore the potential for citizen science, or even let professional scientists work
on the platform. (5) Utilize these platforms for deeper analysis using learning ana-
lytics to aid instructors and educational researchers. (6) Extend the platform to other
experiment types (other light colors, other organisms, different microbiology experi-
ments). (7) Update the BPU performance protocol, such as automatic LED brightness
adjustment for optimal negative phototaxis response and feedback is provided to
users on “current instrument quality.”

Conclusions In summary, we successfully deployed an open online course with
an integrated biology lab in a scalable manner. Students could engage in the core
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activities of scientific inquiry while interacting with living cells, which goes sig-
nificantly beyond current educational practices of passive observation through a
microscope or using computer simulations or animations; instead the lab automa-
tion and ease of data collection and analysis leads to easier logistics and extended
lab time for students when working from home. The inherent capabilities for col-
lecting automated learner data and using learning analytics techniques, and the
different interaction modalities within the same platform open up interesting research
avenues for researchers in education and HCI. This high-dimensional discovery space
together with positive user responses regarding their scientific self-efficacy also sug-
gests the opportunity to not just “massify” science labs, but to actually democratize
complex scientific practices. This technology could arguably be adapted to K-12 edu-
cation for millions of users annually in the US and worldwide, filling an unmet need
as mandated by the NGSS (Council 2015) and other national initiatives.

Note This paper contains two supplements: (1) All course material including ques-
tionnaires as pdf screenshots; (2) an illustrative movie showing the various HCI
modules in action.
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