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Abstract
The overarching goal of our project is to design effective learning activities for
PyKinetic, a smartphone Python tutor. In this paper, we present a study using a
variant of Parsons problems we designed for PyKinetic. Parsons problems
contain randomized code which needs to be re-ordered to produce the desired
effect. In our variant of Parsons problems, students were asked to complete the
missing part(s) of some lines of code (LOCs), and rearrange the LOCs to match
the problem description. In addition, we added menu-based Self-Explanation
(SE) prompts. Students were asked to self-explain concepts related to incom-
plete LOCs they solved. Our hypotheses were: (H1) PyKinetic would be
successful in supporting learning; (H2) menu-based SE prompts would result
in further learning benefits; (H3) students with low prior knowledge (LP) would
learn more from our Parsons problems in comparison to those with high prior
knowledge (HP). We found that the participants’ scores on the post-test im-
proved, thus showing evidence of learning in PyKinetic. The experimental
group participants, who had SE prompts, showed improved learning in com-
parison to the control group. Further analyses revealed that LP students im-
proved more than HP students and the improvement is even more pronounced
for LP learners who self-explained. The contributions of our work are a)
pedagogically-guided design of Parsons problems with SE prompts used on
smartphones, b) showing that our Parsons problems are effective in supporting
learning and c) our Parsons problems with SE prompts are especially effective
for students with low prior knowledge.
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Introduction

Understanding programming concepts and acquiring the skill of code writing are both
essential in learning programming. Novices struggle with problem solving due to the
lack of declarative and/or procedural knowledge (Anderson 1982). In programming,
declarative knowledge includes the syntax of the programming language, while proce-
dural knowledge comprises of writing code constructs into a meaningful working
program. The goal of our project is to support novices in learning Python by having
simple activities that support acquisition of both conceptual and procedural knowledge.
We present PyKinetic, a Python tutor for Android smartphones which is designed for
novices and aimed as a complement to traditional lectures (Fabic et al. 2016a, b).
Mobile learning is proven effective in many domains including computing education
(Hürst et al. 2007; Karavirta et al. 2012; Boticki et al. 2013; Vinay et al. 2013; Wen and
Zhang 2015; Mbogo et al. 2016; Grandl et al. 2018; Oyelere et al. 2018). However,
there are only a few mobile applications in the literature focusing on enhancing
programming skills through control-flow learning and code writing (Karavirta et al.
2012; Vinay et al. 2013; Grandl et al. 2018; Mbogo et al. 2016). Therefore, there are
opportunities to contribute to literature by investigating a mobile tutor focused on
enhancing coding skills.

For the first version of PyKinetic, we designed a variant of Parsons problems
(Parsons and Haden 2006), which are exercises consisting of a set of randomized lines
of code (LOCs) that need to be rearranged in the correct order to produce a desired
outcome. Parsons problems are suitable for novices as they contain correct syntactic
constructs and impose low cognitive load (Morrison et al. 2016). Furthermore, learners
often lack mental models and have difficulty in translating a problem into manageable
tasks (Winslow 1996). Parsons problems provide scaffolding helpful for novices,
unlike in traditional code-writing exercises, where a student is expected to construct
code where the only scaffolding is the problem description. Previous research found
Parsons problems to have a moderate positive correlation with code writing (Denny
et al. 2008). In order to further target code writing skills, our implementation of Parsons
problems includes incomplete lines of code, a variant of Parsons problems (Ihantola
et al. 2013; Fabic et al. 2017b). The incomplete LOCs within the Parsons problems act
like micro-scaffolded code writing exercises. Therefore, in addition to rearranging
LOCs, learners are required to fill in missing code elements.

The second reason for choosing Parsons problems is their compatibility with the
smartphone interface. Parsons problems implemented on computers and mobile devices
are solved by drag and drop movements (Parsons and Haden 2006; Ericson et al. 2017;
Ihantola and Karavirta 2011; Karavirta et al. 2012; Ihantola et al. 2013; Harms et al.
2016; Kumar 2018). The drag and drop motion used in solving Parsons problems is
commonly used when interacting with smartphones. Moreover, Parsons problems can
be implemented in smartphones without having to sacrifice too much screen space as
they do not require typing. Requiring the student to write code on a smartphone might
not be ideal, as half of the screen will be obstructed by the keyboard when typing.
Karavirta et al. (2012) also perceived Parsons problems to be suitable for mobile device
interface and developed MobileParsons for Android and iOS.

Parsons problems with incomplete LOCs gave us a good starting point in targeting
procedural knowledge. In order to support the acquisition of conceptual knowledge, we
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introduced self-explanation (SE) prompts. Self-explanation was first introduced as
open-ended questions requiring the learner to explain presented learning material to
oneself, to gain deeper understanding (Chi et al. 1989). Previous research provides
evidence that self-explaining enhances conceptual knowledge (Najar et al. 2016).
Several types of SE prompts are reported in literature (Wylie and Chi 2014), including
menu-based SE prompts. We designed menu-based SE prompts for PyKinetic as
previous research shows that menu-based SE prompts are more effective than open-
ended SE prompts (Johnson and Mayer 2010; Gadgil et al. 2012; van der Meij and de
Jong 2011). Moreover, using menu-based SE prompts does not require the learner to
type, which is better suited to smartphones.

In this paper, we present an evaluation study which investigates the effectiveness of
our Parsons problems, especially for students with low prior knowledge. By including
SE prompts, we address a research gap in the SE literature. Prior work on SE used
either worked examples, e.g. (Berthold et al. 2009; Najar et al. 2016), or problem
solving (unsupported or tutored), e.g. (Kwon et al. 2011). In our learning activities,
students are rearranging LOCs and completing some of them; such activities are harder
than studying worked examples, but less demanding than problem solving. We there-
fore wanted to determine the influence of SE on learning in this context.

The study included two groups of programming students learning with PyKinetic, in
which the experimental group used a version of PyKinetic with SE prompts, and the
control group had the same Parsons problems without SE. Such experimental design
(with and without SE) is like other experiments reported in literature (O’Neil et al.
2014; Hsu et al. 2012; Rau et al. 2015; Aleven and Koedinger 2002). We had three
hypotheses for this study: (H1) PyKinetic would be successful in supporting learning;
(H2) SE prompts would result in further learning benefits; and (H3) low prior knowl-
edge (LP) students would learn more from our Parsons problems in comparison to high
prior knowledge (HP) students. Most implementations of Parsons problems are devel-
oped for personal computers apart from MobileParsons (Karavirta et al. 2012; Ihantola
et al. 2013). Therefore, the main goal of our study was to investigate the effectiveness
of Parsons problems on smartphones when combined with SE prompts.

One of the main contributions of this work include a pedagogically-guided design of
Parsons problems combined with SE prompts, which differs from common
implementations in four ways. We emphasize that our main contribution is not the
individual features of our Parsons problems, but rather our design as a whole. The
combination of our Parsons problems enabled us to offer an effective learning activity
for supporting learning programming on smartphones, especially for students with low
prior knowledge. Firstly, in our design students solve Parsons problems in the same
area where the LOCs are presented. Therefore, there is no separation at all between the
blocks of code in the problem and the student’s solution. We propose that combining
the two areas makes better use of the limited screen resource in smartphones. Secondly,
in our Parsons problems all lines are provided with the correct indentation which are
necessary to mark the start and end statements in Python. We decided to provide LOCs
with correct indentation because we are focusing on novice learners; correctly indented
lines provide additional scaffolding to learners. Thirdly, all blocks of code contain only
single LOCs, like work by Garner (2007) and Kumar (2018). Moving blocks of LOCs
could potentially prevent the student from thinking about individual LOCs; for that
reason, we require the student to move single LOCs. Finally, our implementation
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contains incomplete LOCs with accompanying menu-based SE prompts that learners
must answer upon solving the incomplete LOCs. To the best of our knowledge, we
were the first ones to integrate Parsons problems with SE prompts. We have chosen to
specifically use menu-based SE prompts as they are easier to complete on smaller
screened devices. Furthermore, our other contribution is designing and evaluating SE
on smartphones which has also not been done before to the best of our knowledge.

In the next section, we present prior research done on Parsons problems and self-
explanation. We then introduce PyKinetic, followed by sections presenting the exper-
iment design and the results. We end the paper with a discussion of the results,
conclusions and future work.

Related Work

Parsons Problems

Parsons problems or Parsons puzzles were originally proposed as a fun way for
introductory learners of Turbo Pascal to improve their problem-solving skills
(Parsons and Haden 2006). Parsons problems usually contain a problem area and a
solution area. The problem area contains blocks of code, where some blocks may
contain more than one line of code. The learner solves the problem by dragging blocks
from the problem area onto the solution area. Most often Parsons problems are
implemented for personal computers, where screen space is not an issue (Parsons and
Haden 2006; Garner 2007; Ihantola and Karavirta 2011; Harms et al. 2016; Ericson
et al. 2017; Kumar 2018; Hosseini 2018). Despite restrictions on screen size,
MobileParsons implemented Parsons problems on mobile devices with two work
spaces; dragging and dropping blocks of code side by side when on landscape mode,
and bottom to top when on portrait mode (Karavirta et al. 2012; Ihantola et al. 2013).
Variations of Parsons problems include extra incorrect LOCs (distractors) (Parsons and
Haden 2006; Garner 2007; Denny et al. 2008; Harms et al. 2016; Ericson et al. 2017;
Ihantola and Karavirta 2011; Karavirta et al. 2012; Kumar 2018), or incomplete
LOCs which require the learner to provide missing elements (Ihantola et al. 2013;
Fabic et al. 2017b).

Some researchers find the complexity of Parsons problems to be in between code
tracing and code writing (Lister et al. 2010), while others believe Parsons problems to
be easier than code tracing (Lopez et al. 2008). Denny et al. (2008) explored the
potential of Parsons problems as exam questions and found a weak correlation between
scores on Parsons problems with code tracing questions, and a moderate positive
correlation with code writing. A recent study was conducted using Parsons problems
as an assessment activity, as they pose a lower cognitive load compared to traditional
code writing (Morrison et al. 2016). The authors propose that this is because learners
are only required to focus on sequencing the code, since the correct syntactic constructs
are provided. However, this may not be always true, as Parsons problems may require
higher cognitive load depending on the complexity, type, and interface used (on paper
or on a device). Moreover, others also perceive that the position of Parsons problems in
the hierarchy of programming skills depend on complexity and type of Parsons
problems (Ihantola and Karavirta 2011). More factors that could be considered are
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scaffolding and feedback provided. Recent work by Ericson et al. (2017) compared
learning gains between three groups of students solving the same set of Python
problems, but with each group using a different method of problem solving. One group
was solving two-dimensional Parsons problems with distractors, another was tasked to
fix the broken code, and the third group wrote the same code without scaffolding. Two-
dimensional Parsons problems required learners to specify the correct indentations for
each LOC in addition to re-ordering the LOCs (Ihantola and Karavirta 2011). All three
groups showed evidence of learning from pre- to post-test on fixing and writing code,
which is consistent with the positive correlation between Parsons problems and
code writing found by Denny et al. (2008). Furthermore, Ericson and col-
leagues found neither a significant difference between the three groups on their
learning performance, nor a significant difference on retention of knowledge
when evaluated a week after the study. A notable finding was that the group
who solved two-dimensional Parsons problems with distractors were significant-
ly faster than the other groups who solved the same set of problems but used a
different method of problem solving. Therefore, the authors found the Parsons
problems group to be most efficient as they gained the same knowledge
significantly faster than the other two groups.

Self-Explanation

Self-explanation is a learning activity in which the learner is explaining the learning
material (e.g. a worked example or instructional text) to oneself, by making inferences
from existing knowledge (Chi et al. 1989). SE results in deep learning, as it allows the
learner to integrate new with existing knowledge, identify and eliminate misconcep-
tions, and reflect on their knowledge (Chi 2000). SE has been shown to improve
problem-solving skills and knowledge on domain principles when learning from
worked examples (Chi et al. 1989). When self-explaining and learning from text,
conceptual knowledge was also developed (Chi et al. 1994). Furthermore, Ferguson-
Hessler and de Jong (1990) found that self-explaining supports conceptual knowledge
more than procedural knowledge, regardless of the abilities of the student.

SE prompts were first introduced as open-ended questions which encourage learners
to think without any set limitations. Wylie and Chi (2014) discuss the range of SE
prompts that have emerged, arranged by increasing amount of support provided: open-
ended, focused, scaffolded, resource-based and menu-based prompts. Focused SE
prompts are variations of open-ended prompts, which provide more explicit instructions
(i.e. compare and contrast). Scaffolded SE prompts provide explanations with missing
keywords to be filled in by the learner. Resource-based SE prompts offer a resource
library (such as a glossary) which students can refer to. Lastly, menu-based SE prompts
are similar to resource-based self-explanation prompts, but selections are provided from
a menu instead of a resource library. A study by Aleven et al. (2004) compared open-
ended SE with resource-based SE, where students selected reasons for their actions
from a glossary. The results revealed no significant differences with overall learning
gains between open-ended group and resource-based group, showing that open-ended
SE is not always the best. However, authors suggest that the benefits of open-ended SE
possibly did not manifest since it took more time to self-explain with their own words
than selecting an explanation.
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Johnson and Mayer (2010) compared open-ended with menu-based SE prompts in a
game-like environment about electrical circuits. Johnson and Mayer first conducted an
experiment comparing transfer tests scores of participants who used menu-based SE
prompts vs. participants without any SE prompts. The results revealed that the SE group
significantly outperformed the group without self-explanation. The second experiment
compared transfer test performances of the menu-based SE group and no self-explanation
group from the first experiment, with a new group using open-ended SE prompts. Results
showed that learners who used open-ended SE had similar transfer test results to learners
who did not do any self-explanation. Therefore, the authors found that menu-based SE
were more effective than open-ended SE prompts. The authors explained the results by
reflecting on the limited cognitive capacity of learners based on the Cognitive Load
Theory (Plass et al. 2010).Within a game-like environment, menu-based SE prompts may
have resulted in effective learning due to minimizing extraneous cognitive load while
fostering germane and intrinsic load. Johnson and Mayer (2010) concluded that menu-
based SE prompts may be more suitable in complex environments compared to open-
based prompts. Menu-based SE prompts were found more effective than open-ended
prompts in several other studies (Gadgil et al. 2012; van der Meij and de Jong 2011).

Wylie and Chi (2014) advise that regardless of the form, all SE prompts may lead to
deeper learning. Further insights into the effectiveness of SE prompts can be obtained
within the ICAP (Interactive, Constructive, Active and Passive) framework, which
focuses on learners’ engagement (Chi and Wylie 2014). According to the ICAP
framework, learning increases as engagement increases. When referring to the ICAP
framework, self-explanation is constructive in nature. However, as mentioned previ-
ously from work by Aleven et al. (2004), open-ended SE prompts, which may be
considered more constructive than other types, were not proved to be more effective
than menu-based SE prompts. Therefore, various aspects need to be considered when
choosing the type of SE prompts to use. For example, an important consideration in
designing an SE prompt, regardless of its form, is providing appropriate feedback.
Learners especially novices have misconceptions, which require guidance via feedback.
If feedback is not properly given, learners continue to operate using their false
understanding which could be detrimental to their learning. However, an intricate
balance needs to be achieved to help the learners just enough to facilitate in enhancing
their skills rather than just spoon-feeding information.

PyKinetic

PyKinetic is a mobile tutor developed using Android SDK to teach Python 3.x
programming. We developed the first prototype of PyKinetic in 2015 (used in the pilot
study) The version of PyKinetic used in the study and presented in this paper supports
Android devices with version 4.0 (Ice Cream Sandwich) and higher.

PyKinetic presents a Parsons problem by first showing the problem statement in a
dialog box, together with the expected output. LOCs are presented in a random order,
with correct indentation. The learner completes problems by dragging and dropping
LOCs using the drag handlers on the left-hand side of each line. A problem is
completed if the LOCs are in the correct order matching the desired outcome as
described in the problem statement.
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Pilot Study

We conducted a pilot study (Fabic et al. 2016b) with a prototype of PyKinetic
containing 24 Parsons problems with and without distractors. All LOCs were complete
(without any missing keywords). Distractors were extra incorrect LOCs that were not
part of the solution. The prototype covered the following eight Python topics: string
manipulation, conditional statements, lists, for loops, while loops, dictionaries, tuples,
and data types. There were three Parsons problems for each topic. All topics had one
Parsons problem without distractors and two with distractors. For example, for string
manipulation there were three Parsons problems: one without distractors and the other
two with distractors. The problems had between 3 to 16 LOCs, with a maximum of 5
distractors. To eliminate a distractor, students tapped on the ‘X’ icon shown on the
right-hand side of each LOC, to delete that LOC. Learners retrieved LOCs that had
been deleted by tapping on the trash icon and selecting the desired LOCs.

The study had one-hour long controlled sessions, undertaken individually. The
participants were eight students and five tutors, volunteers from an introductory
programming course at University of Canterbury. The participants were instructed to
follow the think-aloud protocol (Someren et al. 1994), and to attempt at least one
problem from each topic. The goals of the pilot study were to evaluate the usability of
PyKinetic, and identify sub-optimal strategies used by students compared to those
demonstrated by tutors. We recorded the screen of the smartphones while the partici-
pants were solving problems. As expected, the pilot study revealed that the tutors
solved the problems more efficiently than the students. The observations showed that
less complex problems presented in the landscape mode appeared to be more difficult
compared to more complex problems presented in the portrait mode. A possible
explanation for these observations was that participants could only see half of the
LOCs in the landscape mode, which may have overloaded the working memory of the
participants; as they could only see half of the code at a time. As the result of the
findings from the pilot study, we enhanced the aesthetics, and added additional
description for complex problems. Furthermore, all problems in PyKinetic are now
presented in the portrait mode.

Full Evaluation Study

For the full evaluation study, we developed a new version of PyKinetic containing a
different variant of Parsons problems. Instead of using distractors, the version of
PyKinetic used in the study contained Parsons problems with incomplete LOCs.
Solving Parsons problems with incomplete LOCs may be closer to enhancing code
writing skills than Parsons problems with/without distractors. Furthermore, a recent
study found that Parsons problems with distractors decrease learning efficiency of
middle-school children aged 10–15 (Harms et al. 2016).

For the study, we implemented two versions of PyKinetic with incomplete LOCs
that are identical in every way (i.e. design, control, and set of Parsons problems), apart
from the additional SE prompts offered in one of the versions used by the experimental
group. For each version, there were 15 Parsons problems where the first two problems
were used for practice. The remaining 13 problems had between 3 and 16 LOCs, with a
maximum of 3 incomplete LOCs. There were six Python topics covered: string

International Journal of Artificial Intelligence in Education (2019) 29:507–535 513



manipulation, conditional statements, while loops, for loops, lists, and tuples. Problems
were given in a fixed order of increasing difficulty. A problem must be completed
before proceeding to the next problem. The first half of the problems focused on a
single topic, while the other problems covered at least two topics each. The initial seven
problems were code snippets, while the remaining eight problems were functions with
function calls. For all problems with functions, there was one function; and function
calls were also required to be rearranged to match the problem description and the
expected output. PyKinetic recorded information about all actions performed by the
participants.

For each problem, the problem details were displayed first, including the expected
output and problem description (Fig. 1, left). Correct indentations were provided for all
LOCs as scaffolding. An incomplete LOC contained a blank space, which may contain
more than one keyword. For example, the third LOC of the problem shown in Fig. 1
(middle) is: ____ person in people:. The alternatives given to fill in the blank space
were: a) for each; b) while; and c) for. In this case, the correct answer is c), the
incomplete LOC only required one keyword, so the final answer is: for person in
people:. Another example of an incomplete LOC from a more difficult problem is: for
num in range(): with the alternatives given: a) number-1, 0, −1; b) 1, number; c) 1,
number, −1; and d) number, 1. Notice that the blank line is longer, indicating that more
keywords are required. The correct answer for this incomplete LOC is a), so the
completed LOC is for num in range (number-1, 0, −1):. Four incomplete LOCs
contained only a blank line each without any code; only the correct indentation was
provided as scaffolding. Seven incomplete LOCs had sets of three options each, while
the other fifteen incomplete LOCs had a set of four options each. To solve problems
which contain more than one incomplete LOC, learners should select an incomplete
LOC one at a time by long tapping on the LOC. Then, the learner chooses the correct

Fig. 1 Problem description (left); a state of a Parsons Problem with two incomplete LOCs with one
LOC already completed, highlighted in green (middle); a conceptual SE prompt given for the
completed LOC (right)

International Journal of Artificial Intelligence in Education (2019) 29:507–535514



choice for the blank from a set of provided options, by tapping between alternatives
instead of typing, like in (Ihantola et al. 2013). Learners submit their solution to an
incomplete LOC by long tapping on the LOC.

There were two ways that PyKinetic showed feedback when solving incomplete
LOCs: highlighting the LOC to indicate its status change and displaying feedback
messages. Feedback on solving incomplete LOCs was only triggered by long tapping
on the incomplete LOC either to select it or to submit an answer. The incomplete LOCs
were highlighted in three different colors: turquoise, red, and green. Turquoise indicates
that the learner has selected the incomplete LOC and intends to solve it. Red indicates
that the learner’s answer is incorrect. Lastly, green specifies that the learner has selected
the correct choice for the LOC. When a learner submits an incorrect answer to an
incomplete LOC, PyKinetic highlights the LOC red and shows a feedback message:
“[alternative choice here] is incorrect.”. If the learner successfully solves an incomplete
LOC, it is highlighted in green. Furthermore, the control group receives a message
“Correct! Great job!”. On the contrary, the experimental group is given the SE prompt
which corresponds to the incomplete LOC they solved.

All incomplete LOCs must be completed before the learner can submit their solution
to the Parsons problem (by clicking on the Submit button). The Submit button is
initially disabled and only activates when all incomplete LOCs are solved. Further-
more, this button is only used to put forward a solution for the entire Parsons problem
(not for submitting an answer to an incomplete LOC). When reordering LOCs in the
Parsons problem, feedback is only given upon clicking the Submit button. There were
only two feedback messages given when rearranging LOCs in the Parsons problem.
Learners receive either: “Correct! Great job!” for a completed Parsons problem, or
“Check the order of your solution.”

To further improve learning, we introduced menu-based self-explanation (SE)
prompts, given after the learner finishes an incomplete LOC. There were 22 SE
prompts in total; 14 prompts were conceptual questions and 8 were procedural ques-
tions. Conceptual questions covered declarative knowledge, assessing syntax and
theoretical matters. On the other hand, procedural questions evaluated learners’ under-
standing of code execution. Conceptual questions can be answered without necessarily
reading the entire program, whereas procedural questions require the learner to men-
tally execute and trace the code. Half of the conceptual questions had three choices
each, while the other half had four choices each. On the other hand, two of the
procedural questions had three choices each, while the other six had four choices each.
The SE prompts were related to the same topics covered by the Parsons problems.
However, there were four additional topics covered: assignment statements, variables,
print statements, and functions.

The conceptual SE prompt shown in Fig. 1 (also presented in Table 1) is given after
the learner worked on the incomplete LOC for name in _____:. The learner chose from
the alternatives a) people; b) person; c) my_people and selected the correct option for
name in person:. PyKinetic acknowledges the correct choice for the incomplete LOC
by highlighting it in green (Fig. 1, middle). The learner next gets the SE prompt, which
in this case is related to lists and for loops (Fig. 1, right). In this case, the learner is
asked to identify the correct statement about the completed LOC, concerning
those two Python topics. The learner cannot skip any SE prompts, and has only
a single attempt on each prompt. In Fig. 1 (right), the learner selected the third
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option. After the learner submits his/her answer for the SE prompt, PyKinetic
shows the correct option in green and incorrect options in red and provides
additional feedback for incorrect choices.

The example in Table 1 targets the for-loop statement completed by the learner. The
SE prompt is considered as conceptual because it is testing the learner on declarative
knowledge about for loops. Specifically, it is asking the learner about the role of
indentations in a for loop and its mechanism. Also, it is testing the learner on syntax,
and explicitly whether the exact same code would work if replaced with a while loop.

Another example of a conceptual SE prompt is shown in Table 2. This example
assesses the learner’s knowledge about the syntax of assignment statements, and about
string variables. The learner worked on the incomplete LOC message = ________.
Then, the learner successfully selected the correct option “says hello”. One thing to
note is that the example in Table 2 presents a negatively phrased question as opposed to
the example in Table 1. More specifically, the students need to identify the incorrect
statements related to the LOC message = “says hello”.

PyKinetic also offers procedural SE prompts, like the one illustrated in Table 3. The
LOC highlighted in green in Fig. 2 (right) corresponds to a procedural question. This
LOC (result = 1) started as a blank keyword (________) with indentation provided. The
learner chose between alternatives: a) result = i; b) result = list2[i]; c) result = 1; and d)
return result = 0. As displayed in Fig. 2 (right), the learner successfully chose the correct

Table 1 First example of a conceptual SE prompt (shown in Fig. 1, right screenshot)

Which of the statements is CORRECT about the incomplete LOC you just answered:
for name in person:

SE prompt options Feedback received by learner in each option

The statement can also be unindented. This cannot be unindented because it is the inner loop.

The statement goes through each element
of the list person.

No feedback (only highlighted in green since this is the
correct option)

This is equivalent to while name in person: This is not equivalent and will produce a syntax error
since name will be undefined.

Table 2 Second example of a conceptual SE prompt

Select all INCORRECT statements about the incomplete LOC you just answered:
message = “says hello”

SE prompt options Feedback received by learner in each option

The variable message has a string value says hello is in enclosed with quotation marks which
makes it a string

message = says hello is equivalent to this
statement

No feedback (only highlighted in green since this is one
of the correct options)

“says hello” =message is also equivalent
to this statement

No feedback (only highlighted in green since this is one
of the correct options)
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answer c) result = 1. Upon completion, PyKinetic gave the learner the SE prompt shown
in Table 3. The question presented in Table 3 is explicitly phrased to target the incomplete
LOC. The question in Table 3 is procedural because to answer the question, the learner
must think about how the code would be executed and understand why this is needed
within the context of the expected output. The content of the question in Table 3 aids the
reasoning of the learner to understand the role of this LOC within the entire program.

Figure 3 shows a relatively easier problem on conditional statements which contains
one incomplete LOC (highlighted in turquoise in Fig. 3, middle). In this example, the
learner has correctly rearranged the LOCs in the problem but have not completed the

Table 3 First example of a procedural SE prompt

Why was this line necessary with a value of 1? Select all that apply:
result = 1

SE prompt options Feedback received by learner in each option

Magic will work well without this line This is needed to initialize result

result needs to be initialized before assignment
inside the for loop.

No feedback (only highlighted in green since this is one
of the correct options)

Initial value of 1 needed for multiplication No feedback (only highlighted in green since this is one
of the correct options)

Fig. 2 Problem description (left); Parsons Problem with two incomplete LOCs, one completed highlighted in
green and second selected by the learner and still incomplete highlighted in turquoise (right)
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incomplete LOC. The first two test cases were ordered correctly and displays “Go fishing”
and “Stay at home” respectively. In this example, the next goal is to complete the last test
case to produce an expected output of “Fly overseas”. The options provided for the
incomplete LOC are: a)“clear”, 2500; b) “stormy”, 198; c) “windy”, 1000; or d)“sunny”,
1998. This problem contains two other function calls (i.e. the two LOCs above the
highlighted LOC). These function calls output “Go fishing” and “Stay at home” respec-
tively, and the learner had placed them in the correct order. The learner next must complete
the function call to output “Fly overseas”. In this example, the correct answer was “clear”,
2500; and the completed LOC is print_activity(“clear”, 2500), shown in (Fig. 3, right).
After the learner solved the incomplete LOC, the SE prompt is shown. In this case,
another procedural SE prompt was given, asking which of the provided statements can

Fig. 3 Problem description (left); Parsons Problem with one incomplete LOCs selected by the learner, and
therefore highlighted in turquoise (middle); a procedural SE prompt given when highlighted LOC is
completed (right)

Table 4 Second example of a procedural SE prompt (as shown in Fig. 3)

Select all CORRECT statements that can replace your answer:
print_activity(“clear”, 2500)

SE prompt options Feedback received by learner in each option

print_activity(weather, 2930) weather is not defined need to specify its value

print_activity(“sunny”, 2000) No feedback (only highlighted in green since this is one of the
correct options)

print_activity(1988, “sunny”) Arguments placed wrong way around should be (weather, budget)

print_activity(“cloudy”, 2001) No feedback (only highlighted in green since this is one of the
correct options)

Value 1 indicates first element in list2 Value 1 here indicates an integer number 1
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replace the incomplete LOC (Fig. 3, right; Table 4). This is a procedural prompt because it
specifically asks the learner to supply an alternative test case that would produce the same
expected output which is “Fly overseas”. To be successful in solving the question, one
must mentally execute the code to find out what works for the program. Therefore, relying
solely on declarative knowledge about function calls will not be adequate.

All SE prompts showed the LOC correctly answered by the learner. Most SE
prompts (68%) have multiple correct choices provided (as in Fig. 3, right), while the
others only have a single correct choice. For questions with multiple correct choices,
learners were required to identify all correct choices. Furthermore, the SE prompts were
phrased in three ways. Some SE prompts were phrased in the positive manner, asking
the student to select correct statement(s). Other SE prompts were phrased negatively,
requiring the student to select all options which are incorrect. Lastly, the third form
were more directly phrased, as in this example: “In checking for equality in Python
using == select all that apply:” and “Why was this line necessary with a value of 1?
Select all that apply:”. Feedback “Correct! Great job!” is displayed when an SE prompt
is answered correctly. If the learner’s response is incorrect, an explanation is shown on
all wrong options (Fig. 3, right). Regardless of the solution, when the learner submits
their answer, all wrong options in the SE prompt are shown in red font color, while the
correct options are shown in green font color (Fig. 3, right).

Experimental Design

There were two conditions in the study; the only difference between the versions of
PyKinetic presented to the control and experimental group was that the experimental
group additionally received menu-based SE prompts for every LOC completed.

We recruited 47 volunteers from an introductory programming course at University
of Canterbury (UC), and 23 volunteers enrolled in an introductory computing course at
the Ateneo de Manila University (ADMU). There were 70 participants in total,
randomly assigned to two groups: experimental group (with SE prompts) and control
group (without SE prompts). The ADMU participants were given free food as com-
pensation. The participants from the University of Canterbury did not receive compen-
sation but were added to a draw for one of four NZ$50 vouchers. The study was
approved by the Human Ethics Committees of both universities.

Each participant joined a group session which lasted for 1.5–2 h. There were
between one and 13 participants per session. At the start of each session, the partici-
pants were introduced to the study and provided informed consent. The participants
were advised that they could pause or stop at any time during the study. Then, a 15-min
pre-test was administered, and the participants were instructed on how to download and
install PyKinetic. The participants used PyKinetic for about an hour. After interacting
with PyKinetic, the participants received a 15-min post-test, and finally, instructions on
uninstalling the application. Both pre- and post-tests were completed on paper. Some
participants used their own Android smartphones, while we provided phones to other
participants. After the post-test, we asked participants who used their own devices for
the study to uninstall PyKinetic.

We developed two tests of comparable complexity (given in Appendix). The pre/
post-test had a total of eight questions: six conceptual questions (with a maximum of 6
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marks) and two procedural questions (2 marks). The conceptual questions were
multiple-choice or True/False questions. One procedural question asked the participants
to predict the code output (without providing any choices), and the other one was a
Parsons problem. Questions with multiple correct answers were marked depending on
the options selected. Partial marks were given for selecting correct options, and for not
selecting wrong options. Partial marks were deducted for selecting wrong options. This
was done to avoid discrepancy for participants who seemed to be guessing
answers by selecting all options. Parsons problems from the pre/post-test were
marked based on the number of LOCs written in the correct sequential order.
One participant wrote a slightly different solution by modifying the incomplete
LOCs but received full marks on that question as the solution was correct.
There were more conceptual than procedural questions in the pre/post-tests,
which was similar proportionally with SE prompts.

Findings

We have eliminated data about seven participants due to incomplete logs caused by
WiFi connection problems. The paper presents analyses performed on the data collect-
ed from the remaining 63 participants. As we had participants from two universities, we
compared their pre-test scores. There was no significant difference on the pre-test
scores of the two populations (Table 5). Therefore, the two populations had comparable
levels of pre-existing knowledge. Figure 4 shows the box plots of pre-test scores from
both universities.

As the data was not normally distributed, we used non-parametric tests for all
reported analyses. We calculated the normalized gain using two formulas. When the
learning gain was positive, we calculated the quotient of gain (post-test score – pre-test
score) and (100 – pre-test score). However, when the learning gain was negative, we
calculated the quotient of gain and the pre-test score (Marx and Cummings 2007).

On average, the experimental group participants spent 48 min using PyKinetic (sd =
13.1), while control group learners spent slightly less time (42 min, sd = 14.4). There
was no significant difference on the total interaction time between the two conditions.
However, there was a significant difference (U = 340, p = .035) between the two
conditions on average time spent per problem, with the control group participants
being faster (mean = 3.22 min, sd = 1.18) compared to the experimental group (mean =
4 min, sd = 1.52). This was expected, as they did not have SE prompts. Only 38
participants finished all problems (11 from experimental and 27 from the control
group). Out of fifteen problems, the experimental group participants completed 13.2
problems (sd = 1.9), which was significantly less (U = 701.5, p = .001) than the control
group (14.4 problems, sd = 1.5).

Table 5 Mean pre-test scores (standard deviations in parentheses) of the two populations of participants

UC (42 students) ADMU (21 students)

Pre-test % 66.73 (13.05) 63.40 (13.53)
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We used the paired Wilcoxon Signed Ranks test to examine hypothesis H1. Table 6
reports the pre/post-test scores for the two groups on all questions, and separately on
conceptual/procedural questions. Participants from both groups improved their scores
significantly between the pre- and post-test (the Improvement on All Questions row),
and on conceptual questions (the Improvement Conceptual row), but there was
no significant improvement on procedural questions only. These results provide
evidence to accept our first hypothesis H1, which was that PyKinetic helped
improve Python skills of the participants. The fact that the two groups im-
proved on conceptual questions but not on procedural questions might be
explained by the higher proportion of conceptual vs. procedural in the SE
prompts. However, further investigation is needed to prove this speculation.
Both groups had a positive Cohen’s d effect size, but the effect size was higher
for the experimental group.

To answer H2, we used Mann Whitney U test for checking significant differences
between the groups (Table 6). There was no significant difference on the pre-test scores.
Although the experimental group achieved higher marks in the post-test, the difference
was not statistically significant. Similarly, participants in the experimental group earned
higher marks on the post-test on conceptual questions, however this was not statisti-
cally significant either. The experimental group had significantly higher normalized
gains for all questions (U = 348, p = .046). Furthermore, the normalized gain for
conceptual questions of those who self-explained was also significantly higher (U =
334, p = .028). However, both groups had comparable normalized gains for procedural
questions. We also calculated the Cohen’s d effect size of each group. The experimental
group had almost double effect sizes compared to the control group on all questions,
conceptual, and procedural questions. The Cohen’s d effect size for the normalized
gains between the groups is 0.493, indicating a moderate positive effect. The Cohen’s d
effect size for the normalized gains on conceptual questions also indicates a moderate
positive effect (d = 0.556). On the other hand, for procedural questions between groups
the effect size is a weak negative effect (d = −0.158). These findings are enough
evidence to support H2, revealing that participants who self-explained had further
learning benefits.
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Fig. 4 Box plots for pre-test total scores of the two populations of participants
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To probe further into the effect of SE prompts on deeper learning, we performed a
similar analysis as in (Aleven and Koedinger 2002), who also conducted an evaluation
with two versions of their system (with and without SE). We classified pre/post test
questions into two categories: easier-to-guess and harder-to-guess. The easier-to-guess
questions were two True/False questions, and one multiple choice question with
a single answer required (3 marks in total). The harder-to-guess questions (5
marks in total) required more knowledge to identify the correct answers. For
example, the harder-to-guess questions included an output prediction question,
which required the student to analyze the given code and think about its output,
as there were no options provided. There were also three multiple-choice
questions where the student needed to identify all correct options, and a
Parsons problem. We used the Wilcoxon Signed Ranks test and Mann Whitney
U test for checking significant differences between the groups. The results in
Table 7 show that both groups improved significantly on harder-to-guess ques-
tions from pre- to post-test. The experimental group outperformed the control
group on the harder-to-guess questions. We also calculated the effect sizes for
easier and harder-to-guess questions (Table 7). The Cohen’s d effect size for the
normalized gains on easier-to-guess questions between groups reveals a weak
positive effect (d = 0.308). For harder-to-guess questions, the between groups
Cohen’s d effect size is a weak negative effect (d = −0.263).

To investigate H3 (whether Parsons problems with incomplete LOCs are more
beneficial for LP learners), we have sorted all 63 participants based on their pre-test
scores. We took the top 25% participants and labelled them as high prior knowledge
(HP), the lowest 25% participants and labelled them as low prior knowledge (LP).
There were nine LP learners and nine HP learners in the experimental group; and seven

Table 6 Pre- and post-test scores in % (* denotes significance at p < .05)

Experimental (29)
Mean (sd)

Control (34)
Mean (sd)

U, p

Pre-test 65.22 (15.31) 65.96 (11.33) ns

Post-test 77.91 (13.26) 72.60 (12.88) ns

Improvement on all questions W = 379, p = .000* W= 483, p = .002*

Cohen’s d for all questions d = .89 d = .55

Normalized gain all questions 34.73 (32.34) 20.42 (25.28) U = 348, p = .046*

Pre-test conceptual 62.19 (16.42) 63.24 (13.50) ns

Post-test conceptual 78.06 (15.41) 71.19 (15.15) ns

Improvement conceptual W = 375, p = .001* W= 474.5, p = .002*

Cohen’s d for conceptual d = 1.00 d = 0.55

Normalized gain conceptual 41.61 (38.84) 22.08 (30.94) U = 334, p = .028*

Pre-test procedural 74.31 (23.36) 74.99 (19.79) ns

Post-test procedural 77.45 (16.46) 76.84 (19.50) ns

Improvement procedural ns ns

Cohen’s d for procedural d = 0.16 d = 0.09

Normalized gain procedural 21.99 (47.34) 29.54 (48.15) ns
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LP learners and seven HP learners in the control group. There were no significant
differences between pre-test scores of LP learners from the two groups (Table 8).
Similarly, the pre-test scores of HP students from experimental and control groups were
also not significantly different. Furthermore, we found no significant difference be-
tween the time spent per problem by LP learners in experimental group compared to
those in control group. Similarly, no significant difference was found between the
average time spent per problem by HP students in experimental group compared to
those in control group.

As presented in Table 8, there is a substantial difference between the Cohen’s d effect
sizes of LP vs. HP participants in both groups. More importantly, the LP in the experi-
mental group had a more than double effect size than LP in the control group. The results
in Table 8 show evidence of H3, that Parsons problems with incomplete LOCs are more
beneficial for novice learners, specifically those with low prior knowledge.

We were also interested in more detailed analyses of the performance of LP learners
in each condition. In the experimental condition, the LP learners spent a statistically
comparable amount of time per problem compared to HP students (LP: 4.04 min, sd =
2.29; HP: 4.22 min, sd = 1.16). We expected the pre/post-scores of LP and HP students
to be significantly different, due to how the two subgroups were selected. Although
there was a significant difference on the pre-test scores, the performance of LP learners
on the post-test was not significantly different from the performance of HP students

Table 7 Pre- and post-test scores (%) for Easier and Harder to Guess questions (* denotes significance at
p < .05)

Experimental (29)
Mean (sd)

Control (34)
Mean (sd)

U, p

Pre-test easier-to-guess 75.57 (23.14) 80.39 (21.89) ns

Post-test easier-to-guess 89.37 (20.03) 87.99 (21.44) ns

Improvement on easier-to-guess ns ns

Cohen’s d on easier-to-guess d = 0.64 d = 0.35

Normalized gain easier-to-guess 42.53 (64.29) 24.02 (55.69) ns

Pre-test harder-to-guess 59.01 (14.00) 57.30 (10.86) ns

Post-test harder-to-guess 71.03 (14.95) 63.37 (12.58) U = 319, p = .016*

Improvement on harder-to-guess W= 368, p = .001* W= 472, p = .003*

Cohen’s d on harder-to-guess d = 0.83 d = 0.52

Normalized gain harder-to-guess 12.02 (46.96) 22.69 (33.08) ns

Table 8 Effect sizes calculated by abilities

Group Subgroup Pre-test Mean (sd) Post-test Mean (sd) Cohen’s d

Experimental LP (9) 48.09 (7.16) 73.40 (16.90) d = 1.95

HP (9) 83.22 (5.26) 79.71 (15.01) d = −.31
Control LP (7) 50.01 (6.74) 61.64 (16.81) d = .91

HP (7) 79.79 (4.88) 82.77 (6.85) d = .50
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(Table 9). There were also no significant differences on the post-test scores for
procedural, conceptual, easier or harder to guess questions between LP and HP
students. LP students also had a significant improvement their pre−/post-test scores
on all questions, conceptual, procedural, and easier-to-guess questions. This is
contrary to HP students who did not reveal any significant improvement from
any of their pre−/post-test scores. Furthermore, a stronger evidence is that LP
students had a significantly higher normalized gain than HP students for all
questions, procedural, and easier-to-guess questions. However, the pre- to post-
test scores of HP students who self-explained might be due to the ceiling effect.
Overall, these results show that SE prompts better support LP than HP students.

The students’ answers to SE prompts were marked the same way as the multiple-
choice questions in the pre/post-test. The HP students’ scores for SE prompts were
significantly higher overall, and for conceptual SE prompts, but not for the procedural
SE prompts (Table 10).

Looking at the control condition, the LP learners spent similar amount of time per
problem compared to HP students from the same group (LP: 3.24 min, sd = 1.30; HP:
2.87 min, sd = 1.03). Contrary to results of the experimental group, the HP students
scored significantly higher both on the pre- and the post-test in comparison to LP
students (Table 11), apart from the post-test score on easier-to-guess questions. More-
over, a striking difference when compared to results of the experimental group is that

Table 9 LP Students and HP students from the experimental group (* denotes significance at p < .05)

Measure (%) Experimental LP (9)
Mean (sd)

Experimental HP (9)
Mean (sd)

U, p

Pre-test 48.09 (7.16) 83.22 (5.26) U = 0, p = .000*

Post-test 73.40 (16.90) 79.71 (15.01) ns

Improvement on all questions W= 44, p = .011* ns

Normalized gain all questions 49.14 (33.15) 9.64 (33.20) U = 66, p = .024*

Pre-test conceptual 46.85 (13.39) 79.63 (5.98) U = 1, p = .000*

Post-test conceptual 73.34 (18.01) 78.95 (18.58) ns

Improvement conceptual W= 42, p = .021* ns

Normalized gain conceptual 46.89 (41.48) 26.00 (48.59) ns

Pre-test procedural 51.82 (23.43) 94.01 (5.48) U = 0, p = .000*

Post-test procedural 73.61 (21.95) 81.97 (8.53) ns

Improvement procedural W= 42, p = .021* W= 3, p = .021*

Normalized gain procedural 49.00 (43.93) −7.11 (20.71) U = 68, p = .014*

Pre-test easier-to-guess 51.85 (17.57) 96.30 (11.11) U = 2.5, p = .000*

Post-test easier-to-guess 88.89 (23.57) 84.26 (23.73) ns

Improvement easier-to-guess W= 39.5, p = .041* ns

Normalized gain easier-to-guess 77.78 (50.69) −4.56 (45.48) U = 68.5, p = .011*

Pre-test harder-to-guess 45.84 (7.24) 75.38 (9.84) U = 0, p = .000*

Post-test harder-to-guess 64.11 (21.04) 76.98 (13.05) ns

Improvement harder-to-guess W= 39, p = .051 ns

Normalized gain harder-to-guess 32.56 (42.19) 14.44 (32.73) ns
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LP students in the control group only improved significantly on pre- to post-test scores
on harder-to-guess questions (only set of questions where LP students in experimental
group did not significantly improve). Interestingly, the HP students in the control group
improved significantly in procedural questions and in harder-to-guess questions which
again is contrary to those in the experimental condition (specifically for HP students).
When normalized gains of LP and HP in the control group were compared, only the
normalized gain on procedural questions was significantly different, where HP’s gain
was higher.

Table 10 Experimental Group SE Scores (* denotes significance at p < .05)

Score (%) Experimental LP (9)
Mean (sd)

Experimental HP (9)
Mean (sd)

U, p

SE all questions 56.68 (14.36) 73.83 (10.05) U = 11, p = .008*

SE conceptual questions 59.28 (13.46) 76.04 (11.02) U = 13, p =. 014*

SE procedural questions 50.95 (20.46) 69.79 (15.07) U = 19, p = .063

Table 11 LP Students and HP students from the control group (* denotes significance at p < .05)

Measure Control
LP (7)
Mean (sd)

Control
HP (7)
Mean (sd)

U, p

Pre-test 50.01 (6.74) 79.79 (4.88) U = 0, p = .000*

Post-test 61.64 (16.81) 82.77 (6.85) U = 2.5, p = .002*

Improvement on all questions ns ns

Normalized gain all questions 22.48 (34.97) 19.58 (19.69) ns

Pre-test conceptual 46.83 (11.26) 76.63 (7.11) U = 0, p = .000*

Post-test conceptual 58.77 (21.11) 78.21 (7.74) U = 7.5, p = .026*

Improvement conceptual ns ns

Normalized gain conceptual 20.00 (45.07) 13.86 (18.85) ns

Pre-test procedural 63.73 (7.40) 89.28 (13.95) U = 4.5, p = .007*

Post-test procedural 70.24 (14.33) 96.43 (9.45) U = 2, p = .002*

Improvement procedural ns W= 21, p = .026*

Normalized gain procedural 20.43 (37.54) 76.86 (41.02) U = 6, p = .017*

Pre-test easier-to-guess 57.14 (16.27) 100 (0) U = 0, p = .000*

Post-test easier-to-guess 76.19 (37.09) 94.05 (12.47) ns

Improvement easier-to-guess ns ns

Normalized gain easier-to-guess 50.00 (76.38) −5.86 (12.34) ns

Pre-test harder-to-guess 45.73 (3.41) 67.66 (7.80) U = 0, p = .000*

Post-test harder-to-guess 52.91 (8.17) 76.00 (10.01) U = 1.5, p = .001*

Improvement harder-to-guess W= 27, p = .028* W= 27, p = .028*

Normalized gain harder-to-guess 13.14 (14.89) 27.14 (24.42) ns
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Discussion

Our results demonstrate the effectiveness of PyKinetic in supporting learning for
introductory programming students. Although the participants only interacted with
the tutor for roughly 45 min, our results still revealed positive learning effects.

One of the contributions of our research is the innovative design of Parsons problems,
which contained four crucial differences compared to most other related work. Firstly,
Parsons problems in PyKinetic contain only one area acting as both a problem and
solution space. As discussed in the “Related Work” section, in other implementations of
Parsons problems learners drag blocks of code from the problem area onto the solution
area. Although there are some implementations that also allow learners to rearrange
blocks of code within the solution area like in js-parsons (Helminen et al. 2012), the
main difference lies on the initial state of the problems. Combining the problem and
solution area makes better use of the space in smartphones which allows for longer
problems. However, having only one area means that learners might be overwhelmed
because all the LOCs are displayed at once in the same space, and learners need to
mentally separate their solution from the rest of the LOCs.We recognize that combining
the problem and solution area might make it difficult for learners to keep track of the
LOCs they have moved. However, we did not observe this to be an issue in our study,
probably because we limited the length of the problems to have maximum of 16 LOCs.
Secondly, since we designed PyKinetic for novice learners, we provided scaffolding for
indentations, contrary to other implementations of Parsons problems (Parsons and
Haden 2006; Ericson et al. 2017; Ihantola and Karavirta 2011; Karavirta et al. 2012;
Ihantola et al. 2013; Kumar 2018; Harms et al. 2016). Thirdly, our design required
students to move individual LOCs like Garner (2007) and Kumar (2018), instead of
moving blocks of code; thus encouraging students to think about each individual LOC.
Lastly, we also introduced incomplete LOCs to further support code writing skills (i.e.
procedural knowledge). We acknowledge that acquisition of both procedural and
conceptual knowledge is important for novice learners. Therefore, we have introduced
menu-based SE prompts for every incomplete LOC, to provide support for conceptual
knowledge. The combination of Parsons problems and SE prompts is also one of our
main contributions, as this has not been done earlier to the best of our knowledge. We
stress that our design of Parsons problems combined SE prompts as an entity is our main
contribution rather than the specific differences of our implementation with other work.

Self-explanation has previously been proven effective in many domains, implement-
ed on personal computers, and we found that SE is also beneficial when learning
programming in a mobile tutor. We are not aware of other evaluations of menu-based
SE on smartphones to the best of our knowledge. Thus, another contribution is
designing and evaluating SE on smartphones. Furthermore, we found that SE prompts
are effective when combined with activities like Parsons problems, which are less
demanding than problem solving but more difficult than studying worked examples.

In our study, the experimental group participants had to respond to all SE prompts.
We did not allow the students to skip the SE prompts to support possible missing gaps in
the learners’ knowledge regardless of their abilities. We suspect that if we had allowed
participants to skip the SE prompts, poorer students would probably choose to not
attempt the prompts, thus losing chances to deepen knowledge. Aleven and Koedinger
(2000) reported that students did not always follow through their tutor’s SE prompts.
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We presented evidence showing that menu-based SE prompts further improved
students’ learning. Experimental group participants completed less problems on aver-
age, with most not completing the last two problems (i.e. the most difficult problems).
Despite completing fewer problems, the experimental group still learned more in
comparison to the control group. Students who self-explained had a significantly higher
normalized gain for all questions than those who did not. The Cohen’s d effect size on
the treatment revealed a moderate effect (d = 0.493).

Our findings revealed that students from both groups, regardless of whether they
solved SE prompts, improved more on conceptual questions than procedural questions.
However, we do not have enough evidence to show that Parsons problems enhance
conceptual knowledge more than procedural knowledge. Therefore, further research is
needed to verify the specific impact that Parsons problems have on harnessing con-
ceptual and procedural knowledge.

The experimental group had a significantly higher normalized gain on conceptual
questions in comparison to the control group. Moreover, a moderate positive effect size
was found for conceptual questions (d = 0.556). On the contrary, procedural questions
yielded a weak negative effect (d = −0.158). We have enough evidence to show that SE
prompts enhance conceptual knowledge. Based on our results, learners who self-
explained performed significantly better on conceptual questions than those who did
not. Our results are supported by literature showing SE enhances conceptual knowledge
(Chi et al. 1989; Chi et al. 1994; Ferguson-Hessler and de Jong 1990; Najar et al.
2016). Furthermore, we have provided evidence that this also holds for learning with a
smartphone tutor. Thus, combining Parsons problems with SE prompts helped learners
in the experimental group to perform better on conceptual questions. However, we did
not find any evidence that self-explaining is beneficial for enhancing procedural
knowledge.

Our results verified that Parsons problems are suitable for novice learners, specifi-
cally for those with low prior knowledge. The reason behind this is most likely the
amount of scaffolding provided in Parsons problems, as they contain correct syntactic
structures. Morrison et al. (2016) also have similar insights that Parsons problems
require lower cognitive load than other activities like code writing. Students with high
prior knowledge are usually well-versed with syntax compared to those with low prior
knowledge, so they often do not require scaffolding for syntax. We also found
distinctive evidence that PyKinetic was most effective for LP students who self-
explained, which was expected, as weaker students often find it difficult to self-
reflect and fill gaps in their own knowledge (Chi et al. 1989). LP learners who self-
explained had a notably high Cohen’s d effect size (d = 1.95), more than double the
effect size for LP students in the control group (d = .91). Furthermore, LP learners who
self-explained had reached the performance of HP students on the post-test. On the
contrary, although LP students in the control group improved from their pre- to post-
test scores, their post-test scores were still significantly lower in comparison to the HP
students from the same group.

A possible explanation for LP students learning more with Parsons problems than
HP students is a ceiling effect. It is probable that our HP participants particularly in the
experimental group might have shown a ceiling effect. However, in the control group
HP learners had significant improvement on procedural questions despite having high
pre-test scores. Furthermore, it is thought-provoking that HP learners in the control
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group acquired significantly higher normalized gains on procedural questions com-
pared to LP students. Due to low numbers in these subgroups, we do not propose that
HP students are better without SE. However, we are inclined to suggest that this might
be possible.

We do not postulate that a ceiling effect is an accurate explanation for LP students
benefitting more than HP students when solving Parsons problems (especially with SE
prompts). This is due to results from our other study (Fabic et al. 2018b) wherein we
evaluated a different version of PyKinetic containing output prediction and debugging
problems without Parsons problems. In this study, we have found the opposite out-
come, where LP students had negligible learning effects, but HP students had signif-
icant learning benefits. Therefore, we have reasons to believe that Parsons problems are
indeed more suitable for LP students, while output prediction and debugging problems
might be more suitable for HP students. Our findings suggest that this is due to the
hierarchy of programming skills. In our other study (Fabic et al. 2018b), LP students
had difficulties to learn higher order of programming skills (i.e. debugging) since they
have not yet mastered code writing, which is an essential skill for debugging. There-
fore, LP students did not get significant pedagogical benefits with practicing debugging
exercises compared to HP students.

Although learning effects were positive, there are certain aspects of the SE prompts
which could be improved. We have chosen to utilize a mixture of questions written in a
positive or negative manner, to increase the difficulty of the questions. However, during
the study, some of the participants did not read the questions properly and mistakenly
answered some SE prompts. For example, a question which had “Select all INCOR-
RECT statements ….”, confused some participants, where they instead selected all
correct statements. This issue may or may not be concerning, as we have observed that
these questions compelled most participants to be more cautious after this occurrence.
Some participants were observed to have completed the incomplete LOC first before
reading the rest of the problem. This made the SE prompts to appear more difficult for
them, as answering some of the prompts requires students to understand the entire code,
not just the incomplete line. It may have helped to display a message advising learners
to rearrange the LOCs first, before filling in the missing keyword/s for the incomplete
LOC.

The goals of the evaluation study presented in this paper were to evaluate three
hypotheses. The findings supported our first hypothesis H1, with both groups having
improved significantly from the pre- to the post-test. Both groups also improved
significantly on the harder-to-guess questions. We also showed enough evidence to
support our second hypothesis H2, with a moderate effect size, showing that the
participants who self-explained, and their normalized gains were also significantly
higher than those in the control group. Moreover, the evidence was more distinctive
with LP learners. We have also found enough evidence to accept our hypothesis H3,
that LP students would learn more than HP students. LP learners from both treatments
have learned significantly more than HP students. However, LP students who self-
explained benefitted the most, as they achieved similar scores to those of the HP
students in the post-test and had a very high Cohen’s d effect size.

We observed that participants were highly engaged, possibly because most of them
have not experienced learning Python on smartphones before. Some participants also
asked if they could download PyKinetic and keep it to continue learning. Although the
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participants were informed that they were free to stop the session whenever they
wanted, all participants stayed until the time was up. Some participants commented
that they wished they could stay longer and finish all the problems in the tutor. On the
downside, as participation in the study was voluntary, this may have affected their
performance on the pre- and post-tests. Participants may or may not be motivated in
answering the exercises as they were informed that they will be compensated similarly
regardless of their performance.

Conclusions and Future Work

A major contribution of our research is in the pedagogically-guided design of our
variant of Parsons problems which is unique as an entity. Those activities included 1)
one area acting as both problem and solution areas; 2) scaffolding for indentations; 3)
blocks of code each with single LOCs; and 4) incomplete LOCs with menu-based SE
prompts. There is some evidence that Parsons problems are positively correlated with
code writing (Denny et al. 2008); a skill considered as procedural knowledge in
programming. Therefore, we have added incomplete LOCs to further support the
acquisition of procedural knowledge. We also introduced menu-based SE prompts for
every completed LOC to support the advancement of conceptual knowledge. These SE
prompts were proven to be effective in PyKinetic which contains puzzle-like exercises,
consistent with work by Johnson and Mayer (2010). Our research revealed that menu-
based SE prompts are also effective on a mobile platform. We have also addressed a
research gap in the area of self-explanation by combining it with an activity that is more
challenging than learning with worked examples, but less demanding than problem
solving. More specifically, we found that SE is also effective when combined with
activities such as Parsons problems. The evaluation of a combination of Parsons
problems and SE, as well as menu-based SE prompts on smartphones, have not been
done before to the to the best of our knowledge. Further research on the effectiveness of
other types of SE prompts in mobile tutors is needed.

One limitation of our study was the larger proportion of conceptual vs. procedural
questions in the SE prompts, pre-test and post-test. This is not alarming, as the
proportions in all three were consistently similar. However, the results may have been
different with a different proportion of conceptual vs. procedural questions. Another
limitation on our study was the session length. Longer sessions may be considered in
our future evaluations, as well as a delayed/transfer test, which may yield more
interesting results. The number of participants could have also been improved. Since
our study was on a mobile device, running controlled experiments was not as straight-
forward as running it on personal computers. We found that the WiFi connection on
some of the phones were not always reliable, which led to some data loss. We plan to
conduct future studies using only our development phones, to be able to save the data in
two places (on the server sent through WiFi, and on the smartphones for backup).
Another avenue for future work is adding game features to PyKinetic, in order to
increase student motivation.

PyKinetic was designed specifically for novice programmers. Our findings support
this, and more specifically revealing that PyKinetic is more beneficial to LP students
than HP students. Our future work includes adding more problems and developing
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other kinds of activities for PyKinetic (Fabic et al. 2017a). We also aim to investigate
activities most effective in PyKinetic for participants with different abilities. Lastly, we
endeavor to develop an adaptive version of PyKinetic with personalized problem
selection (Fabic et al. 2018a).
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Appendix

Pre-test                                 
1. Circle all syntactically valid Python strings from the following:

a. 'Herbert the Heffalump'
b. "He said "Hi!" to me"
c. """IAma$tr!nG, d0c$tr!nG…^_^"""
d. "'Oh no!', He exclaimed.'
e. 'It\'s raining and pouring, the sun\'s never returning.'
f. "One line/nTwo lines/nThree lines/nFour lines/n"

2. The following code snippet produces an error. Why this is the case? (Circle the answer)

a = "b"
a = 49
print("qr" + a + "st")

a. "qr" and "st" are not variables. Only variables can use ‘+’ operator.

b. You cannot use the ‘+’ operator on string values.

c. The ‘+’ operator only works on values with the same type. i.e. variable a in this case is 

an int while the others are strings.

d. Pylint does not like variable a since its name is too short.

3. Circle all that apply about if conditional statements (compared to elif conditional 

statements).

a. if statements are normally used when conditions are mutually inclusive i.e. if -> if -> 

else (the two if statements are mutually inclusive)

b. if statements are normally used when conditions are mutually exclusive i.e. if -> if -> 

else (the two if statements are mutually exclusive)

c. if statements are used at the start of a set of conditional clauses

d. if statements are used at the end of a set of conditional clauses

4. What is the output of the following code snippet:

number = 42
message = "hello"
if number > 16:

print("I am greater than 16.")
if number > 35 and message == "HELLO":

print("I am greater than 35.")
elif number >= 40 or message == "hello":

print("Comparing to 40.")
else:

print("Today is a good day.")
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5. data is a variable with a list value and n has a value of 1. Circle all code statements that will 

give variable my_var a non-empty list value. Assume that data contains at least two elements.
a. my_var = data[n] 
b. my_var = data[0:n]
c. my_var = data[-1] 
d. my_var = data[:-1]
e. my_var = data[-1:]

6. Rearrange the following lines and fill in the missing elements of the function three_odds() 

which takes a list numbers as an argument and returns the first three odd elements of the 

numbers. The test cases must also be rearranged to match the expected output. Note: Assume 

that the input contains at least three odd numbers. Write the line numbers to answer.

Expected Output:
[5, 9, 11]
[11, 39, 1]
[11, 9, 3]

Code:
1 print(three_odds([2,4,10,11,9,3,29]))
2 def three_odds(numbers):
3 return result
4 count += 1
5 if numbers[count] % 2 != 0:
6 result = []
7 print(three_odds([11,39,10,12,84,1]))
8 result.append(numbers[count])
9 while len(______) < 3:
10 count = 0
11 print(three_odds([5,9,10,11,39,10]))
12 """Return the first three odd numbers in a list"""

7. You need to always specify a counter when using a for loop. i.e. i += 1. True or False?

True False

8. A tuple can contain a mix of data types. Therefore, the following is valid: 
(('hello', 32, 93.0), [30, 39, 2984, 39])

True False
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Post-test
1. Circle all syntactically valid Python variables from the following:

a. Variable
b. MyTuple
c. iAmAvar$^&
d. x_y
e. a1
f. 1a

2. The following code snippet produces an error. Why this is the case? (Circle the answer)

x = 19
x = [17, 39, 40, 289]
print(20 + x + 60)

a. You cannot use the ‘+’ operator on variables.

b. Pylint does not like variable x since its name is too short.

c. 20 and 60 are ints, the ‘+’ operator can only be used on strings.

d. The value that x is referencing was changed to a list. x has to also be an int to use the 

‘+’ operator with 20 and 60.

3. Circle all that apply about elif compared to if conditional statements.

a. elif statements do not need a condition when used i.e. elif: is valid

b. elif statements requires a condition when used i.e. elif: is not valid

c. elif statements are normally used when conditions are mutually inclusive i.e. if -> 

elif -> else (the if and elif statements are mutually inclusive)

d. elif statements are normally used when conditions are mutually exclusive i.e. if -> 

elif -> else (the if and elif statements are mutually exclusive)

4. What is the output of the following code snippet:

message = "hi"
my_list = [8, 45, 90, 23]

if my_list[-1] > 16:
print("I am greater than 16.")

if my_list[2] < 20 or message == "hiho":
print("I am less than 20.")

elif my_list[3] >= 40 and message == "hi":
print("Comparing to 40.")

else:
print("Tomorrow was a good day.")

Output:
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