Skip to main content
Log in

Analysis and Design of Indirect Adaptive Fuzzy Controller for Nonlinear Hysteretic Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In order to handle the nonlinear properties of hysteretic systems, an indirect adaptive fuzzy controller (IAFC) is proposed in this paper. However, it is hard to directly identify the unknown hysteretic effects. Therefore, to overcome this problem, a dynamic hysteretic equation is employed and modified to construct the nonlinear properties of backlash-like hysteretic systems. Besides, the existence of an IAFC can be derived in this paper. Compared with the existing fuzzy control methods, our proposed IAFC is simpler and can handle the more general hysteretic problems with our new learning algorithm. Based on the learning algorithm, the adaptive and the control laws not only can be derived but the stability of the closed-loop system can also be guaranteed by the Lyapunov stability criterion. Finally, the proposed IAFC is compared to the adaptive backstepping control method, and the results show that our proposed IAFC can effectively handle the nonlinear properties in the backlash-like hysteretic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tong, S., Li, Y.: Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 20(1), 168–180 (2012)

    Article  Google Scholar 

  2. Tong, S., Li, Y.: Adaptive fuzzy decentralized output feedback control for nonlinear large-scale systems with unknown dead zone inputs. IEEE Trans. Fuzzy Syst. 21(5), 913–925 (2013)

    Article  Google Scholar 

  3. Jiles, D.C., Thoelke, J.B.: Theory of ferromagnetic hysteresis: determination of model parameters from experimental hysteresis loops. IEEE Trans. Magn. 25(5), 3928–3930 (1989)

    Article  Google Scholar 

  4. Li, Y.B., Niu, S., Ho, S.L., Li, Y., Fu, W.N.: Hysteresis effects of laminated steel materials on detent torque in permanent magnet motors. IEEE Trans. Magn. 47(10), 3594–3597 (2011)

    Article  Google Scholar 

  5. Xu, Q.: Identification and compensation of piezoelectric hysteresis without modeling hysteresis inverse. IEEE Trans. Ind. Electron. 60(9), 3927–3937 (2013)

    Article  Google Scholar 

  6. J. Cai, C. Wen, H. Su, Z. Liu, and X. Liu, “Robust adaptive failure compensation of hysteretic actuators for parametric strict feedback systems,” IEEE Conf. Decis. Control, 7988–7993 (2011)

  7. Wang, C.H., Huang, D.Y.: A new intelligent fuzzy controller for nonlinear hysteretic electronic throttle in modern intelligent automobiles. IEEE Trans. Ind. Electron. 60(6), 2332–2345 (2013)

    Article  Google Scholar 

  8. X. Chen, T. Hisayama, and C. Y. Su, “Adaptive control for continuous-time systems preceded by hysteresis,” IEEE Conf. Decis. Control, 1931–1936 (2008)

  9. Y. Feng, C. A. Rabbath, T. Chai, and C. Y. Su, “Robust adaptive control of systems with hysteretic nonlinearities: a Duhem hysteresis modelling approach,” IEEE Africon Conf., 1–6 (2009)

  10. Natale, C., Velardi, F., Visone, C.: Modelling and compensation of hysteresis for magnetostrictive actuators. IEEE/ASME Int. Conf. Adv. Intell. Mechatron. 2, 744–749 (2001)

    Google Scholar 

  11. M. A. Janaideh, J. Mao, S. Rakheja, W. Xie, and C. Y. Su, “Generalized Prandtl-Ishlinskii hysteresis model: Hysteresis modeling and its inverse for compensation in smart actuators,” IEEE Conf. Decis. Control, 5182–5187 (2008)

  12. Chua, L.O., Stromsmoe, K.A.: Mathematical model for dynamic hysteresis loops. Int. J. Eng. Sci. 9(5), 435–450 (1971)

    Article  Google Scholar 

  13. Su, C.Y., Stepanenko, Y., Svoboda, J., Leung, T.P.: Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 45(12), 2427–2432 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Tao, G., Kokotovic, P.V.: Adaptive control of plants with unknown hystereses. IEEE Trans. Autom. Control 40, 200–212 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tao, G., Kokotovic, P.V.: Continuous-time adaptive control of systems with unknown backlash. IEEE Trans. Autom. Control 40, 1083–1087 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ahmad, N.J., Khorrami, F.: Adaptive control of systems with backlash hysteresis at the input. Am. Control Conf. 5, 3018–3022 (1999)

    Google Scholar 

  17. Jang, J.O., Son, M.K., Chung, H.T.: Friction and output backlash compensation of systems using neural network and fuzzy logic. Am. Control Conf. 2, 1758–1763 (2004)

    Google Scholar 

  18. Su, C.Y., Oya, M., Hong, H.: Stable adaptive fuzzy control of nonlinear systems preceded by unknown backlash-like hysteresis. IEEE Trans. Fuzzy Syst. 11(1), 1–8 (2003)

    Article  Google Scholar 

  19. Campos, J., Lewis, F.L., Selmic, R.: Backlash compensation in discrete time nonlinear systems using dynamic inversion by neural networks. IEEE Conf. Decis. Control 4, 3534–3540 (2000)

    Google Scholar 

  20. Zhou, J., Wen, C., Zhang, Y.: Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 49(10), 1751–1757 (2004)

    Article  MathSciNet  Google Scholar 

  21. Zhou, J., Zhang, C., Wen, C.: Robust adaptive output control of uncertain nonlinear plants with unknown backlash nonlinearity. IEEE Trans. Autom. Control 52(3), 503–509 (2007)

    Article  MathSciNet  Google Scholar 

  22. J. Guo, B. Yao, Q. Chen, and J. Jiang, “Adaptive robust control for nonlinear systems with input backlash or backlash-like hysteresis,” IEEE Int. Conf. Control Autom., 1962–1967 (2009)

  23. S. R. H. Dean, B. W. Surgenor, and H. N. Iordanou, “Experimental evaluation of a backlash inverter as applied to a servomotor with gear train,” IEEE Conf. Control Appl., 580–585 (1995)

  24. Tong, S.C., He, X.L., Zhang, H.G.: A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control. IEEE Trans. Fuzzy Syst. 17(5), 1059–1069 (2009)

    Article  Google Scholar 

  25. Tong, S., Liu, C., Li, Y.: Fuzzy-adaptive decentralized output feedback control for largescale nonlinear systems with dynamical uncertainties. IEEE Trans. Fuzzy Syst. 18(5), 845–861 (2010)

    Article  Google Scholar 

  26. Tong, S., Huo, B., Li, Y.: Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Trans. Fuzzy Syst. 22(1), 1–15 (2014)

    Article  Google Scholar 

  27. Wang, L.X.: “Stable adaptive fuzzy controllers with application to inverted pendulum tracking”. IEEE Trans. Syst. Man Cybern. Part B 26(5), 677–691 (1996)

    Article  Google Scholar 

  28. Wang, L.X.: A course in fuzzy systems and control. Prentice Hall, Inc., Prentice Hall PTR (1997)

    MATH  Google Scholar 

  29. Pan, Y., Er, M.J., Huang, D., Wang, Q.: Adaptive fuzzy control with guaranteed convergence of optimal approximation error. IEEE Trans. Fuzzy Syst. 19(5), 807–818 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Hsu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CH., Wang, JH. & Chen, CY. Analysis and Design of Indirect Adaptive Fuzzy Controller for Nonlinear Hysteretic Systems. Int. J. Fuzzy Syst. 17, 84–93 (2015). https://doi.org/10.1007/s40815-015-0004-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0004-9

Keywords

Navigation