Skip to main content
Log in

Implementation of an Object-Grasping Robot Arm Using Stereo Vision Measurement and Fuzzy Control

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, a method using a stereo vision device and fuzzy control to guide a robot arm to grasp a target object is proposed. The robot arm has five degrees of freedom including a gripper and four joints. The stereo vision device located beside the arm captures images of the target and the gripper. Image processing techniques such as color space transformation, morphologic operation, and 3-D position measurement are used to identify the target object and the gripper from the captured images and estimate their relative positions. Based on the estimated positions of the gripper and the target, the gripper can approach and grasp the target using inverse kinematics. However, since the robot arm’s accuracy of movement may be affected by gearbox backlash or hardware uncertainty, the gripper might not approach the desired position with precision using only inverse kinematics. Therefore, a fuzzy compensation method is added to correct any position errors between the gripper and target such that the gripper can grasp the target. Using the proposed method, the stereo vision device can not only locate the target object but also trace the position of the robot arm until the target object is grasped. Finally, some experiments are conducted to demonstrate successful implementation of the proposed method on the robot arm control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Song, K.-T., Tsai, S.-C.: Vision-based adaptive grasping of a humanoid robot arm. In: Proceedings of the IEEE International Conference on Automation and Logistics, Zhengzhou, China, August 2012, pp. 155–160

  2. Yang, Y., Cao, Q.-X.: Monocular vision based 6D object localization for service robot’s intelligent grasping. Comput. Math. Appl. 64(5), 1235–1241 (2012)

    Article  Google Scholar 

  3. Kim, H.-H., Kim, D.-J., Park, K.-H.: Robust elevator button recognition in the presence of partial occlusion and clutter by specular reflections. IEEE Trans. Ind. Electron. 59(3), 1597–1611 (2012)

    Article  Google Scholar 

  4. Aleotti, J., Caselli, S.: Interactive teaching of task-oriented robot grasps. Robot. Auton. Syst. 58(5), 539–550 (2010)

    Article  Google Scholar 

  5. Munashnghe, S.R., Nakamura, M., Goto, S., Kyura, N.: Optimum contouring of industrial robot arms under assigned velocity and torque constraints. IEEE Trans. Syst. Man Cybern. C 31(2), 159–167 (2001)

    Article  Google Scholar 

  6. Kennedy, C.W., Desai, J.P.: Modeling and control of the Mitsubishi PA-10 robot arm harmonic drive system. IEEE ASME Trans. Mechatron. 10(3), 263–274 (2005)

    Article  Google Scholar 

  7. Shen, W., Gu, J., Milios, E.E.: Self-configuration fuzzy system for inverse kinematics of robot manipulators. In: Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society, Montreal, QC, Canada, June 2006, pp. 41–45

  8. Feliu, V., Somolinos, J.A., Garcia, A.: Inverse dynamics based control system for a three-degree-freedom flexible arm. IEEE Trans. Robot. Autom. 19(6), 1007–1014 (2003)

    Article  Google Scholar 

  9. Shimizu, M., Kakuya, H., Yoon, W.-K., Kitagaki, K., Kosuge, K.: Analytical inverse kinematics computation for 7-DOF redundant manipulators with joint limits and its application to redundancy resolution. IEEE Trans. Robot. 24(5), 1131–1142 (2008)

    Article  Google Scholar 

  10. Wang, W.-J., Huang, C.-H., Lai, I.-H., Chen, H.-C.: A robot arm for pushing elevator buttons. In: Proceedings of SICE Annual Conference, Taipei, Taiwan, August 2010, pp. 1844–1848

  11. Nilsson, A., Holmberg, P.: Combining a stable 2-D vision camera and an ultrasonic range detector for 3-D position estimation. IEEE Trans. Instrum. Meas. 43(2), 272–276 (1994)

    Article  Google Scholar 

  12. Baek, J.-Y., Lee, M.-C.: A study on detecting elevator entrance door using stereo vision in multi floor environment. In: Proceedings of ICROS-SICE International Joint Conference, Fukuoka, Japan, August 2009, pp. 1370–1373

  13. Fraser, C.S., Cronk, S.: A hybrid measurement approach for close-range photogrammetry. ISPRS J. Photogramm. Remote Sens. 64(3), 328–333 (2009)

    Article  Google Scholar 

  14. van den Heuvel, F.A.: 3D reconstruction from a single image using geometric constraints. ISPRS J. Photogramm. Remote Sens. 53(6), 354–368 (1998)

    Article  Google Scholar 

  15. Zhang, D.-H., Liang, J., Guo, C.: Photogrammetric 3D measurement method applying to automobile panel. In: Proceedings of the 2nd International Conference on Computer and Automation Engineering (ICCAE), Singapore, February 2010, pp. 70–74

  16. Egami, T., Oe, S., Terada, K., Kashiwagi, T.: Three dimensional measurement using color image and movable CCD system. In: Proceedings of the 27th Annual Conference on IEEE Industrial Electronics Society, Denver, Colorado, USA, November 2001, pp. 1932–1936

  17. Hsu, C.-C., Lu, M.-C., Wang, W.-Y., Lu, Y.-Y.: Three-dimensional measurement of distant objects based on laser-projected CCD images. IET Sci. Meas. Technol. 3(3), 197–207 (2009)

    Article  Google Scholar 

  18. Aguilar, J.J., Torres, F., Lope, M.A.: Stereo vision for 3D measurement: accuracy analysis, calibration and industrial applications. Measurement 18(4), 193–200 (1996)

    Article  Google Scholar 

  19. Feng, L., Xiaoyu, L., Yi, C.: An efficient detection method for rare colored capsule based on RGB and HSV color space. In: IEEE International Conference on Granular Computing, Noboribetsu, Japan, , October 2014, pp. 175–175

  20. Laganière, R.: OpenCV2 Computer Vision Application Programming Cookbook. Packt Publishing, Birmingham (2011)

    Google Scholar 

  21. Jain, R., Kasturi, R., Schunk, B.G.: Machine Vision. McGraw-Hill, New York (1995)

    Google Scholar 

  22. Kim, B.S., Lee, S.H., Cho, N.I.: Real-time panorama canvas of natural images. IEEE Trans. Consum. Electron. 57(4), 1961–1968 (2011)

    Article  Google Scholar 

  23. Su, J., Zhang, Y.: Integration of a plug-and-play desktop robotic system. Robotica 27, 403–409 (2009)

    Article  Google Scholar 

  24. Nguyen, H.-N., Zhou, J., Kang, H.-J.: A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network. Neurocomputing 151, 996–1005 (2015)

    Article  Google Scholar 

  25. DiCicco, M., Bajracharya, M., Nickels, K., Backes, P.: The EPEC algorithm for vision guided manipulation: analysis and validation. In: Proceedings of the IEEE Aerospace Conference, Big Sky, Montana, March 2007, pp. 1–11

Download references

Acknowledgments

The authors like to thank the Ministry of Science and Technology of Taiwan for its support under Contracts MOST 103-2221-E-008-001-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Jyue Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, JW., Wang, RJ., Wang, WJ. et al. Implementation of an Object-Grasping Robot Arm Using Stereo Vision Measurement and Fuzzy Control. Int. J. Fuzzy Syst. 17, 193–205 (2015). https://doi.org/10.1007/s40815-015-0019-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0019-2

Keywords

Navigation