Skip to main content
Log in

Gaussian Successive Fuzzy Integral for Sequential Multi-decision Making

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Fuzzy integral provides a powerful tool for fusing multiple sources of information or evidence to give an evaluation that expresses the level of confidence (or preference) in a particular hypothesis (or decision). However, the computational framework of the fuzzy integral is not suitable for sequential decision making tasks, since it assumes that the sources of information have been readily available prior to information fusion. In a sequential decision making task, information is progressively accumulated, while decisions are made at various time instants. In this paper, we reformulate the computational framework of the fuzzy integral in order to translate its framework into a successive one. To this end, three issues have been encountered: (i) how to collect the richest information for sequential decision making, (ii) how to efficiently preserve the constantly increasing amount of incoming information, and (iii) how to build up an effective computational scheme in order to gratify the requirement of real-time decision making. The derived scheme, called the Gaussian successive fuzzy integral scheme, was closely examined to validate its feasibility in real-time sequential multi-decision making on the basis of incremental information gathering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Barcusa, A., Montibeller, G.: Supporting the allocation of software development work in distributed teams with multi-criteria decision analysis. Omega 36(3), 464–475 (2008)

    Article  Google Scholar 

  2. Beck, J.M., Ma, W.J., Kiani, R., Hanks, T., Churchland, A.K., Roitman, J., Shadlen, M.N., Latham, P.E., Pouget, A.: Probabilistic population codes for bayesian decision making. Neuron 60(6), 1142–1152 (2008)

    Article  Google Scholar 

  3. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17, B141–B164 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bozdag, C.E., Kahraman, C., Ruan, D.: Fuzzy group decision making for selection among computer integrated manufacturing systems. Comput. Ind. 51, 13–29 (2003)

    Article  Google Scholar 

  5. Büyüközkan, G., Feyzioğlu, O., Ruan, D.: Fuzzy group decision-making to multiple preference formats in quality function deployment. Comput. Ind. 58(5), 392–402 (2007)

    Article  Google Scholar 

  6. Chen, S.Y.: Theory of fuzzy optimum selection for multistage and multiobjective decision making systems. J. Fuzzy Math. 2(1), 163–174 (1994)

    MATH  MathSciNet  Google Scholar 

  7. Chen, S.Y., Fu, G.T.: Combining fuzzy iteration model with dynamic programming to solve multiobjective multistage decision making problems. Fuzzy Sets Syst. 152, 499–512 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cherng, S., Fang, C.Y., Chen, C.P., Chen, S.W.: Critical motion detection of nearby moving vehicles in a vision-based driver assistance system. IEEE Trans. Intell. Transp. Syst. 10(1), 70–82 (2009)

    Article  Google Scholar 

  9. Chung, Y.C., Wang, J.M., Chen, S.W.: Progressive Background Image Generation. IPPR Conf. Comput. Vis., Graphics and Image (2002)

    Google Scholar 

  10. Comak, E., Polat, K., Günes, S., Arslan, A.: A new medical decision making system: Least square support vector machine (LSSVM) with fuzzy weighting pre-processing. Expert Syst. Appl. 32(2), 409–414 (2007)

    Article  Google Scholar 

  11. Demirtas, E.A., Üstün, Ö.: An integrated multiobjective decision making process for supplier selection and order allocation. Omega 36(1), 76–90 (2008)

    Article  Google Scholar 

  12. Esogbue, A.O., Bellman, R.E.: Fuzzy dynamic programming and its extensions. TIMS/Stud Manag. Sci. 20, 147–167 (1984)

    MathSciNet  Google Scholar 

  13. Fan, Z.P., Ma, J., Jiang, Y.P., Sun, Y.H., Ma, L.: A goal programming approach to group decision making based on multiplicative preference relations and fuzzy preference relations. Eur. J. Oper. Res. 174(1), 311–321 (2006)

    Article  MATH  Google Scholar 

  14. Freeman, J.A., Skapura, D.M.: Neural Networks: Algorithms, Applications, And Programming Techniques. Addison-Wesley, New York (1992)

    Google Scholar 

  15. Fu, G.: A fuzzy optimization method for multicriteria decision making: An application to reservoir flood control operation. Expert Syst. Appl. 34(1), 145–149 (2008)

    Article  Google Scholar 

  16. Grabisch, M.: Fuzzy integral in multicriteria decision making. Fuzzy Sets Syst. 69, 279–298 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Grabisch, M., Sugeno, M., Murofushi, T.: Fuzzy Measures and Integrals: Theory and Applications, Springer-Verlag. New York, Inc., Secaucus (2000)

    Google Scholar 

  18. Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129, 1–47 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Guy, T.V., Wolpert, D.H., Karny, M.: Decision Making with Imperfect Decision Makers. Springer-Verlag, Berlin (2012)

    Book  MATH  Google Scholar 

  20. Herrera-Viedma, E., Chiclana, F., Herrera, F., Alonso, S.: Group decision making model with incomplete fuzzy preference relations based on additive consistency. IEEE Trans. Syst. Man Cybern. Part B 37(1), 176–189 (2007)

    Article  Google Scholar 

  21. Iwamoto, S., Sniedovich, M.: Sequential decision making in fuzzy environment. Math. Anal. Appl. 222, 208–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jansson, J., Gustafsson, F.: A framework and automotive application of collision avoidance decision making. Automatica 44, 2347–2351 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kaburlassos, V.G., Petridis, V.: Learning and decision-making in the framework of fuzzy lattices. In: Jain, L.C., Kacprzyk, J. (eds.) Studies in Fuzziness and Soft Computing, pp. 55–94. Physica-Verlag Company, Heidelberg (2002)

    Google Scholar 

  24. Kacprzyk, J.: A branch-and-bound algorithm for the multistage control of a fuzzy system in fuzzy environment. Kybernetes 8, 139–147 (1979)

    Article  MATH  Google Scholar 

  25. Kacprzyk, J., Esogbue, A.O.: Fuzzy dynamic programming: main developments and applications. Fuzzy Sets Syst. 81, 31–45 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kacprzyk, J., Zadrożny, S., Fedrizzi, M., Nurmi, H.: On group decision making, consensus reaching, voting and voting paradoxes under fuzzy preferences and a fuzzy majority: A survey and some perspectives. In: Bustince, H., et al. (eds.) Fuzzy Sets and Their Extensions: Representation, Aggregation and Models. Springer, Berlin (2008)

    Google Scholar 

  27. Kahraman, C., Ruan, D., Dogan, I.: Fuzzy group decision-making for facility location selection. Inf. Sci. 157, 135–153 (2003)

    Article  MATH  Google Scholar 

  28. Keller, J.M., Krishnapuram, R.: Evidence aggregation networks for fuzzy logic inference. IEEE Trans. Neural Netw. 3(5), 761–769 (1992)

    Article  Google Scholar 

  29. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications, pp. 177–178. Prentice Hall, Upper Saddle River (1997)

    Google Scholar 

  30. Lee, D.S.: Effective Gaussian mixture learning for video background subtraction. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 827–832 (2005)

    Article  Google Scholar 

  31. Li, L., Lai, K.K.: Fuzzy dynamic programming approach to hybrid multiobjective multistage decision-making problems. Fuzzy Sets Syst. 117(1), 13–25 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Li, G.D., Yamaguchi, D., Nagai, M.: A grey-based decision-making approach to the supplier selection problem. Math. Comput. Model. 46(3–4), 573–581 (2007)

    Article  Google Scholar 

  33. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, 3rd edn. Springer Science and Business Media, Berlin (2008)

    MATH  Google Scholar 

  34. Rasmy, M.H., Lee, S.M., Abd El-Wahed, W.F.: An expert system for multi-objective decision making: application of fuzzy linguistic preferences and goal programming. Fuzzy Sets Syst. 127(2), 209–220 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sugeno, M.: Fuzzy Measures and Fuzzy Integrals: A Survey, pp. 89–102. Fuzzy Automatic and Decision Processes, North Holland (1977)

    Google Scholar 

  36. Teacy, W.T.L., Chalkiadakis, G., Rogers, A., Jennings, N.R.: Sequential decision making with untrustworthy service providers. In: Proceedings of the 7th Int’l Joint Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 755–762 (2008)

  37. Wang, Z., Li, K.W., Wang, W.: An approach to multi-attribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights. Inf. Sci. 179(17), 3026–3040 (2009)

    Article  MATH  Google Scholar 

  38. Yunjun, H., Xiangdong, Y., Dan, W.: Lagrangian relaxation based feasible solution algorithm. In: 24th Chinese Conference on Control and Decision, 23–25 May 2012, pp. 875–878

  39. Peng, D.H., Gao, C.Y., Zhai, L.L.: Multi-criteria group decision making with heterogeneous information based on ideal points concept. Int. J. Comput. Intell. Syst. 6(4), 616–625 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSC, R.O.C., under Contract NSC-99-2221-E-003-019 -MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiung-Yao Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, AC., Chen, SW. & Fang, CY. Gaussian Successive Fuzzy Integral for Sequential Multi-decision Making. Int. J. Fuzzy Syst. 17, 321–336 (2015). https://doi.org/10.1007/s40815-015-0028-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0028-1

Keywords

Navigation