Skip to main content
Log in

Reduced Fuzzy Controllers for Lorenz–Stenflo System Control and Synchronization

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The article study chaos control and chaos synchronization of Lorenz–Stenflo system that used full states controllers, two states controllers (u 2 and u 3), and single-state controller (u 3) by Takagi–Sugeno fuzzy theory. Further, the convergence times of chaos control and chaos synchronization are shorten about 18.03–29.56 and 40.19–43.65 % that are compare with full states control, respectively. The system reduces the number of controllers, so it can cost down of the control system. The single-state controller and two states controllers are presented in the simulation results to show the effectiveness and feasibility of our new design rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lorenz, E.-N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  2. Sun, Y.-J.: A simple observer design of the generalized Lorenz chaotic systems. Phys. Lett. A 374(7), 933–937 (2010)

    Article  MATH  Google Scholar 

  3. Chen, H.-K., Lee, C.-I.: Anti-control of chaos in rigid body motion. Chaos, Solitons Fractals 21, 957–965 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Li, C.-D., Liao, X.-F.: Lag synchronization of Rössler system and Chua circuit via a scalar signal. Phys. Lett. A 329(4–5), 301–308 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Luo, A.C.J., Han, R.P.S.: A quantitative stability and bifurcation analyses of the generalized duffing oscillator with strong nonlinearity. J. Franklin Inst. 334(3), 447–459 (1997)

    Article  MathSciNet  Google Scholar 

  6. Sun, Y.-J.: An exponential observer for the generalized Rössler chaotic system. Chaos, Solitons Fractals 40(5), 2457–2461 (2009)

    Article  MATH  Google Scholar 

  7. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)

    Book  Google Scholar 

  9. Wang, Y.-W., Guan, Z.-H., Wang, H.O.: LMI-based fuzzy stability and synchronization of Chen’s system. Phys. Lett. A 320, 154–159 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst., Man, Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  11. Lin, T.C., Chen, M.C., Roopaei, M.: Synchronization of uncertain chaotic systems based on adaptive type-2 fuzzy sliding mode control. Eng. Appl. Artif. Intell. 24(1), 39–49 (2011)

    Article  Google Scholar 

  12. Vembarasan, V., Balasubramaniam, P.: Chaotic synchronization of Rikitake system based on T–S fuzzy control techniques. Nonlinear Dyn. 74, 31–44 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ataei, M., Kiyoumarsi, A., Ghorbani, B.: Control of chaos in permanent magnet synchronous motor by using optimal Lyapunov exponents placement. Phys. Lett. A 374(41), 4226–4230 (2010)

    Article  MATH  Google Scholar 

  14. Yang, C.-H.: Enhanced symplectic synchronization between two different complex chaotic systems with uncertain parameters. Abstr. Appl. Anal. Article ID 193138 (2013)

  15. Li, S.-Y., Yang, C.-H., Lin, C.-T., Ko, L.-W., Chiu, T.-T.: Chaotic motions in the real fuzzy electronic circuits. Abstr. Appl. Anal. Article ID 875965 (2013)

  16. Yang, C.-H.: Symplectic synchronization of Lorenz–Stenflo system with uncertain chaotic parameters via adaptive control. Abstr. Appl. Anal. Article ID 528325 (2013)

  17. Li, S.-Y., Yang, C.-H., Ko, L.-W., Lin, C.-T., Ge, Z.-M.: Implementation on electronic circuits and RTR pragmatical adaptive synchronization: time-reversed uncertain dynamical systems analysis and applications. Abstr. Appl. Anal. Article ID 909721 (2013)

  18. Yang, C.-H.: Chaos hybrid generalized synchronization of Liu–Chen system by GYC partial region stability theory. J. Comput. Theor. Nanosci. 10(4), 825–831 (2013)

    Article  Google Scholar 

  19. Yang, C.-H., Chen, T.-W., Li, S.-Y., Chang, C.-M., Ge, Z.-M.: Chaos generalized synchronization of an inertial tachometer with new Mathieu–Van der Pol systems as functional system by GYC partial region stability theory. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1355–1371 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hsueh, Y.-C., Su, S.-F.: Learning error feedback design of direct adaptive fuzzy control systems. IEEE Trans. Fuzzy Syst. 20(3), 536–545 (2012)

    Article  MathSciNet  Google Scholar 

  21. Yu, G.-R., Huang, H.-T.: A sum-of-squares approach to synchronization of chaotic systems with polynomial fuzzy systems. Int. J. Fuzzy Syst. 15(2), 159–169 (2013)

    Google Scholar 

  22. Chiu, C.-S., Li, Z.-H., Chen, Y.-H.: T–S fuzzy direct maximum power point tracking of wind energy conversion systems. Int. J. Fuzzy Syst. 15(2), 159–169, 192–202 (2013)

  23. Chen, M.-C., Wang, W.-Y., Su, S.-F.: Robust T–S fuzzy-neural control of uncertain active suspension systems. Int. J. Fuzzy Syst. 12(4), 321–329 (2010)

    Google Scholar 

  24. Chou, H.G., Chuang, C.F., Wang, W.-J., Lin, J.C.: A fuzzy-model-based chaotic synchronization and its implementation on a secure communication system. IEEE Trans. Inf. Forensics Secur. 8(12), 2177–2185 (2013)

    Article  Google Scholar 

  25. Chen, Y.-J., Ohtake, H., Wang, W.-J., Wang, H.-O., Tanaka, K.: Relaxed stabilization criterion for T–S fuzzy systems by minimum-type piecewise lyapunov function based switching fuzzy controller. IEEE Trans. Fuzzy Syst. 20(6), 1166–1173 (2012)

    Article  Google Scholar 

  26. Hu, C., Jiang, H.: Time-delayed impulsive control of chaotic system based on T–S fuzzy model. Math. Prob. Eng. 2014(910351), 12 (2014)

    Google Scholar 

  27. Huang, C., Chen, L., Jiang, H., Yuan, C., Xia, T.: Fuzzy chaos control for vehicle lateral dynamics based on active suspension system. Chin. J. Mech. Eng. 27(4), 793–801 (2014)

    Article  Google Scholar 

  28. Wu, Z.-G., Shi, P., Su, H., Chu, J.: Sampled-data fuzzy control of chaotic systems based on a T–S fuzzy model. IEEE Trans. Fuzzy Syst. 22(1), 153–163 (2014)

    Article  MathSciNet  Google Scholar 

  29. Stenflo, L.: Generalized Lorenz equations for acousticgravity waves in the atmosphere. Phys. Scr. 53, 83–84 (1996)

    Article  Google Scholar 

  30. Yang, C.-H., Wu, C.-L.: Nonlinear dynamic analysis and synchronization of four dimensional Lorenz–Stenflo system and its circuit experimental implementation. Abstr. Appl. Anal. Article ID 213694 (2014)

Download references

Acknowledgments

This research was supported by the National Science Council, Republic of China, under Grant Number NSC 102-2221-E-011-034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Hsiung Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CH., Wu, CL., Chen, YJ. et al. Reduced Fuzzy Controllers for Lorenz–Stenflo System Control and Synchronization. Int. J. Fuzzy Syst. 17, 158–169 (2015). https://doi.org/10.1007/s40815-015-0032-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0032-5

Keywords

Navigation