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Abstract
1
 

Mammographic risk analysis is an important task for 

assessing the likelihood of a woman developing breast 

cancer. It has attracted much attention in recent years as 

it can be used as an early risk indicator when screening 

patients. In this paper, a kernel-based fuzzy-rough near-

est-neighbour approach to classification is employed to 

address the issue of the assessment of mammographic 

risk. Four different breast tissue density assessment met-

rics are employed to support this study, and the perfor-

mance of the proposed approach is compared with alter-

native nearest-neighbour-based classifiers and other 

popular learning classification techniques. Systematic 

experimental results show that the work employed here 

generally improves the classification performance over 

the others, measured using criteria such as classification 

accuracy rate, root mean squared error, and the kappa 

statistics. This demonstrates the potential of kernel-based 

fuzzy-rough nearest-neighbour classification as a robust 

and reliable tool for mammographic risk analysis.  

Keywords: Mammographic Risk Analysis, Ker-

nel-based Fuzzy-rough Sets, Nearest-neighbour Algo-

rithms, Classification. 

 

1. Introduction 
 

Breast cancer is the most common cancer and the 

most common cause of death due to cancer amongst 

women in 140 of 184 countries worldwide, with nearly 

1.7 million new cases diagnosed and 522,000 deaths in 

2012. This represents about 12% of all new cancer cases 
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and 25% of all cancers in women [1], [2], [3]. There 

were 6.3 million women alive who had been diagnosed 

with breast cancer in the previous five years. Since 2008 

breast cancer incidence has increased by more than 20%, 

while mortality has increased by 14%. Although in-

creased levels of the occurrence of breast cancer have 

been recorded, so too has the level of early detection by 

screening using mammographic imaging and expert 

opinion. However, even expert radiologists sometimes 

fail to detect a significant proportion of mammographic 

abnormalities. A large number of detected abnormalities 

are usually discovered to be benign following medical 

investigation. 

Existing mammographic Computer Aided Diagnosis 

(CAD) systems [4] concentrate on the detection and 

classification of mammographic abnormalities. As breast 

tissue density increases however, the effectiveness of 

these systems in detecting such abnormalities is consid-

erably reduced. In [5], it is claimed that mammographic 

density is the most indicative risk factor for breast cancer. 

Also, density estimation can be used to evaluate the like-

lihood of hidden abnormalities [6]. Techniques for au-

tomatic classification to support the consideration of tis-

sue density and the minimisation of human bias when 

searching for mammographic abnormalities are therefore 

highly desirable. Given the fact that the estimation of 

mammographic risk currently remains a major challenge 

in modern medical science, much research effort is 

needed in order to improve the accuracy of such classi-

fication [7], [8], [9]. 

Generally, a classification problem can be solved from 

a variety of perspectives, such as probability theory [10] 

(e.g., Bayesian networks [11]), function approximation 

(e.g., SVM [12]), decision tree learning [13] (e.g., 

C4.5/J48 [14]), rule induction-based classifier (e.g., JRip 

[15]) and instance-based learning [16] (e.g., k near-

est-neighbours or kNN [17]). This paper, based on the 

initial ideas proposed in [18], presents a kernel-based 

fuzzy-rough nearest-neighbour approach for in-

stance-based learning. It implements classification tasks 

using kernel-based fuzzy-rough sets (KFRS), which are 

a flexible hybridisation of kernel methods [12] and 

fuzzy-rough sets [19]. Similar to other kernel-based 

methods [20] the proposed approach addresses the clas-

sification problem by exploiting the properties of the 
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kernel functions. Experimental evaluations show that the 

algorithms established following this approach perform 

well on benchmark datasets, in application to mammo-

graphic risk analysis.  

In order to have a comprehensive analysis, four dif-

ferent breast tissue density assessment metrics: Wolfe 

[21], Boyd [22], Tabár [23], and BI-RADS [24] are em-

ployed. To evaluate the performance of the kernel-based 

fuzzy-rough nearest-neighbour algorithms, comparative 

studies with alternative nearest-neighbour-based classi-

fiers and other popular learning classification techniques 

are carried out, through systematic experimental investi-

gation. The results, which are measured using criteria 

such as classification accuracy rate, root mean squared 

error, and the kappa statistic, demonstrate that the ker-

nel-based fuzzy-rough nearest-neighbour approach offers 

improved and robust performance over others.  

The remainder of this paper is structured as follows. 

The theoretical foundation of the kernel-based 

fuzzy-rough nearest-neighbour algorithm is described in 

Section 2. The kernel-based fuzzy-rough sets and ker-

nel-based fuzzy-rough nearest-neighbour approach are 

then presented in Section 3. The data used and its label-

ling schemes for the experimental evaluation are de-

scribed in Section 4, and the experimental results are 

discussed in Section 5. The paper is concluded in Sec-

tion 6, with an outline of proposed further work. 

 

2. Theoretical Background 
 

A. Hybridisation of Rough Sets and Fuzzy Sets 

The work on rough set theory (RST) [25] provides a 

methodology that can be employed to extract knowledge 

from data in a concise way. It is able to minimise infor-

mation loss during the extraction process while also lim-

iting the amount of human intervention. Central to rough 

set theory is the concept of indiscernibility. Let 

𝐼 = (𝕌, 𝔸)  be an information system, where 𝕌  is a 

non-empty set of finite objects (the universe) and 𝔸 is a 

non-empty finite set of attributes so that 𝑎: 𝕌 ⟶ 𝑉𝑎 for 

every 𝑎 ∈ 𝔸. 𝑉𝑎  is the set of values that attribute 𝑎 

may take. For any 𝑃 ⊆ 𝔸, there exists an associated 

equivalence relation 𝐼𝑁𝐷(𝑃):  

     𝐼𝑁𝐷(𝑃) = *(𝑥, 𝑦) ∈ 𝕌2|∀𝑎 ∈ 𝑃, 𝑎(𝑥) = 𝑎(𝑦)+.  (1) 

The partition generated by 𝐼𝑁𝐷(𝑃)  is denoted 

𝕌/𝐼𝑁𝐷(𝑃) or abbreviated to 𝕌/𝑃 and is calculated as 

follows:  

 𝕌/𝐼𝑁𝐷(𝑃) =⊗ *𝑎 ∈ 𝑃:𝕌/𝐼𝑁𝐷(*𝑎+)+ (2) 

where,  

      𝕌/𝐼𝑁𝐷(*𝑎+) = **𝑥|𝑎(𝑥) = 𝑏,  𝑥 ∈ 𝕌+|𝑏 ∈ 𝑉𝑎+   (3) 

and,  

      𝐴 ⊗ 𝐵 = *𝑋 ∩ 𝑌|∀𝑋 ∈ 𝐴, ∀𝑌 ∈ 𝐵, 𝑋 ∩ 𝑌 ≠ ∅+.  (4) 

If (𝑥, 𝑦) ∈ 𝐼𝑁𝐷(𝑃), then 𝑥 and 𝑦 are indiscernible 

by attributes from 𝑃. The equivalence classes of the 

P-indiscernibility relation are denoted ,𝑥-𝑃. Let 𝑋 ⊆ 𝕌. 

𝑋 can be approximated using only the information con-

tained in 𝑃 by constructing the P-𝑙𝑜𝑤𝑒𝑟 and P-𝑢𝑝𝑝𝑒𝑟 

approximations of 𝑋:  

 𝑃𝑋 = *𝑥|,𝑥-𝑃 ⊆ 𝑋+ (5) 

 𝑃𝑋 = *𝑥|,𝑥-𝑃 ∩ 𝑋 ≠ ∅+. (6) 

The tuple < 𝑃𝑋, 𝑃𝑋 > is called a rough set.  

Although useful, rough sets only operate effectively 

on datasets containing discrete values. As most datasets 

contain real-valued attributes, a subjective judgement or 

threshold must therefore be employed in order for RST 

to operate on such data. The imposition of such a subjec-

tive threshold is however, contrary to the concept of do-

main independence of RST. An appropriate way of han-

dling the problem of real-valued data is the use of 

fuzzy-rough sets (FRS) [26]. FRS offers a high degree of 

flexibility in enabling the vagueness and imprecision 

present in real-valued data to be modelled effectively.  

Definitions for the fuzzy lower and upper approxima-

tions can be found in [19], [27], where a 𝑇-transitive 

fuzzy similarity relation is used to approximate a fuzzy 

concept 𝑋:  

 𝜇𝑅𝑃𝑋(𝑥) = inf
𝑦∈𝕌

𝐼 (𝜇𝑅𝑃(𝑥, 𝑦), 𝜇𝑋(𝑦)) (7) 

 

 𝜇𝑅𝑃𝑋(𝑥) = sup𝑦∈𝕌
𝑇 (𝜇𝑅𝑃(𝑥, 𝑦), 𝜇𝑋(𝑦)) (8) 

Here, 𝐼 is a fuzzy implicator and 𝑇 is a T-norm. 𝑅𝑃 is 

the fuzzy similarity relation induced by the subset of 

features 𝑃:  

 𝜇𝑅𝑃(𝑥, 𝑦) = 𝑇𝑎∈𝑃*𝜇𝑅𝑎(𝑥, 𝑦)+ (9) 

𝜇𝑅𝑎(𝑥, 𝑦) is the degree to which objects 𝑥 and 𝑦 are 

deemed similar with respect to feature 𝑎.  

Note that formulae (7) and (8) are sensitive to noisy 

values, as with their crisp counterparts. To tackle this 

problem, vaguely-quantified rough sets (VQRS) have 

been introduced in [28]. Following this approach, given 

a pair of fuzzy quantifiers (𝑄𝑢, 𝑄𝑙), with each quantifier 

being an increasing ,0,1- → ,0,1- mapping, the lower 

and upper approximations of 𝑋 by 𝑅 can be respec-

tively (re-)defined by  

𝜇𝑅𝑃𝑋
𝑄𝑢 (𝑥) = 𝑄𝑢 (

|𝑅𝑃(𝑥, 𝑦) ∩ 𝑋|

|𝑅𝑃(𝑥, 𝑦)|
) 

 = 𝑄𝑢 (
∑ 𝑚𝑖𝑛 (𝑦∈𝕌 𝜇𝑅𝑃(𝑥, 𝑦), 𝜇𝑋(𝑦))

∑ 𝜇𝑅𝑃𝑦∈𝕌 (𝑥, 𝑦)
) (10) 

 

𝜇
𝑅𝑃𝑋

𝑄𝑙 (𝑥) = 𝑄𝑙 (
|𝑅𝑃(𝑥, 𝑦) ∩ 𝑋|

|𝑅𝑃(𝑥, 𝑦)|
) 

 = 𝑄𝑙 (
∑ 𝑚𝑖𝑛 (𝑦∈𝕌 𝜇𝑅𝑃(𝑥, 𝑦), 𝜇𝑋(𝑦))

∑ 𝜇𝑅𝑃𝑦∈𝕌 (𝑥, 𝑦)
) (11) 

The fuzzy set intersection is interpreted by the T-norm 

min and the fuzzy set cardinality by the sigma-count op-
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eration in this work (although other interpretations may 

similarly be used in principle). As an important differ-

ence to (7) and (8), the VQRS approximations do not 

directly extend the classical rough set approximations, in 

a sense that when 𝑋 and 𝑅 are crisp, (10) and (11) may 

still be fuzzy. 

  

B. Fuzzy-rough Nearest Neighbours 

Initial attempts to combine the fuzzy near-

est-neighbour (FNN) [29] algorithm with concepts from 

fuzzy rough set theory were presented in [30] and im-

proved in [31]. In such work, a fuzzy-rough ownership 

function is constructed that attempts to handle both 

fuzzy uncertainty (caused by overlapping classes) and 

rough uncertainty (caused by insufficient knowledge 

about the objects). The resultant fuzzy-rough classifica-

tion algorithm from the improved approach is termed 

FRNN-O in this paper for easy reference.  

It should be noted that this algorithm does not use 

fuzzy lower or upper approximations to determine class 

membership. A very preliminary attempt to do so was 

described in [32]. However, the authors did not state how 

to use the upper and lower approximations to derive 

classifications. Also, in [33], a rough-fuzzy weighted 

𝑘-nearest leader classifier was proposed; however, the 

concepts of lower and upper approximations were rede-

fined for this purpose and have no overlap with the tradi-

tional definitions.  

In [34], a fuzzy-rough nearest-neighbour (FRNN) al-

gorithm is proposed. It works by examining each of the 

decision classes in the training data in turn. It computes 

the membership of a test object to the fuzzy lower and 

upper approximations of each class. These values are 

then compared with the highest existing values: 𝜇𝑙(𝑦) 
and 𝜇𝑢(𝑦). If the approximation membership values for 

the currently considered class are higher, then 𝜇𝑙(𝑦) 
and 𝜇𝑢(𝑦) are assigned these values and the class label 

is assigned to this test object. If not, the algorithm con-

tinues to iterate through all remaining decision classes. 

Classification accuracy is calculated by comparing the 

output with the actual class labels of the test objects.  

An extension of FRNN is vaguely quantified nearest 

neighbour (VQNN) [28] which employs (10) and (11) in 

order to determine class membership of test objects. The 

underlying learning mechanism is very similar to that of 

FRNN and hence omitted here. 

 

C. Classes of Kernels in Statistics 

In a kernel-based algorithm, a mapping 𝜙 from a 

given data space on to a possibly high-dimensional space 

is employed to change the distribution of the data from 

the original nonlinear problem to a linearly separable 

problem. By replacing the inner product with an appro-

priate kernel function, a nonlinear mapping can be im-

plicitly performed on a high dimensional feature space 

without increasing the number of parameters. Consider 

the case of mapping an 𝑛-dimensional feature space to 

an 𝑚-dimensional feature space:  

 𝜙: 𝑥 → 𝜙(𝑥), 𝑥 ∈ ℝ𝑛, 𝜙(𝑥) ∈ ℝ𝑚. (12) 

A kernel denotes a function 𝐾  such that for all 

𝑥, 𝑦 ∈ ℝ𝑛:  

                            𝐾(𝑥, 𝑦) = 𝜙(𝑥) ⋅ 𝜙(𝑦). (13) 

In statistics, symmetric positive definite functions are 

termed covariances. Hence, kernels are covariance-based 

in essence. From a statistics perspective, generally, two 

important classes of kernels are: stationary kernels and 

non-stationary kernels [35]. The work in this paper fo-

cuses on stationary kernels.  

Stationary kernels 𝐾(𝑥, 𝑦) = 𝐾𝑆(𝑥 − 𝑦) do not de-

pend on the data object values themselves, but only on 

the lag vector separating the two objects 𝑥 and 𝑦. Iso-

tropic stationary kernels, which depend only on the norm 

of the lag vector, are most commonly used. For isotropic 

stationary kernels, the covariance form is:  

 𝐾𝑐𝑜𝑣(𝑥, 𝑦) = 𝐾𝐼(∥ 𝑥 − 𝑦 ∥), (14) 

and the correlation form is  

 𝐾𝑐𝑜𝑟(𝑥, 𝑦) = 𝐾𝐼(∥ 𝑥 − 𝑦 ∥)/𝐾𝐼(0). (15) 

A non-stationary kernel 𝐾(𝑥, 𝑦)  is one which de-

pends explicitly on the two data objects 𝑥 and 𝑦. Note 

that a special kind of non-stationary kernel, called a re-

ducible kernel, can be reduced to a stationary kernel. 

 

3. Kernel-based Fuzzy-rough Near-

est-neighbour Classification 
 

A. Need for Kernel-based Fuzzy-rough Sets 

The relationship between 𝑇-transitivity and kernels 

has been explored recently [36]. It has been shown that 

any kernel: 𝑋 × 𝑋 → ,0,1-, 𝐾(𝑥, 𝑥) = 1 , ∀𝑥 ∈ 𝑋 , is 

𝑇𝑐𝑜𝑠 -transitive, where 𝑇𝑐𝑜𝑠(𝑎, 𝑏) = 𝑚𝑎𝑥(𝑎𝑏 −

√1 − 𝑎2√1 − 𝑏2, 0). As an initial attempt, kernelised 

fuzzy-rough sets, which combine kernel methods with 

concepts from fuzzy-rough set theory, have also been 

proposed [37]. In this approach, kernels 𝐾(𝑥, 𝑦) are 

constrained such that they impose: a) reflexivity, b) 

symmetry, and c) 𝑇𝑐𝑜𝑠-transitivity. Such kernels are em-

ployed to calculate the degree to which objects 𝑥 and 𝑦 

are similar for every feature. The fuzzy lower and upper 

approximations in kernelised fuzzy-rough sets are de-

fined by:  

 𝜇𝐾𝑃𝑋(𝑥) = inf
𝑦∈𝕌

𝐼𝑐𝑜𝑠 (𝐾𝑃(𝑥, 𝑦), 𝜇𝑋(𝑦)) (16) 

 

 𝜇𝐾𝑃𝑋(𝑥) = sup𝑦∈𝕌
𝑇𝑐𝑜𝑠 (𝐾𝑃(𝑥, 𝑦), 𝜇𝑋(𝑦)). (17) 

where, the implicator  

𝐼𝑐𝑜𝑠 = {
1,                                               𝑎 ≤ 𝑏

𝑎𝑏 + √(1 − 𝑎2)(1 − 𝑏2), 𝑎 > 𝑏
. (18) 
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In general, however, for fuzzy-rough sets, 

𝑇-transitivity is not necessarily displayed, and fuzzy tol-

erance relations may be sufficient [38]. Yet, as reflected 

by (9), the fuzzy similarity relation induced by the subset 

of features 𝑃 is computed through the combination that 

is implemented by a 𝑇-norm. Specifically, for kernelised 

fuzzy-rough sets, it is:  

 𝐾𝑃(𝑥, 𝑦) = 𝑇𝑎∈𝑃{𝜇𝑅𝑎(𝑥, 𝑦)}. (19) 

In this case, the choice of a kernel function becomes re-

stricted. This is due to the fact that not many kernel 

functions can be denoted by a 𝑇-norm-based combina-

tion of reflexive functions. The Gaussian kernel em-

ployed in [37] is workable, because for: 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ
𝑛, 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛) ∈ ℝ

𝑛  

       exp .−
∥𝑥−𝑦∥2

𝜃
/ = ∏ exp .−

(𝑥𝑖−𝑦𝑖)
2

𝜃
/𝑛

𝑖=1       (20) 

and because its product is still a 𝑇-norm. However, for 

most kernels, such as the rational quadratic kernel and 

the wave kernel (see below), this property may not hold. 

In order to address these problems, kernel-based 

fuzzy-rough sets are proposed in this paper as follows. 

 

B. Kernel-based Fuzzy-rough Sets 

In geometry, the inner product of two vectors is the 

projection of one onto another. Indeed, the square of the 

norm distance in a Hilbert space can be expressed by the 

inner product. In this case, the inner product can measure 

the similarity between the images of two features by 

mapping them onto the Hilbert space. Therefore, given a 

non-empty set 𝕌 and a kernel function 𝐾  being re-

flexive (that is 𝐾(𝑥, 𝑥) = 1), for an arbitrary fuzzy con-

cept 𝑋, the lower and upper approximations of a ker-

nel-based fuzzy-rough set can be defined as:  

 𝜇𝑅𝑃
𝐾𝑋(𝑥) = inf

𝑦∈𝕌
𝐼 (𝜇𝐾𝑃(𝑥, 𝑦), 𝜇𝑋(𝑦)) (21) 

 

  𝜇
𝑅𝑃
𝐾𝑋
(𝑥) = sup

𝑦∈𝕌
𝑇 .𝜇𝐾𝑃(𝑥, 𝑦), 𝜇𝑋(𝑦)/. (22) 

It is important to note that the general framework of 

fuzzy-rough sets remains intact using the definition de-

scribed in this paper. Indeed, the kernel methods play a 

special role in calculating the fuzzy tolerance relations. It 

is because of this fact that the term kernel-based 

fuzzy-rough sets (KFRS) is employed here rather than 

kernelised fuzzy-rough sets.  

  As well as fuzzy-rough sets, the corresponding 

lower and upper approximations of the kernel-based 

vaguely quantified rough set (KVQRS) can also be de-

fined such that 

𝜇
𝑅𝑃
𝐾𝑋

𝑄𝑢 (𝑥) = 𝑄𝑢 (
|𝑅𝑃
𝐾(𝑥, 𝑦) ∩ 𝑋|

|𝑅𝑃
𝐾(𝑥, 𝑦)|

) 

 = 𝑄𝑢 (
∑ 𝑚𝑖𝑛 (𝑦∈𝕌 𝜇𝐾𝑃(𝑥, 𝑦), 𝜇𝑋(𝑦))

∑ 𝜇𝐾𝑃𝑦∈𝕌 (𝑥, 𝑦)
) (23) 

𝜇
𝑅𝑃
𝐾𝑋

𝑄𝑙 (𝑥) = 𝑄𝑙 (
|𝑅𝑃
𝐾(𝑥, 𝑦) ∩ 𝑋|

|𝑅𝑃
𝐾(𝑥, 𝑦)|

) 

 = 𝑄𝑙 (
∑ 𝑚𝑖𝑛 (𝑦∈𝕌 𝜇𝐾𝑃(𝑥, 𝑦), 𝜇𝑋(𝑦))

∑ 𝜇𝐾𝑃𝑦∈𝕌 (𝑥, 𝑦)
) (24) 

where, 𝜇𝐾𝑃(𝑥, 𝑦) is induced by the subset of features 𝑃 

and kernel function 𝐾:  

                 𝜇𝐾𝑃(𝑥, 𝑦) = 𝑇𝑎∈𝑃{𝜙(𝑎(𝑥)) ⋅ 𝜙(𝑎(𝑦))} 

 
            = 𝑇𝑎∈𝑃{𝐾(𝑎(𝑥), 𝑎(𝑦))} 

  = 𝑇𝑎∈𝑃*𝐾𝑎(𝑥, 𝑦)+. 
(25) 

As indicated previously, all isotropic stationary ker-

nels in the correlation form of (15) are suitable for being 

integrated into such KFRS. A collection of certain com-

monly used isotropic stationary kernels in this correla-

tion form are listed as follows:  

 Gaussian kernel: 𝐾(𝑥, 𝑦) = exp .−
∥𝑥−𝑦∥2

𝜃
/ 

 Exponential kernel: 𝐾(𝑥, 𝑦) = exp .−
∥𝑥−𝑦∥

𝜃
/ 

 Rational quadratic kernel: 𝐾(𝑥, 𝑦) = 1 −
∥𝑥−𝑦∥2

∥𝑥−𝑦∥2+𝜃
 

 Wave kernel: 𝐾(𝑥, 𝑦) =
𝜃

∥𝑥−𝑦∥
sin (

∥𝑥−𝑦∥

𝜃
). 

Note that for specific non-stationary kernels [35], the 

reflexivity holds also. Thus, such non-stationary kernel 

functions are also available for constructing KFRS. For 

instance, the following non-stationary kernel is reflexive:  

 𝐾(𝑥, 𝑦) =
∥ 𝑥 ∥ +∥ 𝑦 ∥ −∥ 𝑥 − 𝑦 ∥

2√∥ 𝑥 ∥∥ 𝑦 ∥
. (26) 

 

C. Kernel-based Fuzzy-rough Nearest-neighbour Algo-

rithms 

Having introduced kernel-based fuzzy-rough sets, a 

combination of kernel methods with the conventional 

fuzzy-rough nearest neighbour approaches [30], [32] can 

be readily established. This is straightforward as with the 

work of [34]. The resulting combined learning algorithm 

is termed kernel-based fuzzy-rough nearest-neighbour 

algorithm (KFRNN), and is outlined in Algorithm 1. 

The rationale behind this algorithm is basically the 

same as that adopted by any nearest-neighbour ap-

proaches. In KFRNN, the 𝑘  nearest-neighbours are 

examined according to the kernel-based fuzzy tolerance 

relations. The average of the lower and upper approxi-

mations of the kernel-based fuzzy-rough sets are em-

ployed as the decision qualifier. After an iteration 

through all the decision classes, the class label of the test 

object will be assigned the same as that of the sample 

which has the highest value of the average of the lower 

and upper approximations. The complexity of this algo-

rithm is: 𝑂(|𝒞| ⋅ 2|𝕌|).  
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Algorithm 1 Kernel-based fuzzy-rough near-

est-neighbour algorithm

 
KFRNN(𝕌, 𝒞, 𝑦, 𝑘, K)  

𝕌: the training set;   

𝒞: the set of decision classes;  

𝑦: the object to be classified;   

𝑘: the number of nearest neighbours;   

K: the chosen kernel function.  

(1) 𝑁 ← get Nearest-Neighbour(𝑦, 𝑘)  

(2) 𝜏 ← 0, 𝐶𝑙𝑎𝑠𝑠 ← ∅  

(3) ∀𝑋 ∈ 𝒞  

(4)  𝐢𝐟 ((𝜇𝑅𝑃
𝐾𝑋(𝑦) + 𝜇𝑅𝑃

𝐾𝑋
(𝑦))/2 ≥ 𝜏)  

(5)   𝐶𝑙𝑎𝑠𝑠 ← 𝑋  

(6)   𝜏 ← (𝜇𝑅𝑃
𝐾𝑋(𝑦) + 𝜇𝑅𝑃

𝐾𝑋
(𝑦))/2  

(7) 𝐨𝐮𝐭𝐩𝐮𝐭 𝐶𝑙𝑎𝑠𝑠  

 
It is interesting to note that the accuracy of FRNN is 

decided only by the greatest similarity between the ob-

jects in the training datasets and the test object [39]. Also, 

for VQNN, the classification only depends on the high-

est summation of the similarities for each class within 

the k nearest neighbours. As the mechanisms of FRNN 

and VQNN are respectively retained in KFRNN and 

KVQNN, such effects of the number of the nearest 

neighbours can also be observed in the empirical results 

(as to be presented later). That is, only the single nearest 

neighbour is needed for classification by KFRNN and 

the choice of k has indeed a major impact upon the clas-

sification for KVQNN. Although this can be considered 

as an advantage with regard to the issue of parameter 

selection for KFRNN, KVQNN enjoys a more robust 

performance in the presence of noisy data. 

 

4. Experimental Data 
 

  The data employed for the experimental evaluation in 

this paper is derived from features extracted from images 

in the Mammographic Image Analysis Society (MIAS) 

database [40] (see [41] for the feature extraction process). 

It involves a complete set of Medio-Lateral-Oblique 

(MLO) left and right mammograms of 161 women (322 

objects). Each mammogram object is represented by 280 

features, 10 derived from morphological characteristics, 

and the remaining 270 derived from the extracted texture 

information. The spatial resolution of the images is 

50𝜇𝑚 × 50𝜇𝑚 and quantised to 8 bits with a linear op-

tical density in the range 0–3.2.  

Mammographic risk assessment metrics which are 

commonly used are those based on the Wolfe [21], Boyd 

[22], Tabár [23], or BI-RADS [24] labelling schemes 

(see Figure 1 for examples). These four metrics can be 

grouped into two approaches of assessment. Boyd 

measures the percentage area of dense breast tissue. In 

contrast, Wolfe, BI-RADS, and Tabár all include patterns 

and texture information in estimating the classification.   

 

      
(a) mdb135lx       (b) mdb069ll     (c) mdb013ll 

 

       
(d) mdb145lx       (e) mdb123lm     (f) mdb171ll 

Figure 1. Example mammograms, where: (a) SCC: 0%, W: 

N1, T: Pattern II, B: I (b) SCC: 0 - 10%, W: N1, T: Pattern III, 

B: I (c) SCC: 11 - 25%, W: P1, T: Pattern III, B: II (d) SCC: 

26 - 50%, W: P2, T: Pattern I, B: III (e) SCC: 51 - 75%, W: P2, 

T: Pattern IV, B: III and (f) SCC: > 75%, W: DY, T: Pattern V, 

B: IV.  

 

Wolfe proposed four categories of mammographic risk; 

these four groups have an incidence of developing breast 

cancer of 0.1, 0.4, 1.7 and 2.2, respectively [21]:  

 N1 is defined as a mammogram that is composed 

mainly of fatty tissue and a few fibrous tissue 

strands; 

 P1 shows a prominent duct pattern, and a beaded 

appearance can be found either in the subareolar 

area or the upper axillary quadrant; 

 P2 indicates severe involvement of a prominent 

duct pattern which may occupy from one-half up 

to all of the volume of the parenchyma, and often 

the connective tissue hyperplasia produces coa-

lescence of ducts in some areas; 

 DY features a general increase in density of the 

parenchyma (which may be homogeneous) and 

there may, or may not, be a minor component of 

prominent ducts. 

Boyd et al. [22] introduced a quantitative classifica-

tion of mammographic densities. It is based on the pro-

portion of dense breast tissue relative to the overall 

breast area. The classification is known as 

Six-Class-Categories (SCC) where the density propor-

tions are: Class1: 0%, Class2: (0% − 10%), Class3: 
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,10% − 25%) , Class4: ,25% − 50%) , Class5: 

,50% − 75%), and Class6: ,75% − 100%- . The in-

crease in the level of breast tissue density has been asso-

ciated with an increase in the risk of developing breast 

cancer, specifically the relative risk for SCC 3 to 6 are 

1.9, 2.2, 4.6, and 7.1, respectively [22].  

Tabár et al. [23] describe breast composition of four 

building blocks: nodular density, linear density, homo-

geneous fibrous tissue, and radiolucent adipose tissues 

which also define mammographic risk classification. In 

particular, the following patterns are defined, with Pat-

terns I-III corresponding to lower breast cancer risk, and 

Patterns IV-V relating to higher risk [23]:  

 Pattern I: mammograms are composed of 25%, 

16%, 35%, and 24% of the four building blocks, 

respectively; 

 Pattern II has approximate compositions as: 2%, 

14%, 2%, and 82%; 

 Pattern III is quite similar in composition to Pat-

tern II, except that the retroareolar prominent 

ducts are often associated with periductal fibro-

sis; 

 Pattern IV is dominated by prominent nodular 

and linear densities, with compositions of 49%, 

19%, 15%, and 17%; 

 Pattern V is dominated by extensive fibrosis and 

is composed as 2%, 2%, 89%, and 7% of the 

building blocks. 

For BI-RADS [24] there are four classification cate-

gories. BI-RADS I: the breast is almost entirely fatty; 

BI-RADS II: there is some fibroglandular tissue; 

BI-RADS III: the breast is heterogeneously dense; 

BI-RADS IV: the breast is extremely dense. Lam et al. 

reported associations between BI-RADS II-IV and breast 

carcinoma (adjusted for weight) in postmenopausal 

women of which the risks are 1.6, 2.3, and 4.5, respec-

tively [42].  

For denoising the mammographic datasets, the corre-

lation-based feature selection (CFS) technique intro-

duced in [43] is employed to weaken the impact of noisy 

data in mammographic datasets in this paper. CFS is a 

filter-based approach to feature selection and uses a 

search algorithm along with an evaluation metric to de-

cide on the „goodness‟ or merit of potential feature sub-

sets. Rather than scoring (and ranking) individual fea-

tures, the method scores (and ranks) the worth of subsets 

of features. As the feature subset space is usually large, 

CFS employs a best-first-search heuristic. This heuristic 

algorithm takes into account the usefulness of individual 

features for predicting the class along with the level of 

intercorrelation amongst features. It assumes that good 

feature subsets contain features that are highly correlated 

to the class, yet not correlated to each other. CFS calcu-

lates a matrix of feature-to-class and feature-to-feature 

correlations from the training data. Table 1 shows the 

reduced sizes of the mammographic datasets with 4 

strategies of class labels by CFS. The reduced 4 datasets 

will be applied in the following experiments as well.  
 

Table 1. Reduct size of MIAS datasets 
Original Reduct size 

feature BI‐RADS Boyd Tabár Wolfe 

280 32 32 31 30 

 

5. Experimental Results 
   

A. Experimental Set-up 

  For experimental evaluation, both KFRNN and 

KVQNN employ the Wave kernel function as a similari-

ty metric1. For KFRNN, the Kleene-Dienes T-norm [44], 

[45] is used to implement the implicator, which is de-

fined by 𝐼(𝑥, 𝑦) = max ( 1 − 𝑥, 𝑦). The quantifiers used 

to implement KVQNN are 𝑄𝑙 = 𝑄(0.1,0.6)  and 

𝑄𝑢 = 𝑄(0.2,1.0) [34], empirically chosen according to the 

general formula:  

𝑄(𝛼,𝛽)(𝑥) =

{
 
 

 
 
0, 𝑥 ≤ 𝛼
2(𝑥−𝛼)2

(𝛽−𝛼)2
, 𝛼 ≤ 𝑥 ≤

𝛼+𝛽

2

1 −
2(𝑥−𝛽)2

(𝛽−𝛼)2
,

𝛼+𝛽

2
≤ 𝑥 ≤ 𝛽

1, 𝛽 ≤ 𝑥

 .     (27) 

Stratified 10 × 10-fold cross-validation (10-FCV) is 

employed for data validation. In 10-FCV, a given dataset 

is partitioned into 10 subsets. Of these 10 subsets, a sin-

gle subset is retained as the testing data for the learned 

classifier, and the remaining 9 subsets are used for train-

ing. The cross-validation process is then repeated 10 

times (the number of folds). The 10 sets of results are 

then aggregated to produce a single estimation of accu-

racy. The advantage of 10-FCV over random 

sub-sampling is that all objects are used for both training 

and testing, and each object is used for testing only once 

per fold. The stratification of the data prior to its division 

into different folds ensures that each class label (as far as 

possible) has equal representation in all folds, thereby 

helping to alleviate bias/variance problems [46].  

In order to investigate the level of „fit‟ of these models, 

the root mean squared error (RMSE) measure is used. 

The RMSE is the squared root of the variance of the re-

siduals. It indicates the absolute fit of a model to the data 

and how close the observed data objects are to the model 

predicted values. Note that RMSE is an absolute meas-

ure. As the squared root of a variance, RMSE can be 

viewed as the standard deviation of the unexplained var-

iance. Lower values of RMSE indicate better fit. RMSE 

                                                 
1
 The relevant WEKA software can be download from 

https://dl.dropboxusercontent.com/u/2043486/weka.jar 

https://dl.dropboxusercontent.com/u/2043486/weka.jar
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is a good measure of how accurately the model predicts 

the response, and is a generally accepted criterion for 

assessing fit, if the purpose of the resulting model is for 

prediction. In addition, conventional classification accu-

racy is also used to assess the performance of learnt 

classifiers.  

To compare with the existing work, in this paper, the 

kappa statistics [47] is employed to evaluate the experi-

mental results also. The kappa statistics is generally 

thought to be a more robust measure than simple percent 

agreement calculation since it summarises the level of 

agreement between observers after agreement by chance 

has been removed. It tests how well observers agree with 

themselves (repeatability) and with each other (repro-

ducibility). It should be noted that the kappa statistic on-

ly tends to make sense when a comparison involves an 

equal number of classes, but for presentational com-

pleteness the figures for all cases are provided here.  

 

B. Performance Evaluation 

In this section, a comparison with other near-

est-neighbour-based methods is systematically presented 

first. Then, a comparative study with four other popular 

learning classifier algorithms is also reported. These ex-

periments make use of both the original and reduced 

MIAS datasets. 

1) Comparison with Alternative Nearest-neighbour 

Classifiers: Here, KFRNN and KVQNN are compared 

with three nearest-neighbour classification methods: IBk 

(𝑘 nearest-neighbours) [17], FNN (standard fuzzy near-

est-neighbours) [29], and the fuzzy ownership algorithm, 

FRNN-O [30], which is the state-of-the-art version of 

fuzzy rough nearest-neighbour algorithms. In order to 

comprehensively evaluate the performance of the ker-

nel-based nearest-neighbour algorithms on the MIAS 

datasets, 𝑘 is increasingly set to all the odd numbers 

between 0 and 322 (the number of the objects in a da-

taset) in different runs. With an extra round for the case 

when 𝑘 = 322, this results in 162 sets of runs for each 

dataset as for each value of 𝑘 , 10 × 10 -fold 

cross-validation is performed. The results can be seen in 

Figure 2.  

For all of the MIAS datasets, the denoising process 

using CFS improves the performance for most classifiers. 

Occasionally, by IBk, the result for reduced BI-RADS 

datasets is worse than that of using the original. Com-

pared with the other nearest-neighbour algorithms, gen-

erally, the kernel-based nearest-neighbour algorithms 

result in the best performance. As with the proposed ap-

proach, the state-of-the-art algorithm FRNN-O also ob-

tains consistent performance for all MIAS datasets and 

hence, has a robust performance. However, for all origi-

nal MIAS datasets and reduced Wolfe datasets, the re-

sults of FRNN-O are not so good as those of KFRNN 

and KVQNN. 

  The highest classification accuracies achieved by each 

nearest-neighbour algorithm for the original and reduced 

MIAS datasets are summarised in Table 2. It is noted that 

very occasionally, namely for the original BI-RADS da-

taset and the reduced Tabár labelled dataset, KVQNN 

slightly underperforms than IBk and FRNN-O, respec-

tively. However, in general, KVQNN provides the best 

performances across all the original and reduced MIAS 

datasets. 

2) Comparison with other Popular Techniques: As 

shown above, the KVQNN algorithm offers the best 

performance amongst the nearest-neighbour approaches. 

In order to further evaluate the performance of ker-

nel-based fuzzy-rough nearest-neighbour algorithms on 

the mammographic dataset, the experimental results are 

also compared against those obtained by the use of other 

types of popular learning classifier. The algorithms 

compared are briefly outlined below, which are each a 

commonly adopted representative of the underlying 

methodology shared by their corresponding type of 

learning classifiers:
 

Table 2. Highest classification accuracies of different nearest‐neighbour algorithms 

 BI‐RADS Boyd Tabár Wolfe 

Algorithm Original Reduced Original Reduced Original Reduced Original Reduced 

KVQNN 71.45 74.72 60.22 61.79 63.55 67.89 67.10 70.54 

KFRNN 69.74 71.34 54.91 59.50 59.78 66.32 65.68 67.57 

FNN 64.24 62.17 50.93 51.98 56.84 60.72 59.99 59.40 

FRNN‐O 66.00 72.17 53.48 60.71 57.18 67.92 62.08 64.02 

IBk 71.89 73.69 58.83 60.32 63.09 65.83 66.17 68.39 
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           Original BI−RADS Reduced BI − RADS                

  
               Original Boyd Reduced Boyd                         

  
                 Original Tabár Reduced Tabár                        

  
                 Original Wolfe   Reduced Wolfe                           

 

Figure 2. Comparison with alternative nearest-neighbour algorithms 

 NB (naive Bayesian classifier) [11] is a simple 

probabilistic classifier based on applying Bayes‟ 

theorem [10] with strong (naive) independence 

assumptions. Depending on the precise nature of 

the probability model, naive Bayesian classifiers 

can be trained very efficiently in a supervised 

learning setting. The learning only requires a 

small amount of training data to estimate the pa-

rameters (means and variances of the variables) 

necessary for classification. 

 SVM (as function based classifier) [12] is a ker-

nel-based algorithm. It solves the non-linear sep-
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arable problems by mapping them into a higher 

dimensional feature space. In such a space, the 

points mapped from the examples of the separate 

categories are divided by a clear gap that is as 

wide as possible. New examples are then 

mapped onto that same space and predicted to 

belong to a category based on which side of the 

gap they fall on. 

 J48 (as decision tree based classifier) is based on 

ID3 [13] and creates decision trees by choosing 

the most informative features and recursively 

partitioning a training data table into subtables 

based on the values of such features. Each node 

in the tree represents a feature, with the subse-

quent nodes branching from the possible values 

of this node according to the current subtable. 

Partitioning stops when all data items in the 

subtable have the same classification. A leaf 

node is then created to represent this classifica-

tion. 

 JRip (as rule induction-based classifier) [15] 

learns propositional rules by repeatedly growing 

rules and pruning them. During the growth phase, 

features are added greedily to fit training samples. 

Once the ruleset is generated, a further optimisa-

tion is performed where rules are evaluated and 

poor quality ones deleted, based on their perfor-

mance on randomised data. 

Classification accuracy rate, RMSE and the kappa sta-

tistic are again used to support the comparative study of 

applying the aforementioned approaches for mammo-

graphic risk analysis. In comparing the experimental re-

sults below, only those of KVQNN are used (as KVQNN 

consistently beats KFRNN as shown in Table 2). Once 

again, 10 × 10-fold cross-validation based on all origi-

nal and reduced MIAS datasets is performed. 

The average classification accuracies for the original 

and reduced MIAS datasets are respectively recorded in 

Tables 3 and 4, with standard deviations in brackets. 

Generally, KVQNN gains the best and most stable re-

sults. Although for the original BI-RADS, Boyd and Ta-

bár datasets, KVQNN occasionally underperforms as 

compared to SVM, for the four reduced MIAS datasets 

KVQNN achieves the best results compared to the other 

approaches. In particular, for reduced Tabár, KVQNN 

may have a slightly larger value of standard deviation in 

certain cases, but it always has considerably high classi-

fication accuracy rates. This demonstrates that overall, 

the KVQNN algorithm provides a better performance 

than the other classifiers. 

 

Table 3: Classification accuracy: Original MIAS datasets 

 KVQNN NB SVM J48 JRip 

BI‐RADS 71.45 (7.40) 69.75 (7.93) 69.09 (7.71) 67.12 (8.67) 64.42 (8.18) 

Boyd 60.22 (8.72) 57.02 (9.49) 60.49 (8.94) 52.16 (8.45) 50.87 (8.70) 

Tabár 63.55 (7.69) 60.28 (8.29) 66.50 (7.64) 56.85 (7.80) 56.09 (7.78) 

Wolfe 67.10 (7.12) 66.21 (6.88) 67.50 (8.86) 60.12 (7.91) 60.16 (7.89) 

 

Table 4: Classification accuracy: Reduced MIAS datasets 

 KVQNN NB SVM J48 JRip 

BI‐RADS 74.72 (7.25) 72.66 (7.41) 74.12 (7.93) 65.79 (8.20) 67.26 (8.15) 

Boyd 61.79 (8.29) 58.92 (9.16) 59.63 (8.48) 52.27 (7.78) 50.93 (9.00) 

Tabár 67.89 (8.39) 62.49 (8.49) 65.67 (7.30) 59.71 (7.61) 58.35 (8.65) 

Wolfe 70.54 (7.05) 68.18 (7.80) 70.38 (7.56) 61.18 (8.06) 62.21 (8.17) 

 

In Tables 5 and 6, the results are presented for kappa 

statistic on the original and reduced MIAS datasets. High 

values of kappa statistic are indicative of high agreement 

between the comparators. Thus, KVQNN provides the 

best performance consistently for most MIAS datasets 

except the original Boyd and Tabár labelling. In particu-

lar, for the BI‐RADS, reduced Wolfe, and reduced BI‐

RADS datasets, the values of kappa statistic of KVQNN 

are equal to or higher than 0.60, which means that the 

results gained by KVQNN indicate highly moderate or 

substantial agreements between the comparators. Addi-

tionally, given the low standard deviations, KVQNN re-

sults in a considerably stable performance as well. 

Tables 7 and 8 demonstrate the comparison between 

the RMSE values of KVQNN and those of the other 

classifiers for the original and reduced MIAS datasets. 

Note that RMSE should not be assessed in isolation of 

classification accuracy or other metrics. Because RMSE 

is a metric associated with the „fit‟ of the model to the 

actual data, very low RMSE values are possibly indica-

tive of overfitting. It is therefore important to view it in 

terms of other metrics, namely, classification accuracy 

rate and the kappa statistic.  
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Table 5: Kappa statistic: Original MIAS Datasets 

 KVQNN NB SVM J48 JRip 

BI‐RADS 0.60 (0.10) 0.59 (0.11) 0.57 (0.11) 0.55 (0.12) 0.51 (0.11) 

Boyd 0.49 (0.11) 0.46 (0.12) 0.50 (0.11) 0.40 (0.11) 0.36 (0.11) 

Tabár 0.50 (0.11) 0.48 (0.11) 0.55 (0.10) 0.42 (0.11) 0.40 (0.11) 

Wolfe 0.55 (0.10) 0.54 (0.09) 0.55 (0.12) 0.45 (0.11) 0.46 (0.11) 

 

Table 6: Kappa statistic: Reduced MIAS datasets 

 KVQNN NB SVM J48 JRip 

BI‐RADS 0.65 (0.10) 0.63 (0.10) 0.64 (0.11) 0.53 (0.11) 0.55 (0.11) 

Boyd 0.51 (0.11) 0.48 (0.11) 0.49 (0.11) 0.40 (0.10) 0.37 (0.12) 

Tabár 0.57 (0.12) 0.50 (0.11) 0.53 (0.10) 0.46 (0.10) 0.43 (0.12) 

Wolfe 0.60 (0.10) 0.56 (0.11) 0.59 (0.10) 0.47 (0.11) 0.49 (0.11) 

 

Table 7: RMSE: Original MIAS datasets 

 KVQNN NB SVM J48 JRip 

BI‐RADS 0.34 (0.04) 0.38 (0.05) 0.39 (0.05) 0.39 (0.05) 0.37 (0.04) 

Boyd 0.32 (0.03) 0.37 (0.04) 0.36 (0.04) 0.38 (0.03) 0.34 (0.03) 

Tabár 0.32 (0.03) 0.39 (0.04) 0.36 (0.04) 0.40 (0.04) 0.36 (0.03) 

Wolfe 0.35 (0.03) 0.40 (0.04) 0.40 (0.06) 0.43 (0.04) 0.39 (0.04) 

 

Table 8: RMSE: Reduced MIAS datasets 

 KVQNN NB SVM J48 JRip 

BI‐RADS 0.31 (0.04) 0.35 (0.05) 0.36 (0.06) 0.39 (0.05) 0.36 (0.04) 

Boyd 0.31 (0.03) 0.34 (0.04) 0.36 (0.04) 0.38 (0.03) 0.34 (0.03) 

Tabár 0.32 (0.04) 0.37 (0.04) 0.37 (0.04) 0.38 (0.04) 0.36 (0.03) 

Wolfe 0.34 (0.04) 0.38 (0.05) 0.38 (0.05) 0.42 (0.05) 0.38 (0.04) 

As can be observed, KVQNN results in the lowest but 

reasonable values of RMSE for all the original and re-

duced MIAS datasets. Given the lowest standard devia-

tions achieved by KVQNN as well, it means that the re-

sults obtained by KVQNN algorithm consistently fit the 

underlying models of MIAS datasets well. 

Overall, as a representative of the kernel-based fuzzy 

rough nearest-neighbour algorithm, KVQNN performs 

consistently well and robustly for all of the 4 popular 

classification methods for MIAS datasets. Such perfor-

mance includes not only a high classification accuracy, 

but also a rationally good fitness to the underlying model 

of MIAS datasets. This ensures that the proposed ap-

proach provides a good generalisation for mammo-

graphic risk assessment, with reduced potential overfit  

on the MIAS datasets.  

The proposed work gives the best accuracy. However, 

the classification rates achieved by any of the compared 

approaches are relatively low (in terms of the usual ap-

plications of such classification techniques), having been 

able to obtain a value of just around 70%. Nevertheless, 

as pointed out previously, this is a very difficult applica-

tion domain. There is no actual ground-truth to ensure 

which classification is to be ultimately correct in the first 

place. Therefore, these results help to provide a useful 

reference aid for human decision making. The eventual 

task of deciding on the actual mammographic risk is up 

to human radiologists. The present approach is shown to 

be a good candidate for playing such a supportive role. 

 

6. Conclusions 
 

  In this paper, an effective classification approach, 

kernel-based fuzzy-rough nearest-neighbour (KFRNN) 

and a direct extension of it, kernel-based vaguely quanti-

fied nearest-neighbour (KVQNN), have been proposed. 

These algorithms have been utilised to support perform-

ing the task of mammographic risk analysis. Compared 

with alternative nearest-neighbour-based methods and 

other popular classifiers learning techniques, KFRNN 

and KVQNN achieve a better and more robust perfor-

mance for original and reduced MIAS datasets.  

Whilst promising, further work remains. For instance, 

as an initial implementation, the wave kernel function is 

adopted in this work to construct fuzzy similarities. It 

would be interesting to investigate how other types of 

kernel function may be used as the alternative and what 

might be the effects. Additionally, in [39], two algo-

rithms, namely: similarity nearest-neighbour (SNN) and 

aggregated-similarity nearest-neighbour (ASNN), are 

also proposed as the fuzzy set-based equivalence of 

FRNN and that of VQNN, respectively. Clearly, how the 

proposed kernel-based techniques will perform for the 

fuzzy parallels of FRNN and VQNN is worth further 
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investigation. Furthermore, in this research, the CFS 

method is utilised for feature selection. With such a 

technique, the results of the assessment of mammo-

graphic risk are improved considerably. A further exten-

sion to this work would therefore be to explore how 

KFRNN or KVQNN may perform using different feature 

selection methods [48], [49].  

A more complete comparison of KFRNN and 

KVQNN with other techniques over different datasets 

from other application domains, e.g., Mars terrain imag-

es [50], would form the basis for a wider series of topics 

for future investigation. Given the existing use of multi-

ple criteria for assessing classifiers performance, the re-

cent development of fuzzy complex numbers may be 

utilised to support such evaluation [51]. Alternatively, 

different performance criteria may be integrated using 

information aggregation techniques [52], [53] to simplify 

the evaluation process.   

 

Acknowledgments 
 

This work was partly supported by the National Natu-

ral Science Foundation of China (Grant No. 61272171), 

the Fundamental Research Funds for the Central Univer-

sities (Grant No. 3132014094, 3132013335, 

3132013325), and the China Postdoctoral Science 

Foundation (Grant No. 2013M541213). The authors 

would like to thank the support provided by Aberyst-

wyth University and by the colleagues in the Advanced 

Reasoning Group with the Department of Computer 

Science, Institute of Mathematics, Physics and Computer 

Science at Aberystwyth University, UK. The authors are 

also grateful to the reviewers for their constructive 

comments which have helped improve this work. 

 

References 
 

[1] World Health Organization, “Breast cancer: pre-

vention and control,” from: 

http://www.who.int/cancer/detection/breastcancer/e

n/, accessed: Aug. 2014. 

[2] World Cancer Research Fund International, “Breast 

cancer,” from: http://www.wcrf.org/cancer 

_statistics/data_specific_cancers/breast_cancer_stat

istics.php, accessed: Aug. 2014.  

[3] World Health Organization, International Agency 

for Research on Cancer. “Latest world cancer sta-

tistics: Global cancer burden rises to 14.1 million 

new cases in 2012: Marked increase in breast can-

cers must be addressed,” from: 

www.iarc.fr/en/media-centre/pr/2013/pdfs/pr223_E

.pdf, accessed: Aug. 2014 

[4] M. Tortajada, A. Oliver, R. Martí, S. Ganau, L. 

Tortajada, M. Sentís, J. Freixenet, and R. 

Zwiggelaar, “Breast peripheral area correction in 

digital mammograms. Computers in Biology and 

Medicine,” vol. 50, pp. 32-40, 2014. 

[5] V. Tesic, B. Kolaric, A. Znaor, S. K. Kuna, and B. 

Brkljacic, “Mammographic density and estimation 

of breast cancer risk in intermediate risk popula-

tion,” The Breast Journal, vol. 19, no. 1, pp. 71–78, 

2013.  

[6] A. Wang, C. Vachon, K. Brandt, and K. Ghosh, 

“Breast Density and Breast Cancer Risk: A Practi-

cal Review,” Mayo Clinic Proceedings, vol. 89, no. 

4, pp. 548–557, 2014.  

[7] Y. Qu, C. Shang, W. Wu, and Q. Shen, “Evolution-

ary Fuzzy Extreme Learning Machine for Mam-

mographic Risk Analysis,” International Journal of 

Fuzzy Systems, vol. 13, no.4, pp. 282–291, 2011. 

[8] H. Strange, Z. Chen, E. Denton, and R. Zwiggelaar,  

“Modelling mammographic microcalcification 

clusters using persistent mereotopology,” Pattern 

Recognition Letters, vol. 47, pp. 157-163, 2014. 

[9] W. He, E. Denton, and R. Zwiggelaar, “A study on 

mammographic image modelling and classification 

using multiple databases,” in Breast Imaging, 

pp. 696-701, 2014.  

[10] P. Pfeiffer, Concepts of probability theory. Courier 

Dover Publications, U.S., 2013. 

[11] R. Neapolitan, Probabilistic reasoning in expert 

systems: theory and algorithms, Create Space In-

dependent Publishing Platform, 2012. 

[12] B Han and L. Davis, “Density-based multifeature 

background subtraction with support vector ma-

chine,” IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol. 34, no. 5, pp. 1071– 

1023, 2012. 

[13] C. Aggarwal and C. Zhai, Mining text data, The 

Springer Publishing Co., 2012. 

[14] K. Karimi and H. Hamilton, “Finding temporal re-

lations: Causal Bayesian networks vs. C4.5,” 

Foundations of Intelligent Systems, pp. 266–273, 

2010. 

[15] B. Qin, Y. Xia, and S. Prabhakar, “Rule induction 

for uncertain data,” Knowledge and Information 

Systems, vol. 29, no. 1, pp. 103–130, 2011.  

[16] T. Lejarraga, V. Dutt, and C. Gonzalez, “Instance‐

based learning: A general model of repeated binary 

choice,” Journal of Behavioral Decision Making, 

vol. 25, no. 2, pp. 143–153, 2012. 

[17] S. Jiang, G. Pang, M. Wu, and L. Kuang “An im-

proved K-nearest-neighbor algorithm for text cate-

gorization,” Expert Systems with Applications, vol. 

39, no. 1, pp. 1503–1509, 2012. 

[18] Y. Qu, C. Shang, Q. Shen, N. Mac Parthaláin, and 

W. Wu, “Kernel-based fuzzy-rough nearest neigh-

bour classification,” in Proceedings of the 20th In-



 International Journal of Fuzzy Systems, Vol. x, No. y, month and year 

ternational Conference on Fuzzy Systems, 

pp. 1523–1529, 2011.  

[19] R. Jensen and Q. Shen, “New approaches to 

fuzzy-rough feature selection,” IEEE Transactions 

on Fuzzy Systems, vol. 17, no. 4, pp. 824–838, 

2009.  

[20] S. Maji, A. Berg, and J. Malik, “Efficient classifi-

cation for additive kernel SVMs,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 

vol. 35, no. 1, pp. 66 – 77, 2013.  

[21] J. Wolfe, “Risk for breast cancer development de-

termined by mammographic parenchymal pattern,” 

Cancer, vol. 37, pp. 2486–2492, 1976.  

[22] N. Boyd, J. Byng, R. Jong, E. Fishell, L. Little, 

A. Miller, G. Lockwood, D. Tritchler, and M. Yaffe, 

“Quantitative classification of mammographic den-

sities and breast cancer risk: results from the cana-

dian national breast screening study,” Journal Of 

The National Cancer Institute, vol. 87, no. 9, 

pp. 670–675, 1995.  

[23] L. Tabár, T. Tot, and P. Dean, The Art and Science 

of Early Detection with Mammography. Georg 

Thieme Verlag, 2005.  

[24] American College of Radiology, Illustrated Breast 

Imaging Reporting and Data System BIRADS, 

3rd ed., 1998.  

[25] Z. Pawlak, Rough Sets: Theoretical Aspects of 

Reasoning About Data. Kluwer Academic Publish-

ing, 1991.  

[26] D. Dubois and H. Prade, “Putting rough sets and 

fuzzy sets together,” Intelligent Decision Support, 

pp. 203–232, 1992.  

[27] A. Radzikowska and E. Kerre, “A comparative 

study of fuzzy rough sets,” Fuzzy Sets and Systems, 

vol. 126, no. 2, pp. 137–155, 2002.  

[28] C. Cornelis, M. De Cock, and A. Radzikowska, 

“Vaguely quantified rough sets,” Lecture Notes in 

Artificial Intelligence, vol. 4482, pp. 87–94, 2007.  

[29] J. Keller, M. Gray, and J. Givens, “A fuzzy 

k-nearest neighbor algorithm,” IEEE Transactions 

on Systems, Man, And Cybernetics, vol. 15, no. 2, 

pp. 580–588, 1985.  

[30] M. Sarkar, “Fuzzy-rough nearest neighbors algo-

rithm,” Fuzzy Sets and Systems, vol. 158, 

pp. 2123–2152, 2007.  

[31] L. Sun and C. Li, “A fast and scalable fuzzy-rough 

nearest neighbor algorithm,” WRI Global Congress 

on Intelligent Systems, vol. 4, pp. 311–314, 2009.  

[32] H. Bian and L. Mazlack, “Fuzzy-rough near-

est-neighbor classification approach,” in Proceed-

ing of the 22nd International Conference of the 

North American Fuzzy Information Processing So-

ciety, pp. 500–505, 2003.  

[33] V. Babu and P. Viswanath, “Rough-fuzzy weighted 

k-nearest leader classifier for large data sets,” Pat-

tern Recognition, vol. 42, no. 9, pp. 1719–1731, 

2009.  

[34] R. Jensen and C. Cornelis, “Fuzzy-rough nearest 

neighbour classification and prediction,” Theoreti-

cal Computer Science, vol. 412, no. 42, pp. 5871–

5884, 2011.  

[35] M. Genton, “Classes of kernels for machine learn-

ing: a statistics perspective,” Journal of Machine 

Learning Research, vol. 2, pp. 299–312, 2001.  

[36] B. Moser, “On the T-transitivity of kernels,” Fuzzy 

Sets and Systems, vol. 157, pp. 1787–1796, 2006.  

[37] Q. Hu, D. Chen, D. Yu, and W. Pedrycz, “Kernel-

ised fuzzy rough sets,” in th International Confer-

ence, Rough Sets and Knowledge Technology, 

pp. 304–311, 2009.  

[38] R. Jensen and C. Cornelis, “Fuzzy-rough instance 

selection,” in Proceedings of the 19th International 

Conference on Fuzzy Systems, pp. 1776–1782, 

2010.  

[39] Y. Qu, Q. Shen, N. Mac Parthaláin, C. Shang, and 

W. Wu, “Fuzzy similarity-based nearest-neighbour 

classification as alternatives to their fuzzy-rough 

parallels,” International Journal of Approximate 

Reasoning, vol. 54, no. 1, pp. 184-195, 2013. 

[40] J. Suckling, J. Partner, D. Dance, S. Astley, I.Hutt, 

C. Boggis, I. Ricketts, E. Stamatakis, N. Cerneaz, 

S. Kok, D.Betal, P.Taylor, and J. Savage, “The 

mammographic image analysis society digital 

mammogram database,” in International Workshop 

on Digital Mammography, pp. 211–221, 1994.  

[41] A. Oliver, J. Freixenet, R. Marti, J. Pont, E. Perez, 

E. Denton, and R. Zwiggelaar, “A novel breast tis-

sue density classification methodology,” IEEE 

Transactions on Information Technology in Bio-

medicine, vol. 12, no. 1, pp. 55–65, 2008.  

[42] P. Lam, P. Vacek, B. Geller, and H. Muss, “The as-

sociation of increased weight, body mass index, 

and tissue density with the risk of breast carcinoma 

in vermont,” Cancer, vol. 89, pp. 369–375, 2000.  

[43] M. Hall, Correlation-based feature selection for 

discrete and numeric class machine learning. PhD 

thesis, University of Waikato, 2000.  

[44] S. Kleene, Introduction to Metamathematics. New 

York: Van Nostrand, 1952.  

[45] S. Dienes, “On an implication function in 

many-valued systems of logic,” Journal of Sym-

bolic Logic, vol. 14, no. 2, pp. 95–97, 1949.  

[46] D. Rajnarayan and D. Wolpert, “Bias-variance 

trade-offs: novel applications,” Encyclopedia of 

Machine Learning, pp. 101–110, 2010.  

[47] J. Cohen, “A coefficient of agreement for nominal 

scales,” Educational and Psychological Measure-

ment, vol. 20, no. 1, pp. 37–46, 1960.  



Authors: Paper Title for International Journal of Fuzzy Systems  

 

Author‟s 

picture 

(Color or 

gray) 

 

Author‟s 

picture 

(Color or 

gray) 

 

Author‟s 

picture 

(Color or 

gray) 

 

Author‟s 

picture 

(Color or 

gray) 

 

Author‟s 

picture 

(Color or 

gray) 

[48] N. Mac Parthaláin and R. Jensen, “Unsupervised 

fuzzy-rough set-based dimensionality reduction,” 

Information Sciences, vol. 229, pp. 106-121, 2013.  

[49] R. Jensen and Q. Shen, Computational Intelligence 

and Feature Selection: Rough and Fuzzy Ap-

proaches. IEEE Press and Wiley & Sons, 2008.  

[50] C. Shang and D. Barnes, “Fuzzy-rough feature se-

lection aided support vector machines for Mars 

image classification,” Computer Vision and Image 

Understanding, vol. 117, no. 3, pp. 202–213, 2013.  

[51] X. Fu and Q. Shen, “Fuzzy complex numbers and 

their application for classifiers performance evalu-

ation,” Pattern Recognition, vol. 44, no. 7, 

pp. 1403–1417, 2011.  

[52] T. Boongoen, C. Shang, N. Iam-On, and Q. Shen, 

“Extending data reliability measure to a filter ap-

proach for soft subspace clustering,” IEEE Trans-

actions on Systems, Man and Cybernetics, Part B: 

Cybernetics, vol. 40, no. 6, 2011.  

[53] T. Boongoen and Q. Shen, “Nearest-neighbor 

guided evaluation of data reliability and its applica-

tions,” IEEE Transactions on Systems, Man and 

Cybernetics, Part B: Cybernetics, vol. 40, no. 6, 

pp. 1622–1633, 2010. 

 

 

 
Yanpeng Qu is a Lecturer with the Infor-

mation Science and Technology College at 

Dalian Maritime University, China. He 

received a PhD degree in Computational 

Mathematics from Dalian University of 

Technology, China. His current research 

interests include rough and fuzzy set theo-

ry, pattern recognition, neural networks, 

classification and feature selection. 

 

 
Changjing Shang is a University Research 

Fellow with the Department of Computer 

Science, Institute of Mathematics, Physics 

and Computer Science at Aberystwyth 

University, UK. She obtained a PhD in 

Computing and Electrical Engineering 

from Herriot-Watt University, UK and 

worked for Herriot-Watt, Loughborough and Glasgow Uni-

versities prior to joining Aberystwyth. Her research interests 

include pattern recognition, data mining and analysis, feature 

extraction and selection, space robotics, and image processing 

and classification. 

 

 

 

 

 

 

 

Qiang Shen holds the established Chair in 

Computer Science and is the Director of 

the Institute of Mathematics, Physics and 

Computer Science at Aberystwyth Uni-

versity, UK. He has a PhD in 

Knowledge-Based Systems and a DSc in 

Computational Intelligence. His research 

interests include: computational intelligence, reasoning under 

uncertainty, pattern recognition, data mining, and their appli-

cations for intelligent decision support (e.g., crime detection, 

consumer profiling, systems monitoring, and medical diagno-

sis). Prof. Shen has been a long-serving associate editor of two 

premier IEEE Transactions (Cybernetics and Fuzzy Systems), 

and an editorial board member for several other leading inter-

national journals. He has authored 2 research monographs, and 

over 340 peer-reviewed papers, including one receiving an 

IEEE Outstanding Transactions Paper award. 

 

 
Neil Mac Parthaláin is a University Re-

search Fellow with Department of Com-

puter Science, Institute of Mathematics, 

Physics and Computer Science at Aber-

ystwyth University, Wales, UK. He ob-

tained a PhD degree from Aberystwyth 

University. His areas of research include 

rough set theory, fuzzy set theory, pattern recognition, feature 

selection, classification and medical imaging and applications. 

He has published around 30 peer-refereed conference papers 

and academic journal articles in these and related areas. He 

was a member of the organising committee for 16th Interna-

tional Conference on Fuzzy Systems (FUZZ-IEEE 2007), 

London and has been involved with the organization of a 

number of special sessions at the IEEE series of International 

Conferences on Fuzzy Systems. 

 

 
Wei Wu received a MSc degree from Jilin 

University, Changchun, China and a 

D.Phil. degree from Oxford University, 

Oxford, UK. He is a Professor with the 

School of Mathematical Sciences at Dalian 

University of Technology, Dalian, China. 

He serves as an associate editor for the 

Journal of Information and Computational 

Science, Numerical Mathematics - A 

Journal of Chinese Universities, and the 

Journal of Mathematical Research and Exposition. His re-

search interests include numerical analysis and neural network 

computation. 

 

 

 


