Skip to main content
Log in

A Fuzzy Set-Based Approach to Multi-objective Multi-item Solid Transportation Problem Under Uncertainty

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, a multi-objective multi-item solid transportation problem (MOMISTP) with parameters, e.g., transportation costs, supplies, and demands, as trapezoidal fuzzy variables is formulated. In this MOMISTP, there are limitations on some items and conveyances so that some special items cannot be carried by means of some special conveyances. With the use of the nearest interval approximation of trapezoidal fuzzy numbers, an interval programming model is constructed for the fuzzy MOMISTP and then this model is turned into its deterministic form. Then, a new interval fuzzy programming approach is developed to obtain the optimal solution of the problem. Finally, a numerical example is presented for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hitchcock, F.L.: The distribution of a product from several sources to numerous localities. J. Math. Phys. 20(2), 224–230 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  2. Shell, E. Distribution of a product by several properties. Directorate of Management Analysis. Proceedings of the Second Symposium in Linear Programming, volume 2, pages 615-642, Washington, D.C. DCS/Comptroller H.Q.U.S.A.F. (1955)

  3. Haley, K.B.: New methods in mathematical programming-the solid transportation problem. Oper. Res. 10(4), 448–463 (1962). doi:(10.1287/opre.10.4.448)

    Article  MATH  Google Scholar 

  4. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). doi:10.1016/S0019-9958(65)90241-X

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17(4), B-141 (1970). doi:10.1287/mnsc.17.4.B141

    Article  MathSciNet  MATH  Google Scholar 

  6. Zimmermann, H.J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1(1), 45–55 (1978). doi:10.1016/0165-0114(78)90031-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Jimenez, F., Verdegay, J.L.: Uncertain solid transportation problems. Fuzzy Sets Syst. 100(1), 45–57 (1998). doi:10.1016/S0165-0114(97)00164-4

    Article  MathSciNet  Google Scholar 

  8. Jiménez, F., Verdegay, J.L.: Solving fuzzy solid transportation problems by an evolutionary algorithm based parametric approach. Eur. J. Oper. Res. 117(3), 485–510 (1999). doi:10.1016/S0377-2217(98)00083-6

    Article  MATH  Google Scholar 

  9. Bit, A.K., Biswal, M.P., Alam, S.S.: Fuzzy programming approach to multiobjective solid transportation problem. Fuzzy Sets Syst. 57(2), 183–194 (1993). doi:10.1016/0165-0114(93)90158-E

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, Y., Ida, K., Gen, M., Kobuchi, R.: Neural network approach for multicriteria solid transportation problem. Comput. Ind. Eng. 33(3), 465–468 (1997). doi:10.1016/S0360-8352(97)00169-1

    Article  Google Scholar 

  11. Li, Y., Ida, K., Gen, M.: Improved genetic algorithm for solving multiobjective solid transportation problem with fuzzy numbers. Comput. Ind. Eng. 33(3), 589–592 (1997). doi:10.1016/S0360-8352(97)00199-X

    Article  MathSciNet  Google Scholar 

  12. Gen, M., Ida, K., Li, Y., Kubota, E.: Solving bicriteria solid transportation problem with fuzzy numbers by a genetic algorithm. Comput. Ind. Eng. 29(1), 537–541 (1995). doi:(10.1016/0360-8352(95)00130-S)

    Article  Google Scholar 

  13. Kuchta, D.: A modification of a solution concept of the linear programming problem with interval coefficients in the constraints. CEJOR 16(3), 307–316 (2008). doi:10.1007/s10100-008-0059-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Baidya, A., Bera, U.K.: An interval valued solid transportation problem with budget constraint in different interval approaches. J. Transp. Secur. 7(2), 147–155 (2014). doi:(10.1007/s12198-014-0135-5)

    Article  Google Scholar 

  15. Kundu, P., Kar, S., Maiti, M.: A fuzzy MCDM method and an application to solid transportation problem with mode preference. Soft. Comput. 18(9), 1853–1864 (2014). doi:10.1007/s00500-013-1161-0

    Article  MATH  Google Scholar 

  16. Kundu, P., Kar, S., Maiti, M.: Multi-objective multi-item solid transportation problem in fuzzy environment. Appl. Math. Model. 37(4), 2028–2038 (2013). doi:10.1016/j.apm.2012.04.026

    Article  MathSciNet  Google Scholar 

  17. Chakraborty, D., Jana, D.K., Roy, T.K.: Multi-objective multi-item solid transportation problem with fuzzy inequality constraints. J. Inequal. Appl. 2014(1), 338 (2014). doi:10.1186/1029-242X-2014-338

    Article  MathSciNet  Google Scholar 

  18. Giri, P.K., Maiti, M.K., Maiti, M.: Fully fuzzy fixed charge multi-item solid transportation problem. Appl. Soft Comput. 27, 77–91 (2015). doi:10.1016/j.asoc.2014.10.003

    Article  Google Scholar 

  19. Kaur, M., Kumar, A.: Method for solving unbalanced fully fuzzy multi-objective solid minimal cost flow problems. Appl. Intell. 38(2), 239–254 (2013). doi:10.1007/s10489-012-0368-6

    Article  MathSciNet  Google Scholar 

  20. Molla-Alizadeh-Zavardehi, S., et al.: Solving a fuzzy fixed charge solid transportation problem by metaheuristics. Math. Comput. Model. 57(5), 1543–1558 (2013). doi:10.1016/j.mcm.2012.12.031

    Article  MathSciNet  Google Scholar 

  21. Pramanik, S., Jana, D.K., Maiti, M.: Multi-objective solid transportation problem in imprecise environments. J. Transp. Secur. 6(2), 131–150 (2013). doi:10.1007/s12198-013-0108-0

    Article  Google Scholar 

  22. Radhakrishnan, B., Anukokila, P.: Fractional goal programming for fuzzy solid transportation problem with interval cost. Fuzzy Inf. Eng. 6(3), 359–377 (2014). doi:10.1016/j.fiae.2014.12.006

    Article  MathSciNet  Google Scholar 

  23. Tao, Z., Xu, J.: A class of rough multiple objective programming and its application to solid transportation problem. Inf. Sci. 188, 215–235 (2012). doi:10.1016/j.ins.2011.11.022

    Article  MathSciNet  MATH  Google Scholar 

  24. Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  25. Ishibuchi, H., Tanaka, H.: Multiobjective programming in optimization of the interval objective function. Eur. J. Oper. Res. 48(2), 219–225 (1990). doi:10.1016/0377-2217(90)90375-L

    Article  MATH  Google Scholar 

  26. Chinneck, J.W., Ramadan, K.: Linear programming with interval coefficients. J. Oper. Res. Soc. 51(2), 209–220 (2000). doi:10.1057/palgrave.jors.2600891

    Article  MATH  Google Scholar 

  27. Oliveira, C., Antunes, C.H.: Multiple objective linear programming models with interval coefficients—an illustrated overview. Eur. J. Oper. Res. 181(3), 1434–1463 (2007). doi:10.1016/j.ejor.2005.12.042

    Article  MATH  Google Scholar 

  28. Sengupta, A., Pal, T.K.: On comparing interval numbers. Eur. J. Oper. Res. 127(1), 28–43 (2000). doi:10.1016/S0377-2217(99)00319-7

    Article  MathSciNet  MATH  Google Scholar 

  29. Yu, V.F., Hu, K.-J., Chang, A.-Y.: An interactive approach for the multi-objective transportation problem with interval parameters. Int. J. Prod. Res. 53(4), 1051–1064 (2015). doi:10.1080/00207543.2014.939236

    Article  Google Scholar 

  30. Chanas, S., Kuchta, D.: Multiobjective programming in optimization of interval objective functions—a generalized approach. Eur. J. Oper. Res. 94(3), 594–598 (1996). doi:10.1016/0377-2217(95)00055-0

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, M.-L., Wang, H.-F.: Interval Analysis of a Fuzzy Multiobjective Linear Program. Int. J. Fuzzy Syst. 3(4), 558–568 (2001)

    MathSciNet  Google Scholar 

  32. Das, S.K., Goswami, A., Alam, S.S.: Multiobjective transportation problem with interval cost, source and destination parameters. Eur. J. Oper. Res. 117(1), 100–112 (1999). doi:10.1016/S0377-2217(98)00044-7

    Article  MATH  Google Scholar 

  33. Allahdadi, M., Nehi, H.M.: The optimal solution set of the interval linear programming problems. Optim. Lett. 7(8), 1893–1911 (2013). doi:10.1007/s11590-012-0530-4

    Article  MathSciNet  MATH  Google Scholar 

  34. Huang, G.H., Baetz, B.W., Patry, G.G.: A grey fuzzy linear programming approach for municipal solid waste management planning under uncertainty. Civil Eng. Syst. 10(2), 123–146 (1993). doi:10.1080/02630259308970119

    Article  Google Scholar 

  35. Hossein Razavi Hajiagha, S., Amoozad Mahdiraji, H., Sadat Hashemi, S.: Multi-objective linear programming with interval coefficients: a fuzzy set based approach. Kybernetes 42(3), 482–496 (2013). doi:10.1108/03684921311323707

    Article  MathSciNet  Google Scholar 

  36. Hossein Razavi Hajiagha, S., Akrami, H., Sadat Hashemi, S.: A multi-objective programming approach to solve grey linear programming. Grey Syst. Theory Appl. 2(2), 259–271 (2012). doi:10.1108/20439371211260225

    Article  Google Scholar 

  37. Miao, D.Y., et al.: Planning water resources systems under uncertainty using an interval-fuzzy de novo programming method. J. Environ. Inform. 24(1), 11–23 (2014). doi:10.3808/jei.201400277

    Article  Google Scholar 

  38. Wu, S., Huang, G.H.: An interval-parameter fuzzy approach for multiobjective linear programming under uncertainty. J. Math. Model. Algorithms. 6(2), 195–212 (2007). doi:10.1007/s10852-006-9042-5

    Article  MathSciNet  MATH  Google Scholar 

  39. Grzegorzewski, P.: Nearest interval approximation of a fuzzy number. Fuzzy Sets Syst. 130(3), 321–330 (2002). doi:10.1016/S0165-0114(02)00098-2

    Article  MathSciNet  MATH  Google Scholar 

  40. Liou, T.-S., Wang, M.-J.J.: Ranking fuzzy numbers with integral value. Fuzzy sets Syst. 50(3), 247–255 (1992). doi:10.1016/0165-0114(92)90223-Q

    Article  MathSciNet  MATH  Google Scholar 

  41. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Siam, Philadelphia (2009)

    Book  MATH  Google Scholar 

  42. Jiménez, M., Bilbao, A.: Pareto-optimal solutions in fuzzy multi-objective linear programming. Fuzzy Sets Syst. 160(18), 2714–2721 (2009). doi:10.1016/j.fss.2008.12.005

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu, P., Yang, L., Wang, L., Li, S.: A solid transportation problem with type-2 fuzzy variables. Appl. Soft Comput. 24, 543–558 (2014). doi:10.1016/j.asoc.2014.08.005

    Article  Google Scholar 

  44. Yang, L., Liu, P., Li, S., Gao, Y., Ralescu, D.A.: Reduction methods of type-2 uncertain variables and their applications to solid transportation problem. Inf. Sci. 291, 204–237 (2015). doi:10.1016/j.ins.2014.08.044

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Dalman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalman, H., Güzel, N. & Sivri, M. A Fuzzy Set-Based Approach to Multi-objective Multi-item Solid Transportation Problem Under Uncertainty. Int. J. Fuzzy Syst. 18, 716–729 (2016). https://doi.org/10.1007/s40815-015-0081-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0081-9

Keywords

Navigation