Skip to main content
Log in

A New Interval-valued 2-Tuple Linguistic Bonferroni Mean Operator and Its Application to Multiattribute Group Decision Making

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The purpose of this paper is to introduce some new Bonferroni mean operators under interval-valued 2-tuple linguistic environment. First, a class of new operational laws of interval-valued 2-tuple linguistic are proposed. Then, we put forward some new interval-valued 2-tuple linguistic Bonferroni mean (IV2TLBM) operators. Moreover, properties and special cases of new aggregation operators are investigated. The main characteristic of the IV2TLBM is that the interrelationship among the input arguments and the closed operations are taken into account. Finally, an approach to multiple attributes group decision making is presented, and a numerical example is given to illustrate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zadeh, L.A.: The concept of a linguistic variable and application to approximate reasoning. Inf. Sci. 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bordogna, G., Fedrizzi, M., Pasi, G.: A linguistic modeling of consensus in group decision making based on OWA operators. IEEE Trans. Syst. Man Cybern. 27, 126–133 (1997)

    Article  Google Scholar 

  3. Degani, R., Bortolan, G.: The problem of linguistic approximation in clinical decision making. Int. J. Approx. Reason. 2, 144–162 (1988)

    Article  Google Scholar 

  4. Xu, Z.S.: A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf. Sci. 166, 19–30 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Merigó, J.M., Casanovas, M., Palacios-Marqués, D.: Linguistic group decision making with induced aggregation operators and probabilistic information. Appl. Soft Comput. 24, 669–678 (2014)

    Article  Google Scholar 

  6. Herrera, F., Herrera-Viedma, E.: Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Sets Syst. 114, 43–58 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Merigó, J.M., Casanovas, M.: Decision making with distance measures and linguistic aggregation operators. Int. J. Fuzzy Syst. 12, 190–198 (2010)

    Google Scholar 

  8. Yang, W.E., Wang, X.F., Wang, J.Q.: Counted linguistic variable in decision-making. Int. J. Fuzzy Syst. 16, 196–203 (2014)

    Google Scholar 

  9. Wang, X.F., Wang, J.Q., Deng, S.Y.: Some geometric operators for aggregating intuitionistic linguistic information. Int. J. Fuzzy Syst. 7, 268–278 (2015)

    Article  MathSciNet  Google Scholar 

  10. Herrera, F., Martínez, L.: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 8, 746–752 (2000)

    Article  Google Scholar 

  11. Jiang, Y.P., Fan, Z.P.: Property analysis of the aggregation operators for 2-tuple linguistic information. Control Decis. 18, 754–757 (2003)

    Google Scholar 

  12. Merigó, J.M., Gil-Lafuente, A.M.: Induced 2-tuple linguistic generalized aggregation operators and their application in decision-making. Inf. Sci. 226, 1–16 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, J., Wang, J.Q., Zhang, H.Y., Chen, X.H.: Multi-criteria group decision-making approach based on 2-tuple linguistic aggregation operators with multi-hesitant fuzzy linguistic information. Int. J. Fuzzy Syst. (2015). doi:10.1007/s40815-015-0050-3

    Google Scholar 

  14. Lin, J., Lan, J.B., Hao, Y.H.: Multi-attribute group decision-making method based on the aggregation operators of interval 2-tuple linguistic information. J. JiLin Normal Univ. 1, 5–9 (2009)

    Google Scholar 

  15. Liu, H.C., You, J.X., Lu, C., Shan, M.M.: Application of interval 2-tuple linguistic MULTIMOORA method for health-care waste treatment technology evaluation and selection. Waste Manag 34, 2355–2364 (2014)

    Article  Google Scholar 

  16. Chen, C.T., Tai, W.S.: Measuring the intellectual capital performance based on 2-tuple fuzzy linguistic information. Proceedings of the 10th Annual Meeting of Asia Pacific Region of Decision Sciences Institute, Taiwan, (2005)

  17. Zhang, H.M.: The multiattribute group decision making method based on aggregation operators with interval-valued 2-tuple linguistic information. Math. Comput. Model. 56, 27–35 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, H.M.: Some interval-valued 2-tuple linguistic aggregation operators and application in multiattribute group decision making. Appl. Math. Model. 37, 4269–4282 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, Z.M.: Interval-valued 2-tuple prioritized aggregation operators and their application to multiple attribute group decision making. Br. J. Appl. Sci. Technol. 4, 3217–3236 (2014)

    Article  Google Scholar 

  20. Xu, Z.S.: Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf. Sci. 168, 171–184 (2004)

    Article  MATH  Google Scholar 

  21. Lan, J.B., Sun, Q., Chen, Q.M., Wang, Z.X.: Group decision making based on induced uncertain linguistic OWA operators. Decis. Support Syst. 55, 293–303 (2013)

    Article  Google Scholar 

  22. Xia, M.M., Xu, Z.S., Zhu, B.: Some issues on intuitionistic fuzzy aggregation operators based on Archimedean t-conorm and t-norm. Knowledge-Based Syst. 31, 78–88 (2012)

    Article  Google Scholar 

  23. Tao, Z.F., Chen, H.Y., Zhou, L.G., Liu, J.P.: On new operational laws of 2-tuple linguistic information using Archimedean t-norm and s-norm. Knowledge-Based Syst. 66, 156–165 (2014)

    Article  Google Scholar 

  24. Yager, R.R.: The power average operator. In: IEEE Translational Systems, Man, and Cybernetics.-Part A: Systems and Humans, vol. 31, no. 6, pp. 724–731, 2001

  25. Xu, Y.J., Merigo, J.M., Wang, H.M.: Linguistic power aggregation operators and their application to multiple attribute group decision making. Appl. Math. Model. 36, 5427–5444 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Choquet, G.: Theory of capacities. Annales del Institut Fourier 5, 131–295 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yager, R.R.: Induced aggregation operators. Fuzzy Sets Syst. 137, 59–69 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, W., Chen, Z.P.: New aggregation operators based on the Choquet integral and 2-tuple linguistic information. Expert Syst. Appl. 39, 2662–2668 (2012)

    Article  Google Scholar 

  29. Shapley, L.S.: A Value for n-Person Game. Princeton University Press, Princeton (1953)

    MATH  Google Scholar 

  30. Meng, F.Y., Zhang, Q., Chen, H.: Approaches to multiple-criteria group decision making based on interval-valued intuitionistic fuzzy Choquet integral with respect to the generalized λ-Shapley index. Knowledge-Based Syst. 37, 237–249 (2013)

    Article  Google Scholar 

  31. Meng, F.Y., Chen, X.H., Zhang, Q.: Induced generalized hesitant fuzzy Shapley hybrid operators and their application in multi-attribute decision making. Appl. Soft Comput. 28, 599–607 (2015)

    Article  Google Scholar 

  32. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, New York (2007)

    MATH  Google Scholar 

  33. Liu, P.D., Liu, Z.M., Zhang, X.: Some intuitionistic uncertain linguistic Heronian mean operators and their application to group decision making. Appl. Math. Comput. 230, 570–586 (2014)

    MathSciNet  Google Scholar 

  34. Bonferroni, C.: Sulle medie multiple di potenze. Bolletino Matematica Italiana 5, 267–270 (1950)

    MathSciNet  MATH  Google Scholar 

  35. Yager, R.R.: On generalized Bonferroni mean operators for multi-criteria aggregation. Int. J.Approx. Reason. 50, 1279–1286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yager, R.R., Beliakov, G., James, S.: On generalized Bonferroni means. In: Proceedings Eurofuse Workshop Preference Modelling Decision Analysis, Spain, pp. 16–18, Sep 2009

  37. Beliakov, G., James, S., Mordelova, J., Ruckschlossova, T., Yager, R.R.: Generalized Bonferroni mean operators in multi-criteria aggregation. Fuzzy Sets Syst. 161, 2227–2242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xu, Z.S., Yager, R.R.: Intuitionistic fuzzy Bonferroni means. IEEE Trans. Syst. Man Cybern. 41, 568–578 (2011)

    Article  Google Scholar 

  39. Xu, Z.S., Chen, Q.: A multi-criteria decision making procedure based on interval-valued intuitionistic fuzzy Bonferroni means. J. Syst. Sci. Syst. Eng. 20, 217–228 (2011)

    Article  Google Scholar 

  40. Wei, G.W., Zhao, X.F., Lin, R., Wang, H.J.: Uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Appl. Math. Model. 37, 5277–5285 (2013)

    Article  MathSciNet  Google Scholar 

  41. Zhu, B., Xu, Z.S., Xia, M.M.: Hesitant fuzzy geometric Bonferroni means. Inf. Sci. 205, 72–85 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xia, M.M., Xu, Z.S., Zhu, B.: Generalized intuitionistic fuzzy Bonferroni means International. Int. J. Intell. Syst. 27, 23–47 (2012)

    Article  Google Scholar 

  43. Zhang, Z.M., Wu, C.: 2-tuple linguistic Bonferroni mean operators and their application to multiple attribute group decision making. Br. J. Math. Comput. Sci. 4, 1567–1614 (2014)

    Article  Google Scholar 

  44. Herrera, F., Martínez, L.: An approach for combining linguistic and numerical information based on 2-tuple fuzzy linguistic representation model in decision-making. Int. J. Uncertain. Fuzziness Knowledge-Based Syst. 8, 539–562 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, H.M.: Some interval-valued 2-tuple linguistic aggregation operators and application in multiattribute group decision making. Appl. Math. Model. 37, 4269–4282 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Schweizer, B., Sklar, A.: Associative functions and abstract semi-groups. Publicationes Mathematicae Debrecen 10, 69–81 (1963)

    MathSciNet  MATH  Google Scholar 

  47. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River, NJ (1995)

    MATH  Google Scholar 

  48. Ling, C.M.: Representation of associative functions. Publicationes Mathematicae Debrecen 12, 189–212 (1965)

    MathSciNet  MATH  Google Scholar 

  49. Zhu, B., Xu, Z.S., Xia, M.M.: Hesitant fuzzy geometric Bonferroni means. Inf. Sci. 205(1), 72–85 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Herrera, F., Herrera-Viedma, E., Martínez, L.: A fusion approach for managing multi-granularity linguistic terms sets in decision making. Fuzzy Sets Syst. 114, 43–58 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (Nos. 71301001, 71371011, 11426033), Provincial Natural Science Research Project of Anhui Colleges (No.KJ2015A379), Higher School Specialized Research Fund for the Doctoral Program (No.20123401110001), Humanity and Social Science Youth Foundation of Ministry of Education (No. 13YJC630092), Anhui Provincial Philosophy and Social Science Planning Youth Foundation (No. AHSKQ2014D13), The Doctoral Scientific Research Foundation of Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huayou Chen.

Appendix

Appendix

The Proof of Theorem 3.1:

  1. (1)

    According to the Definition 3.1, we know that \(A \oplus B = \left[ \begin{aligned} \Delta \left\{ {\phi^{ - 1} \left[ {\phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + \phi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))} \right]} \right\}, \hfill \\ \Delta \left\{ {\phi^{ - 1} \left[ {\phi (\Delta^{ - 1} (s_{j} ,\alpha_{j} )) + \phi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))} \right]} \right\} \hfill \\ \end{aligned} \right]\). It is clear that \(\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right) \le \Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right),\,\,\Delta^{ - 1} \left( {s_{k} , \alpha_{k} } \right) \le \Delta^{ - 1} \left( {s_{l} , \alpha_{l} } \right),\) and \(\Delta^{ - 1} :S \times \left[ { - \frac{1}{2g},\frac{1}{2g}} \right) \to [0,1],\,\,\phi :\left[ {0, 1} \right] \to [0, + \infty )\) are strictly increasing function, such that

    $$\phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + \phi (\Delta^{ - 1} (s_{k} ,\alpha_{k} )) \le \phi (\Delta^{ - 1} (s_{j} ,\alpha_{j} )) + \phi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))$$

    and

    $$\begin{aligned} \phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right) + \phi \left( {\Delta^{ - 1} \left( {s_{k} , \alpha_{k} } \right)} \right) \in [0, + \infty ), \hfill \\ \phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right) + \phi \left( {\Delta^{ - 1} \left( {s_{l} , \alpha_{l} } \right)} \right) \in [0, + \infty ). \hfill \\ \end{aligned}$$

    Noting that \(\phi^{ - 1} :[0, + \infty ) \to \left[ {0, 1} \right]\) is also a strictly increasing function, we have

    $$\phi^{ - 1} \left( {\phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right) + \phi \left( {\Delta^{ - 1} \left( {s_{k} , \alpha_{k} } \right)} \right)} \right) \le \phi^{ - 1} \left( {\phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right) + \phi \left( {\Delta^{ - 1} \left( {s_{l} , \alpha_{l} } \right)} \right)} \right)$$

    and

    $$\phi^{ - 1} \left( {\phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right) + \phi \left( {\Delta^{ - 1} \left( {s_{k} , \alpha_{k} } \right)} \right)} \right), \phi^{ - 1} \left( {\phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right) + \phi \left( {\Delta^{ - 1} \left( {s_{l} , \alpha_{l} } \right)} \right)} \right) \in \left[ {0, 1} \right].$$

    Thus \(\Delta (\phi^{ - 1} \left( {\phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right) + \phi \left( {\Delta^{ - 1} \left( {s_{k} , \alpha_{k} } \right)} \right)} \right)) \le \Delta \left( {\phi^{ - 1} \left( {\phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right) + \phi \left( {\Delta^{ - 1} \left( {s_{l} , \alpha_{l} } \right)} \right)} \right)} \right)\) and

    $$\Delta \left( {\phi^{ - 1} \left[ {\phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + \phi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))} \right]} \right),\Delta \left( {\phi^{ - 1} \left[ {\phi (\Delta^{ - 1} (s_{j} ,\alpha_{j} )) + \phi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))} \right]} \right) \in S \times [ - \frac{1}{2g},\frac{1}{2g}).$$

    So, we can get

    $$\begin{aligned} &[(s_{i} ,\alpha_{i} ),(s_{j} ,\alpha_{j} )] \oplus [(s_{k} ,\alpha_{k} ),(s_{l} ,\alpha_{l} )] \hfill \\ &\quad= \left[ {\Delta \left( {\phi^{ - 1} \left[ {\phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + \phi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))} \right]} \right),\Delta \left( {\phi^{ - 1} \left[ {\phi (\Delta^{ - 1} (s_{j} ,\alpha_{j} )) + \phi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))} \right]} \right)} \right] \in \varOmega \hfill \\ \end{aligned}$$
  2. (2)

    The proof is similar to that (1), it is omitted here.

  3. (3)

    From Definition 3.1, we can get

    $$\lambda \odot A = \left[ {\Delta \left\{ {\phi^{ - 1} \left[ {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} \right]} \right\}, \Delta \left\{ {\phi^{ - 1} \left[ {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right)} \right]} \right\}} \right].$$

    Since \(\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right) \le \Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right),\phi :\left[ {0, 1} \right] \to [0, + \infty )\) is a strictly increasing function, then \(\lambda \phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right) \le \lambda \phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right),{\text{ and}}\,\lambda \phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right),\lambda \phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right) \in [0, + \infty )\) where λ ≥ 0. Besides, \(\phi^{ - 1} :[0, + \infty ) \to \left[ {0, 1} \right]\) is also a strictly increasing function, we have

    $$\phi^{ - 1} \left( {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} \right) \le \phi^{ - 1} \left( {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right)} \right),$$

    and \(\phi^{ - 1} \left( {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} \right), \phi^{ - 1} \left( {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right)} \right) \in \left[ {0, 1} \right].\) Obviously, \(\Delta (\phi^{ - 1} \left[ {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} \right]) \le \Delta \left( {\phi^{ - 1} \left[ {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right)} \right]} \right),\) and \(\Delta \left( {\phi^{ - 1} [\lambda \phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} ))]} \right),\Delta \left( {\phi^{ - 1} [\lambda \phi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))]} \right) \in S \times \left[ { - \frac{1}{2g},\frac{1}{2g}} \right)\). Thus

    $$\lambda \odot A = \left[ {\Delta \left\{ {\phi^{ - 1} \left[ {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} \right]} \right\}, \Delta \left\{ {\phi^{ - 1} \left[ {\lambda \phi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right)} \right]} \right\}} \right] \in \varOmega .$$
  4. (4)

    For any interval-valued 2-tuple linguistic, we get \(\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right) \le \Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right).\). From Definition 3.1, we have

    $$A^{\lambda } = \left[ {\Delta \left( {\varphi^{ - 1} \left[ {\lambda \varphi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} \right]} \right),\Delta \left( {\varphi^{ - 1} \left[ {\lambda \varphi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right)} \right]} \right)} \right] .$$

In view of the function \(\varphi :\left[ {0, 1} \right] \to \left[ {0, + \infty } \right)\) is strictly decreasing function, we obtain

$$\lambda \varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) \ge \lambda \varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))$$

and \(\lambda \varphi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right), \lambda \varphi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right) \in [0, + \infty )\)

Correspondingly, the inverse function \(\varphi^{ - 1} :\left[ {0, + \infty } \right) \to \left[ {0, 1} \right]\) is also strictly decreasing function, then

$$\varphi^{ - 1} \left[ {\lambda \varphi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} \right] \le \varphi^{ - 1} \left[ {\lambda \varphi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right)} \right],$$

and \(\varphi^{ - 1} \left[ {\lambda \varphi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} \right], \varphi^{ - 1} \left[ {\lambda \varphi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right)} \right] \in \left[ {0, 1} \right].\)

Thus, \(\Delta \left( {\varphi^{ - 1} \left[ {\lambda \varphi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} \right]} \right) \le \Delta \left( {\varphi^{ - 1} \left[ {\lambda \varphi \left( {\Delta^{ - 1} \left( {s_{j} , \alpha_{j} } \right)} \right)} \right]} \right)\) and\(\Delta \left( {\varphi^{ - 1} [\lambda \varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} ))]} \right),\Delta \left( {\varphi^{ - 1} [\lambda \varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))]} \right) \in S \times \left[ { - \frac{1}{2g},\frac{1}{2g}} \right)\).

Therefore, we have

$$A^{\lambda } = \left[ {\Delta \left\{ {\varphi^{ - 1} [\lambda \varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} ))]} \right\},\Delta \left\{ {\varphi^{ - 1} [\lambda \varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))]} \right\}} \right] \in \varOmega$$

Combining (1) with (4), we have that such operational laws are closed and the results of the operation are also interval-valued 2-tuple linguistic variables in Ω, which completes the proof. □

The Proof of Theorem 3.2:

(1) and (2) are easy to be verified, which is omitted;

(3)

$$\begin{aligned} &\lambda \odot (A \oplus B) \hfill \\ &\quad= \lambda \odot \left[ \begin{aligned} &\Delta \left\{ {\phi^{ - 1} [\phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + \phi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))]} \right\}, \hfill \\ &\Delta \left\{ {\phi^{ - 1} [\phi (\Delta^{ - 1} (s_{j} ,\alpha_{j} )) + \phi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))]} \right\} \hfill \\ \end{aligned} \right] \hfill \\ &\quad= \left[ \begin{aligned} &\Delta \left\{ {\phi^{ - 1} \left( {\lambda \phi \left[ {\Delta^{ - 1} \left( {\Delta \left[ {\phi^{ - 1} \left( {\phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + \phi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))} \right)} \right]} \right)} \right]} \right)} \right\}, \hfill \\ &\Delta \left\{ {\phi^{ - 1} \left( {\lambda \phi \left[ {\Delta^{ - 1} \left( {\Delta \left[ {\phi^{ - 1} \left( {\phi (\Delta^{ - 1} (s_{j} ,\alpha_{j} )) + \phi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))} \right)} \right]} \right)} \right]} \right)} \right\} \hfill \\ \end{aligned} \right] \hfill \\ &\quad= \left[ \begin{aligned} &\Delta \left\{ {\phi^{ - 1} \left( {\lambda [\phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + \phi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))]} \right)} \right\}, \hfill \\ &\Delta \left\{ {\phi^{ - 1} \left( {\lambda [\phi (\Delta^{ - 1} (s_{j} ,\alpha_{j} )) + \phi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))]} \right)} \right\} \hfill \\ \end{aligned} \right] \hfill \\ &\quad= \left[ \begin{aligned} &\Delta \left\{ {\phi^{ - 1} [\lambda \phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + \lambda \phi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))]} \right\}, \hfill \\ &\Delta \left\{ {\phi^{ - 1} [\lambda \phi (\Delta^{ - 1} (s_{j} ,\alpha_{j} )) + \lambda \phi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))]} \right\} \hfill \\ \end{aligned} \right] \hfill \\ &\quad= (\lambda \odot A) \oplus (\lambda \odot B) .\hfill \\ \end{aligned}$$

(4)

$$\begin{aligned} &(A \otimes B)^{\lambda } \hfill \\ &= \left[ \begin{aligned} &\Delta \left\{ {\varphi^{ - 1} [\varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + \varphi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))]} \right\}{\kern 1pt} {\kern 1pt} {\kern 1pt} , \hfill \\ &\Delta \left\{ {\varphi^{ - 1} [\varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} )) + \varphi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))]} \right\} \hfill \\ \end{aligned} \right] \hfill \\ &\quad= \left[ \begin{aligned} &\Delta \left\{ {\varphi^{ - 1} \left( {\lambda \varphi \left[ {\Delta^{ - 1} (\Delta (\varphi^{ - 1} [\varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + \varphi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))]))} \right]} \right)} \right\}, \hfill \\ &\Delta \left\{ {\varphi^{ - 1} \left( {\lambda \varphi \left[ {\Delta^{ - 1} (\Delta (\varphi^{ - 1} [\varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} )) + \varphi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))]))} \right]} \right)} \right\} \hfill \\ \end{aligned} \right] \hfill \\ &\quad= \left[ \begin{aligned} &\Delta \left\{ {\varphi^{ - 1} \left( {\lambda [\varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + \varphi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))]} \right)} \right\}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} , \hfill \\ &\Delta \left\{ {\varphi^{ - 1} \left( {\lambda [\varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} )) + \varphi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))]} \right)} \right\} \hfill \\ \end{aligned} \right] \hfill \\ &\quad = \left[ \begin{aligned} &\Delta \left\{ {\varphi^{ - 1} [\lambda \varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + \lambda \varphi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))]} \right\}{\kern 1pt} {\kern 1pt} {\kern 1pt} , \hfill \\ &\Delta \left\{ {\varphi^{ - 1} [\lambda \varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} )) + \lambda \varphi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))]} \right\} \hfill \\ \end{aligned} \right] \hfill \\ &\quad= A^{\lambda } \otimes B^{\lambda }. \hfill \\ \end{aligned}$$

Similarly, it is obtained that (5)–(8) hold, which completes the proof. □

The Proof of Theorem 3.3:

By using mathematical induction on n.

  1. (1)

    For n = 2, we have

    $$\begin{aligned} &[(s_{1} ,\alpha_{1} ),(s^{\prime}_{1} ,\alpha^{\prime}_{1} )] \oplus [(s_{2} ,\alpha_{2} ),(s^{\prime}_{2} ,\alpha^{\prime}_{2} )] \hfill \\ &\quad = \left[ {\Delta \left\{ {\phi^{ - 1} [\sum\limits_{i = 1}^{2} {\phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} ))} ]} \right\},\Delta \left\{ {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{2} {\phi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} ))} } \right]} \right\}} \right] .\hfill \\ \end{aligned}$$

    When n = k − 1, k ∊ N+, (1) holds, that is

    $$\mathop \oplus \limits_{i = 1}^{k - 1} \left[ {\left( {s_{i} , \alpha_{i} } \right), (s_{i}^{\prime } , \alpha_{i}^{\prime } )} \right] = \left[ {\Delta \left\{ {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{k - 1} {\phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} } \right]} \right\},\Delta \left\{ {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{k - 1} {\phi \left( {\Delta^{ - 1} \left( {s_{i}^{\prime } , \alpha_{i}^{\prime } } \right)} \right)} } \right]} \right\}} \right],$$

    then

    $$\begin{aligned} &\mathop \oplus \limits_{i = 1}^{k} [(s_{i} ,\alpha_{i} ),(s^{\prime}_{i} ,\alpha^{\prime}_{i} )] \hfill \\ &\quad = \left[ {\Delta \left\{ {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{k - 1} {\phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} } \right]} \right\},\Delta \left\{ {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{k - 1} {\phi \left( {\Delta^{ - 1} \left( {s_{i}^{\prime } , \alpha_{i}^{\prime } } \right)} \right)} } \right]} \right\},} \right] \oplus \left[ {\left( {s_{k} , \alpha_{k} } \right), \left( {s_{k}^{\prime } , \alpha_{k}^{\prime } } \right)} \right] \hfill \\ &\quad = \left[ \begin{aligned} &\Delta \left\{ {\phi^{ - 1} \left[ {\phi \left( {\Delta^{ - 1} \left[ {\Delta \left( {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{k - 1} {\phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} ))} } \right]} \right)} \right]} \right) + \phi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))} \right]} \right\}, \hfill \\ &\Delta \left\{ {\phi^{ - 1} \left[ {\phi \left( {\Delta^{ - 1} \left[ {\Delta \left( {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{k - 1} {\phi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime\prime}_{i} ))} } \right]} \right)} \right]} \right) + \phi (\Delta^{ - 1} (s^{\prime}_{k} ,\alpha^{\prime}_{k} ))} \right]} \right\} \hfill \\ \end{aligned} \right] \hfill \\ &\quad = \left[ \begin{aligned} &\Delta \left\{ {\phi^{ - 1} \left[ {\left( {\sum\limits_{i = 1}^{k - 1} {\phi (\Delta^{ - 1} (s_{i} ,\alpha_{i} ))} } \right) + \phi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))} \right]} \right\}{\kern 1pt} {\kern 1pt} , \hfill \\ &\Delta \left\{ {\phi^{ - 1} \left[ {\left( {\sum\limits_{i = 1}^{k - 1} {\phi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} ))} } \right) + \phi (\Delta^{ - 1} (s^{\prime}_{k} ,\alpha^{\prime}_{k} ))} \right]} \right\} \hfill \\ \end{aligned} \right] \hfill \\ &\quad = \left[ {\Delta \left\{ {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{k} {\phi \left( {\Delta^{ - 1} \left( {s_{i} , \alpha_{i} } \right)} \right)} } \right]} \right\},\Delta \left\{ {\phi^{ - 1} \left[ {\sum\limits_{i = 1}^{k} {\phi \left( {\Delta^{ - 1} \left( {s_{i}^{\prime } , \alpha_{i}^{\prime } } \right)} \right)} } \right]} \right\}} \right]. \hfill \\ \end{aligned}$$

    So (1) holds for n = k. Thus (1) holds for all n.

  2. (2)

    The proof is similar to (1), thus it is omitted. □

The Proof of Theorem 4.1:

Based on the Definition 3.1, we can get

$$\begin{aligned} &[(s_{i} ,\alpha_{i} ),(s^{\prime}_{i} ,\alpha^{\prime}_{i} )]^{p} \otimes [(s_{j} ,\alpha_{j} ),(s^{\prime}_{j} ,\alpha^{\prime}_{j} )]^{q} \hfill \\ &\quad= \left[ {\Delta \left\{ {\varphi^{ - 1} \left( {p\varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} ))} \right)} \right\},\left\{ {\varphi^{ - 1} \left( {p\varphi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} ))} \right)} \right\}} \right] \hfill \\ &\qquad{\kern 1pt} \otimes \left[ {\Delta \left\{ {\varphi^{ - 1} \left( {p\varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))} \right)} \right\},\left\{ {\varphi^{ - 1} \left( {p\varphi (\Delta^{ - 1} (s^{\prime}_{j} ,\alpha^{\prime}_{j} ))} \right)} \right\}} \right] \hfill \\ &\quad= \left[ \begin{aligned} &\Delta \left\{ {\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + q\varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))]} \right\}{\kern 1pt} {\kern 1pt} {\kern 1pt} , \hfill \\ &\Delta \left\{ {\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} )) + q\varphi (\Delta^{ - 1} (s^{\prime}_{j} ,\alpha^{\prime}_{j} ))]} \right\} \hfill \\ \end{aligned} \right]. \hfill \\ \end{aligned}$$

It follows from Theorem 3.3 that

$$\begin{aligned} &\mathop \oplus \limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} ([(s_{i} ,\alpha_{i} ),(s^{\prime}_{i} ,\alpha^{\prime}_{i} )]^{p} \otimes [(s_{j} ,\alpha_{j} ),(s^{\prime}_{j} ,\alpha^{\prime}_{j} )]^{q} ) \hfill \\ &\quad= \left[ \begin{aligned} &\Delta \left\{ {\phi^{ - 1} \left( {\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} {\phi \left( {\varphi^{ - 1} \left[ {p\varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + q\varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))} \right]} \right)} } \right)} \right\}, \hfill \\ &\Delta \left\{ {\phi^{ - 1} \left( {\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} {\phi \left( {\varphi^{ - 1} \left[ {p\varphi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} )) + q\varphi (\Delta^{ - 1} (s^{\prime}_{j} ,\alpha^{\prime}_{j} ))} \right]} \right)} } \right)} \right\} \hfill \\ \end{aligned} \right] .\hfill \\ \end{aligned}$$

So, we can obtain that

$$\begin{aligned} &\left[ {\frac{1}{n(n - 1)} \odot \left( {\mathop \oplus \limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} ([(s_{i} ,\alpha_{i} ),(s^{\prime}_{i} ,\alpha^{\prime}_{i} )]^{p} \otimes [(s_{j} ,\alpha_{j} ),(s^{\prime}_{j} ,\alpha^{\prime}_{j} )]^{q} )} \right)} \right]^{{\frac{1}{p + q}}} \hfill \\ &\quad= \left[ \begin{aligned} &\Delta \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\left[ {\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} {\phi \left( {\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + q\varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))]} \right)} } \right]} \right)} \right\}, \hfill \\ &\Delta \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\left[ {\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} {\phi \left( {\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} )) + q\varphi (\Delta^{ - 1} (s^{\prime}_{j} ,\alpha^{\prime}_{j} ))]} \right)} } \right]} \right)} \right\} \hfill \\ \end{aligned} \right]^{{\frac{1}{p + q}}} \hfill \\ &\quad= \left[ \begin{aligned} &\Delta \left\{ {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left( {\Delta^{ - 1} \left[ {\Delta \left( {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\left( {\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} {\phi \{ } \varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + q\varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))]} \right)} \right)} \right)} \right]} \right)} \right)} \right\}, \hfill \\ &\Delta \left\{ {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left( {\Delta^{ - 1} \left[ {\Delta \left( {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\left( {\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} {\phi \{ } \varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} )) + q\varphi (\Delta^{ - 1} (s^{\prime}_{j} ,\alpha^{\prime}_{j} ))]} \right)} \right)} \right)} \right]} \right)} \right)} \right\} \hfill \\ \end{aligned} \right] \hfill \\ &\quad= \left[ \begin{aligned} &\Delta \left\{ {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left[ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} {\phi \left( {\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + q\varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))]} \right)} } \right)} \right]} \right)} \right\}, \hfill \\ &\Delta \left\{ {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left[ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} {\phi \left( {\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} )) + q\varphi (\Delta^{ - 1} (s^{\prime}_{j} ,\alpha^{\prime}_{j} ))]} \right)} } \right)} \right]} \right)} \right\} \hfill \\ \end{aligned} \right] .\hfill \\ \end{aligned}$$

Thus, the proof of Theorem 4.1 is completed. □

The Proof of Theorem 4.2:

  1. (1)

    By Theorem 4.1, it has

    $$\begin{aligned} &ATS - I 2TLBM^{p,q} (A_{ 1} , A_{ 2} , \ldots ,A_{n} ) \hfill \\ &= \left[ \begin{aligned} &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} {\phi} (\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + q\varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))]} \right)} \right\}} \right)} \right), \hfill \\ &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} {\phi} (\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} )) + q\varphi (\Delta^{ - 1} (s^{\prime}_{j} ,\alpha^{\prime}_{j} ))]} \right)} \right\}} \right)} \right) \hfill \\ \end{aligned} \right]. \hfill \\ \end{aligned}$$

    Since \(A_{i} = \left[ {\left( {s_{i} , \alpha_{i} } \right), \left( {s_{i}^{\prime } , \alpha_{i}^{\prime } } \right)\left] { = } \right[\left( {s_{k} , \alpha_{k} } \right), \left( {s_{l} , \alpha_{l} } \right)} \right],\quad i = 1, 2, \ldots , n\), then

    $$\begin{aligned} &ATS - I2TLBM^{p,q} (A_{1} ,A_{2} , \ldots, A_{n} ) \hfill \\ &\quad= \left[ \begin{aligned} &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}n(n - 1)\phi (\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s_{k} ,\alpha_{k} )) + q\varphi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))])} \right)} \right\}} \right)} \right), \hfill \\ &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}n(n - 1)\phi (\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s_{l} ,\alpha_{l} )) + q\varphi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))])} \right)} \right\}} \right)} \right) \hfill \\ \end{aligned} \right] \hfill \\ &\quad= \left[ \begin{aligned} &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi (\varphi^{ - 1} [(p + q)\varphi (\Delta^{ - 1} (s_{k} ,\alpha_{k} ))])} \right)} \right), \hfill \\ &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi (\varphi^{ - 1} [(p + q)\varphi (\Delta^{ - 1} (s_{l} ,\alpha_{l} ))])} \right)} \right) \hfill \\ \end{aligned} \right] \hfill \\ &\quad= \left[ {\left( {s_{k} , \alpha_{k} } \right), \left( {s_{l} , \alpha_{l} } \right)} \right]. \hfill \\ \end{aligned}$$
  2. (2)

    According to the Definition 2.5, we can get

    $$\begin{aligned} &S(A_{i} ) = \frac{{\Delta^{ - 1} (s_{i} ,\alpha_{i} ) + \Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} )}}{2}; \hfill \\ &S(A^{ + } ) = \frac{{\Delta^{ - 1} (\mathop {\hbox{max} }\limits_{i} (s_{i} ,\alpha_{i} )) + \Delta^{ - 1} (\mathop {\hbox{max} }\limits_{i} (s^{\prime}_{i} ,\alpha^{\prime}_{i} ))}}{2} \hfill \\ &S(A^{ - } ) = \frac{{\Delta^{ - 1} (\mathop {\hbox{min} }\limits_{i} (s_{i} ,\alpha_{i} )) + \Delta^{ - 1} (\mathop {\hbox{min} }\limits_{i} (s^{\prime}_{i} ,\alpha^{\prime}_{i} ))}}{2}. \hfill \\ \end{aligned}$$

    Then, \(S\left( {A^{ - } } \right) \le S\left( {A_{i} } \right) \le S\left( {A^{ + } } \right)\) for all i. Since ATS-I2TLBM satisfies the idempotency, we have

    $$\begin{aligned} A^{ + } = ATS - I 2TLBM{^{p,q}} (A^{ + } , A^{ + } , \ldots , A^{ + } )\;{\text{and}} \hfill \\ A^{ - } = ATS - I 2TLBM{^{p,q}} (A^{ - } , A^{ - } , \ldots , A^{ - } ). \hfill \\ \end{aligned}$$

    Besides, φ is a strictly decreasing function and ϕ is a strictly increasing function, we obtain

    $$\begin{aligned} &A^{ - } = ATS - I2TLBM^{p,q} (A^{ - } ,A^{ - } , \ldots ,A^{ - } ) \hfill \\ &\quad= \left[ \begin{aligned} &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}n(n - 1)\phi (\varphi^{ - 1} \left[ {p\varphi (\Delta^{ - 1} (\mathop {\hbox{min} }\limits_{i} (s_{i} ,\alpha_{i} )) + q\varphi (\Delta^{ - 1} (\mathop {\hbox{min} }\limits_{i} (s_{i} ,\alpha_{i} )))} \right]} \right)} \right\}} \right)} \right), \hfill \\ &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}n(n - 1)\phi (\varphi^{ - 1} \left[ {p\varphi (\Delta^{ - 1} (\mathop {\hbox{min} }\limits_{i} (s^{\prime}_{i} ,\alpha^{\prime})) + q\varphi (\Delta^{ - 1} (\mathop {\hbox{min} }\limits_{i} (s^{\prime}_{i} ,\alpha^{\prime})))} \right]} \right)} \right\}} \right)} \right) \hfill \\ \end{aligned} \right] \hfill \\ &\quad \le \left[ \begin{aligned} &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} {\phi} (\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + q\varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))])} \right)} \right\}} \right)} \right), \hfill \\ &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} {\phi} (\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} )) + q\varphi (\Delta^{ - 1} (s^{\prime}_{j} ,\alpha^{\prime}_{j} ))])} \right)} \right\}} \right)} \right) \hfill \\ \end{aligned} \right] \hfill \\&\quad \le \left[ \begin{aligned}& \Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}n(n - 1)\phi (\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (\mathop {\hbox{max} }\limits_{i} (s_{i} ,\alpha_{i} ))) + q\varphi (\Delta^{ - 1} (\mathop {\hbox{max} }\limits_{i} (s_{i} ,\alpha_{i} )))])} \right)} \right\}} \right)} \right), \hfill \\ &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}n(n - 1)\phi (\varphi^{ - 1} [p\varphi (\Delta^{ - 1} (\mathop {\hbox{max} }\limits_{i} (s^{\prime}_{i} ,\alpha^{\prime}_{i} ))) + q\varphi (\Delta^{ - 1} (\mathop {\hbox{max} }\limits_{i} (s^{\prime}_{i} ,\alpha^{\prime})))])} \right)} \right\}} \right)} \right) \hfill \\ \end{aligned} \right] \hfill \\ &\quad= ATS - I2TLBM^{p,q} (A^{ + } , A^{ + } , \ldots , A^{ + } ) = A^{ + }. \hfill \\ \end{aligned}$$

    Thus, we have \(A^{ - } \le ATS - I 2TLBM^{p,q} (A_{ 1} , A_{ 2} , \ldots ,A_{n} ) \le A^{ + } .\)

  3. (3)

    According to the Definition 4.1, it has

    $$\begin{aligned} &ATS - I2TLBM^{p,q} (A_{1} ,A_{2} , \ldots ,A_{n} ) \hfill \\ &\quad = \left[ {\frac{1}{n(n - 1)} \odot \left( {\mathop \oplus \limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} ([(s_{i} ,\alpha_{i} ),(s^{\prime}_{i} ,\alpha^{\prime}_{i} )]^{p} \otimes [(s_{j} ,\alpha_{j} ),(s^{\prime}_{j} ,\alpha^{\prime}_{j} )]^{q} )} \right)} \right]^{{\frac{1}{p + q}}}. \hfill \\ \end{aligned}$$

    If \(A_{{i}}^{\prime } = \left[ {\left( {s_{{\sigma(i)}} , \alpha_{{\sigma(i)}} } \right), \left( {s_{{\sigma (i)}}^{\prime } , \alpha_{{\sigma (i)}}^{\prime } } \right)} \right]\) is any permutation of \(A_{i} = \left[ {\left( {s_{i} , \alpha_{i} } \right), \left( {s_{i}^{\prime } , \alpha_{i}^{\prime } } \right)} \right] \, (i = 1, 2, \ldots ,n)\), then for any two interval-valued linguistic 2-tuples Ai and Aj, we have \(k, l \in \{ 1, 2 ,\ldots ,n\} ,\) such that \(A_{i} = [(s_{i} ,\alpha_{i} ),(s^{\prime}_{i} ,\alpha^{\prime}_{i} )] = [(s_{\sigma (k)} ,\alpha_{\sigma (k)} ),(s^{\prime}_{\sigma (k)} ,\alpha^{\prime}_{\sigma (k)} )] = A^{\prime}_{k}\) and \(A_{j} = [(s_{j} ,\alpha_{j} ),(s^{\prime}_{j} ,\alpha^{\prime}_{j} )] = [(s_{\sigma (l)} ,\alpha_{\sigma (l)} ),(s^{\prime}_{\sigma (l)} ,\alpha^{\prime}_{\sigma (l)} )] = A^{\prime}_{l} ,\) then,

    $$\begin{aligned} &ATS - I2TLBM^{p,q} (A_{1} ,A_{2} , \ldots ,A_{n} ) \hfill \\ &\quad= \left[ {\frac{1}{n(n - 1)} \odot \left( {\mathop \oplus \limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} ([(s_{i} ,\alpha_{i} ),(s^{\prime}_{i} ,\alpha^{\prime}_{i} )]^{p} \otimes [(s_{j} ,\alpha_{j} ),(s^{\prime}_{j} ,\alpha^{\prime}_{j} )]^{q} )} \right)} \right]^{{\frac{1}{p + q}}} \hfill \\ &\quad = \left[ {\frac{1}{n(n - 1)} \odot \left( {\mathop \oplus \limits_{\begin{aligned} k \ne l \\ k,l = 1 \end{aligned} }^{n} ([(s_{\sigma (k)} ,\alpha_{\sigma (k)} ),(s^{\prime}_{\sigma (k)} ,\alpha^{\prime}_{\sigma (k)} )]^{p} \otimes [(s_{\sigma (l)} ,\alpha_{\sigma (l)} ),(s^{\prime}_{\sigma (l)} ,\alpha^{\prime}_{\sigma (l)} )]^{q} )} \right)} \right]^{{\frac{1}{p + q}}} \hfill \\ &\quad = ATS - I2TLBM^{p,q} (A_{1}^{\prime } , A_{2}^{\prime } , \ldots ,A_{n}^{\prime } ). \hfill \\ \end{aligned}$$
  4. (4)

    According to the concept of Archimedean t-norm and s-norm, we know φ is a strictly decreasing function and ϕ is a strictly increasing function. Applying Theorem 4.1, we obtain that

    $$\begin{aligned} &ATS - I2TLBM^{p,q} (A_{1} ,A_{2} , \ldots ,A_{n} ) \hfill \\ &\quad = \left[ \begin{aligned} &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} \phi \left( {\varphi^{ - 1} \left[ {p\varphi (\Delta^{ - 1} (s_{i} ,\alpha_{i} )) + q\varphi (\Delta^{ - 1} (s_{j} ,\alpha_{j} ))} \right]} \right)} \right)} \right\}} \right)} \right), \hfill \\ &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} \phi \left( {\varphi^{ - 1} \left[ {p\varphi (\Delta^{ - 1} (s^{\prime}_{i} ,\alpha^{\prime}_{i} )) + q\varphi (\Delta^{ - 1} (s^{\prime}_{j} ,\alpha^{\prime}_{j} ))} \right]} \right)} \right)} \right\}} \right)} \right) \hfill \\ \end{aligned} \right] \hfill \\ &\quad \ge \left[ \begin{aligned} &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} \phi \left( {\varphi^{ - 1} \left[ {p\varphi (\Delta^{ - 1} (s_{i}^{ * } ,\alpha_{i}^{ * } )) + q\varphi (\Delta^{ - 1} (s_{j}^{ * } ,\alpha_{j}^{ * } ))} \right]} \right)} \right)} \right\}} \right)} \right), \hfill \\ &\Delta \left( {\varphi^{ - 1} \left( {\frac{1}{p + q}\varphi \left\{ {\phi^{ - 1} \left( {\frac{1}{n(n - 1)}\sum\limits_{\begin{aligned} i \ne j \\ i,j = 1 \end{aligned} }^{n} \phi \left( {\varphi^{ - 1} \left[ {p\varphi (\Delta^{ - 1} (s_{i}^{ * \prime } ,\alpha_{i}^{ * \prime } )) + q\varphi (\Delta^{ - 1} (s_{j}^{ * \prime } ,\alpha_{j}^{ * \prime } ))} \right]} \right)} \right)} \right\}} \right)} \right) \hfill \\ \end{aligned} \right] \hfill \\ &\quad= ATS - I 2TLBM^{p,q} (A_{1}^{*} , A_{2}^{*} , \ldots ,A_{n}^{*} ). \hfill \\ \end{aligned}$$

    Thus, the proof of Theorem 4.2 has been finished. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Tao, Z., Chen, H. et al. A New Interval-valued 2-Tuple Linguistic Bonferroni Mean Operator and Its Application to Multiattribute Group Decision Making. Int. J. Fuzzy Syst. 19, 86–108 (2017). https://doi.org/10.1007/s40815-015-0130-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0130-4

Keywords

Navigation