Skip to main content

Advertisement

Log in

Hybrid Kernelized Fuzzy Clustering and Multiple Attributes Decision Analysis for Corporate Risk Management

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This study introduces an emerging risk management architecture by extending balanced scorecards (BSC) with risk exposure considerations for corporate operating performance assessment and then constructs a hybrid mechanism that combines kernelized fuzzy C-means (KFCM), multiple attributes decision analysis (MADA), and extreme learning machine (ELM) for corporate operating performance forecasting. KFCM is implemented to do the clustering task for each corporate under each aspect of BSC. No specific corporate reaches optimal performance under each assessing measure—that is, dissimilar assessing criteria leads to dissimilar outcomes. This method can be transformed into a MADA task and a MADA algorithm that can yield a reliable outcome systematically. Sequentially, the outcome is fed into ELM to construct the performance forecasting mechanism. The introduced mechanism with outstanding forecasting performance comes with a critical challenge: it lacks interpretability, which impedes its real-life usage. To cope with this problem, the rough set theory (RST) is employed to extract the inherent decision logics from the black-box model and visualize it in human readable formats. The introduced model has been examined by real cases and is a promising alternative for corporate risk management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahmed, S., Ahmed, S., Shumon, MdRH, Quader, M.A., Cho, H.M., Mahmud, MdI: Prioritizing strategies for sustainable end-of-life vehicle management using combinatorial multi-criteria decision making method. Int. J. Fuzzy Syst. (2015). doi:10.1007/s40815-015-0061-0

    Google Scholar 

  2. Amado, C.A.F., Santos, S.P., Sequeira, J.F.C.: Using data envelopment analysis to support the design of process improvement interventions in electricity distribution. Eur. J. Oper. Res. 228, 226–235 (2013)

    Article  Google Scholar 

  3. Aparajeeta, J., Nanda, P.K., Das, N.: Modified possibilistic fuzzy C-means algorithms for segmentation of magnetic resonance image. Appl. Soft Comput. 41, 104–119 (2016)

    Article  Google Scholar 

  4. Bai, C., Dhavale, D., Sarkis, J.: Complex investment decisions using rough set and fuzzy c-means: an example of investment in green supply chains. Eur. J. Oper. Res. 248, 507–521 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barakat, N., Diederich, J.: Eclectic rule-extraction from support vector machines. Int. J. Comput. Intell. 2, 59–62 (2005)

    Google Scholar 

  6. Barakat, N., Bradley, A.P.: Rule extraction from support vector machines: a review. Neurocomputing 74, 178–190 (2010)

    Article  Google Scholar 

  7. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support vector clustering. J. Mach Learn. Res. 2, 125–137 (2001)

    MATH  Google Scholar 

  8. Boecking, B., Chalup, S.K., Seese, D., Wong, A.S.W.: Support vector clustering of time series data with alignment kernels. Pattern Recogn. Lett. 45, 129–135 (2014)

    Article  Google Scholar 

  9. Cao, J., Lin, Z., Huang, G.B.: Self-adaptive evolutionary extreme learning machine. Neural Process. Lett. 36, 285–305 (2012)

    Article  Google Scholar 

  10. Chen, T., Chen, C.B., Peng, S.Y.: Firm operation performance analysis using data envelopment analysis and balanced scorecard: a case study of a credit cooperative bank. Int. J. Product. Perform. Manag. 5, 523–539 (2008)

    Article  Google Scholar 

  11. Chen, S.C., Zhang, D.Q.: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man. Cybern. B 34, 1907–1916 (2004)

    Article  Google Scholar 

  12. Chiang, C.Y., Lin, B.: An integration of balanced scorecards and data envelopment analysis for firm’s benchmarking management. Total Qual. Manag. 20, 1153–1172 (2009)

    Article  Google Scholar 

  13. Deng, H., Yeh, C.H., Willis, R.J.: Inter-company comparison using modified TOPSIS with objective weights. Comput. Oper. Res. 27, 963–973 (2000)

    Article  MATH  Google Scholar 

  14. Deng, Z., Choi, K.Z., Cao, L., Wang, S.: T2FELA: type-2 fuzzy extreme learning algorithm, for fast training of interval type-2 TSK fuzzy logic system. IEEE Trans. Neural Netw. Learn. 25, 664–676 (2014)

    Article  Google Scholar 

  15. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Friedman, M.: Explanation and scientific understanding. J. Philosophy 71, 5–19 (1974)

    Google Scholar 

  17. Fletcher, H.D., Smith, D.B.: Managing for value: developing a performance measurement system integrating EVA and the BSC in strategic planning. J. Bus. Strategy 21, 1–17 (2004)

    Google Scholar 

  18. Gallant, S.: Connectionist expert system. Commun. ACM 31, 152–169 (1998)

    Article  Google Scholar 

  19. Geng, R., Bose, I., Chen, X.: Prediction of financial distress: an empirical study of listed Chinese companies using data mining. Eur. J. Oper. Res. 241, 236–247 (2015)

    Article  Google Scholar 

  20. Girolami, M.: Mercer kernel-based clustering in feature space. IEEE Trans. Neural Netw. 13, 780–784 (2002)

    Article  Google Scholar 

  21. Gürüler, H.: A novel diagnosis system for Parkinson’s disease using complex-valued artificial neural network with k-means clustering feature weighting method. Neural Comput. Appl. (2015). doi:10.1007/s00521-015-2142-2

    Google Scholar 

  22. Hasan, H., Tibbits, H.R.: Strategic management of electronic commerce: an adaptation of the balanced scorecard. Intern. Res. 10, 439–450 (2000)

    Google Scholar 

  23. He, Q., Jin, X., Du, C., Zhuang, F., Shi, Z.: Clustering in extreme learning machine feature space. Neurocomputing 128, 88–95 (2014)

    Article  Google Scholar 

  24. Hsu, W.: A fuzzy multiple-criteria decision-making system for analyzing gaps of service quality. Int. J. Fuzzy Syst. 17, 256–267 (2015)

    Article  Google Scholar 

  25. Hsu, Y.S., Lin, S.J.: An emerging hybrid mechanism for information disclosure forecasting. Int. J. Mach. Learn. Cyber. (2014). doi:10.1007/s13042-014-0295-4

    Google Scholar 

  26. Hoppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. Wiley, New York (1999)

    MATH  Google Scholar 

  27. Huang, H.C., Chuang, Y.Y., Chen, C.S.: Multiple kernel fuzzy clustering. IEEE Trans. Fuzzy Syst. 20, 120–134 (2012)

    Article  Google Scholar 

  28. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  29. Huang, G.B., Li, M.B., Chen, L., Siew, C.K.: Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing 71, 576–583 (2008)

    Article  Google Scholar 

  30. Huang, G.B., Ding, X., Zhou, H.: Optimization method based extreme learning machine for classification. Neurocomputing. 74, 155–163 (2010)

    Article  Google Scholar 

  31. Huang, G., Huang, G.B., Song, S., You, K.: Trends in extreme learning machines: a review. Neural Netw. 61, 32–48 (2015)

    Article  MATH  Google Scholar 

  32. Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making Methods and Applications. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  33. Kaplan, R.S., Norton, D.: The Balanced Scorecard measures that drive performance. Harv. Bus. Rev. 70, 71–79 (1992)

    Google Scholar 

  34. Kaplan, R.S., Norton, D.: Using the Balanced Scorecard as a strategic management system. Harv. Bus. Rev. 74, 75–85 (1996)

    Google Scholar 

  35. Lichman, M.: UCI Machine Learning Repository, University of California, School of Information and Computer Science (2013)

  36. Lim, C.H., Vats, E., Chan, C.S.: Fuzzy human motion analysis: a review. Pattern Recogn. 48, 1773–1796 (2015)

    Article  Google Scholar 

  37. Liu, X., Wan, A.: Universal consistency of extreme learning machine for RBFNs case. Neurocomputing 168, 1132–1137 (2015)

    Article  Google Scholar 

  38. Liu, L., Sun, S.Z., Yu, H., Yue, X., Zhang, D.: A modified fuzzy C-means (FCM) clustering algorithm and its application on carbonate fluid identification. J. Appl. Geophys. (2016). doi:10.1016/j.jappgeo.2016.03.027

    Google Scholar 

  39. Lin, S.J., Chang, C., Hsu, M.F.: Multiple extreme learning machines for a two-class imbalance corporate life cycle prediction. Knowl.-Based Syst. 39, 214–223 (2013)

    Article  Google Scholar 

  40. Lin, S.J., Hsu, M.F.: Incorporated risk metrics and hybrid AI techniques for risk management. Neural Comput. Appl. (2014). doi:10.1007/s00521-016-2253-4

    Google Scholar 

  41. Martens, D., Baesens, B., Gestel, T.V., Vanthienen, J.: Comprehensible credit scoring models using rule extraction from support vector machines. Eur. J. Oper. Res. 183, 1466–1476 (2007)

    Article  MATH  Google Scholar 

  42. Min, H., Galle, W.P.: Competitive benchmarking of fast-food restaurants using the analytic hierarchy process and competitive gap analysis. Oper. Manag. Rev. 11, 57–72 (1996)

    Google Scholar 

  43. Min, H., Min, H., Joo, S.J.: A data envelopment analysis-based balanced scorecard for measuring the comparative efficiency of Korean luxury hotels. Int. J. Qual. Reliab. Manag. 25, 349–365 (2008)

    Article  Google Scholar 

  44. Olatunji, S.O., Selamat, A., Abdulraheem, A.: A hybrid model through the fusion of type-2 fuzzy logic systems and extreme learning machines for modelling permeability prediction. Inf. Fusion 16, 29–45 (2014)

    Article  Google Scholar 

  45. Opricovic, S.: Multicriteria Optimization of Civil Engineering Systems. Faculty of Civil Engineering, Belgrade (1998)

    Google Scholar 

  46. Olson, D.L.: Comparison of weights in TOPSIS models. Math. Comput. Model. 40, 721–727 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    Article  MATH  Google Scholar 

  48. Pietruszkiewicz, W.: Dynamical systems and nonlinear Kalman filtering applied in classification. In: Proceedings of 7th IEEE International Conference on Cybernetic Intelligent Systems, pp. 263–268 (2008)

  49. Qu, Y., Shang, C., Shen, Q., Parthaláin, N.M., Wu, W.: Kernel-based fuzzy-rough nearest-neighbour classification for mammographic risk analysis. Int. J. Fuzzy Syst. 17, 471–483 (2015)

    Article  MathSciNet  Google Scholar 

  50. Rai, P., Singh, S.: A survey of clustering techniques. Int. J. Comput. Appl. 7, 1–5 (2010)

    Google Scholar 

  51. Rajavel, R., Thangarathanam, M.: Optimizing Negotiation conflict in the cloud service negotiation framework using probabilistic decision making model. Sci. World J. 1, 1–16 (2015)

    Article  Google Scholar 

  52. Rajavel, R., Thangarathanam, M.: Adaptive probabilistic behavioural learning system for the effective behavioural decision in cloud trading negotiation market. Futur. Gener. Comput. Syst. 58, 29–41 (2016)

    Article  Google Scholar 

  53. Rajavel, R., Thangarathanam, M.: ADSLANF: a negotiation framework for the cloud management system using bulk negotiation behavioural learning approach. Turk. J. Electr. Eng. Comput. Sci. (2006). doi:10.3906/elk-1403-45

    Google Scholar 

  54. Sestito, S., Dillon, T.: Automated knowledge acquisition of rules with continuously valued attributes. In: Proceedings 12th International Conference on Expert Systems and their Applications (AVIGNON’92), pp. 645–656. Avignon -France (1992)

  55. Shen, H., Yang, J., Wang, S., Liu, X.: Attribute weighted mercer kernel based fuzzy clustering algorithm for general non-spherical datasets. Soft Comput. 10, 1061–1073 (2006)

    Article  Google Scholar 

  56. Sun, Z.L., Au, K.F., Choi, T.M.: A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machine. IEEE Trans. Syst. Man Cybern. B 37, 1321–1331 (2007)

    Article  Google Scholar 

  57. Tversky, A.: Preference Belief and Similarity: selected Writings, a Bradford Book. The MIT Press, Cambridge (2004)

    Google Scholar 

  58. Türüdüoğlu, F., Suner, N., Yıldırım, G.: Determination of goals under four perspectives of balanced scorecards and linkages between the perspectives: a survey on luxury summer hotels in Turkey. Proc.—Soc. Behav. Sci. 164, 372–377 (2014)

    Article  Google Scholar 

  59. Wu, H.Y.: Constructing a strategy map for banking institutions with key performance indicators of the balanced scorecard. Eval. Progr. Plann. 35, 303–320 (2012)

    Article  Google Scholar 

  60. Xanthopulos, Z., Melachrinoudis, E., Solomon, M.M.: Interactive multiobjective group decision making with interval parameters. Manag. Sci. 46, 1585–1601 (2000)

    Article  Google Scholar 

  61. Yuan, P., Chen, H., Zhou, Y., Deng, X., Zou, B.: Generalization ability of extreme learning machine with uniformly ergodic Markov chains. Neurocomputing 167, 528–534 (2015)

    Article  Google Scholar 

  62. Zhang, D.Q., Chen, S.C.: Clustering incomplete data using kernel based fuzzy c-means algorithm. Neural Process. Lett. 18, 155–162 (2003)

    Article  Google Scholar 

  63. Zhang, H., Shu, L.: Generalized interval-valued fuzzy rough set and its application in decision making. Int. J. Fuzzy Syst. 17, 279–291 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Chen Tai-Feng and Dr. Hsu Er-Pao for data collection and thank the Ministry of Science and Technology, R.O.C., for financially supporting this work under Contract No. 104-2410-H-034-023-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sin-Jin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, SJ. Hybrid Kernelized Fuzzy Clustering and Multiple Attributes Decision Analysis for Corporate Risk Management. Int. J. Fuzzy Syst. 19, 659–670 (2017). https://doi.org/10.1007/s40815-016-0196-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0196-7

Keywords

Navigation