Skip to main content
Log in

Emotional Fuzzy Sliding-Mode Control for Unknown Nonlinear Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The brain emotional learning model can be implemented with a simple hardware and processor; however, the learning model cannot model the qualitative aspects of human knowledge. To solve this problem, a fuzzy-based emotional learning model (FELM) with structure and parameter learning is proposed. The membership functions and fuzzy rules can be learned through the derived learning scheme. Further, an emotional fuzzy sliding-mode control (EFSMC) system, which does not need the plant model, is proposed for unknown nonlinear systems. The EFSMC system is applied to an inverted pendulum and a chaotic synchronization. The simulation results with the use of EFSMC system demonstrate the feasibility of FELM learning procedure. The main contributions of this paper are (1) the FELM varies its structure dynamically with a simple computation; (2) the parameter learning imitates the role of emotions in mammalians brain; (3) by combining the advantage of nonsingular terminal sliding-mode control, the EFSMC system provides very high precision and finite-time control performance; (4) the system analysis is given in the sense of the gradient descent method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Li, T.S., Chen, C.C., Su, Y.T.: Optical image stabilizing system using fuzzy sliding-mode controller for digital cameras. IEEE Trans. Consum. Electron. 58(2), 237–245 (2012)

    Article  Google Scholar 

  2. Chang, Y.H., Chang, C.W., Chen, C.L., Tao, C.W.: Fuzzy sliding-mode formation control for multirobot systems: design and implementation. IEEE Trans. Syst. Man Cybern. B 42(2), 444–457 (2012)

    Article  Google Scholar 

  3. Londhe, P.S., Patre, B.M., Tiwari, A.P.: Design of single-input fuzzy logic controller for spatial control of advanced heavy water reactor. IEEE Trans. Nucl. Sci. 61(2), 901–911 (2014)

    Article  Google Scholar 

  4. Feng, Y., Yu, X., Han, F.: On nonsingular terminal sliding-mode control of nonlinear systems. Automatica 49(6), 1715–1722 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhu, Z., Yan, Y.: Space-based line-of-sight tracking control of GEO target using nonsingular terminal sliding mode. Adv. Space Res. 54(6), 1064–1076 (2014)

    Article  Google Scholar 

  6. Hsu, C.F., Lee, T.T., Tanaka, K.: Intelligent nonsingular terminal sliding-mode control via perturbed fuzzy neural network. Eng. Appl. Artif. Intell. 45(10), 339–349 (2015)

    Article  Google Scholar 

  7. Hwang, C.L., Chiang, C.C., Yeh, Y.W.: Adaptive fuzzy hierarchical sliding-mode control for the trajectory tracking of uncertain underactuated nonlinear dynamic systems. IEEE Trans. Fuzzy Syst. 22(2), 286–299 (2014)

    Article  Google Scholar 

  8. Li, Q., Zhang, W., Han, G., Yang, Y.: Adaptive neuro-fuzzy sliding mode control guidance law with impact angle constraint. IET Control Theory Appl. 9(14), 2115–2123 (2015)

    Article  MathSciNet  Google Scholar 

  9. Boldbaatar, E.A., Lin, C.M.: Self-learning fuzzy sliding-mode control for a water bath temperature control system. Int. J. Fuzzy Syst. 17(1), 31–38 (2015)

    Article  Google Scholar 

  10. Saghafinia, A., Hew, W.P., Uddin, M.N., Gaeid, K.S.: Adaptive fuzzy sliding-mode control into chattering-free IM drive. IEEE Trans. Ind. Appl. 51(1), 692–701 (2015)

    Article  Google Scholar 

  11. Juang, C.F., Hsu, C.H.: Reinforcement interval type-2 fuzzy controller design by online rule generation and Q-value-aided ant colony optimization. IEEE Trans. Syst. Man Cybern. B 39(6), 1528–1542 (2009)

    Article  Google Scholar 

  12. Han, H., Wu, X.L., Qiao, J.F.: Nonlinear systems modeling based on self-organizing fuzzy-neural-network with adaptive computation algorithm. IEEE Trans. Cybern. 44(4), 554–564 (2014)

    Article  Google Scholar 

  13. Lin, C.M., Li, H.Y.: Dynamic petri fuzzy cerebellar model articulation control system design for magnetic levitation system. IEEE Trans. Contr. Syst. Technol. 23(2), 693–699 (2015)

    Article  MathSciNet  Google Scholar 

  14. Wang, N., Er, M.J.: Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances. IEEE Trans. Contr. Syst. Technol. 23(3), 991–1002 (2015)

    Article  Google Scholar 

  15. Moren, J., Balkenius, C.: A computational model of emotional learning in the amygdala: from animals to animals. In: Proceedings of the 6th International Conference on the Simulation of Adaptive Behaviour (2000)

  16. Sharbafi, M.M., Lucas, C., Daneshvar, R.: Motion control of omni-directional three-wheel robots by brain-emotional-learning-based intelligent controller. IEEE Trans. Syst. Man Cybern. C 40(6), 630–638 (2010)

    Article  Google Scholar 

  17. Roshanaei, M., Vahedi, E., Lucas, C.: Adaptive antenna applications by brain emotional learning based on intelligent controller. IET Microw. Antennas Propag. 4(12), 2247–2255 (2010)

    Article  Google Scholar 

  18. Dehkordi, B.M., Parsapoor, A., Moallem, M., Lucas, C.: Sensorless speed control of switched reluctance motor using brain emotional learning based intelligent controller. J. Energy Convers. Manag. 52(1), 85–96 (2011)

    Article  Google Scholar 

  19. Daryabeigi, E., Zarchi, H.A., Markadeh, G.R., Soltani, J., Blaabjerg, F.: Online MTPA control approach for synchronous reluctance motor drives based on emotional controller. IEEE Trans. Power Electron. 30(4), 2157–2166 (2015)

    Article  Google Scholar 

  20. Khalghani, M.R., Khooban, M.H.: A novel self-tuning control method based on regulated bi-objective emotional learning controller’s structure with TLBO algorithm to control DVR compensator. Appl. Soft Comput. 24(11), 912–922 (2014)

    Article  Google Scholar 

  21. Hsu, C.F.: Intelligent total sliding-mode control with dead-zone parameter modification for a DC motor driver. IET Control Theory Appl. 8(11), 916–926 (2014)

    Article  Google Scholar 

  22. Lin, P.Z., Hsu, C.F., Lee, T.T., Wang, C.H.: Robust fuzzy-neural sliding-mode controller design via network structure adaptation. IET Control Theory Appl. 2(12), 1054–1065 (2008)

    Article  MathSciNet  Google Scholar 

  23. Wang, L.X.: Adaptive fuzzy systems and control: design and stability analysis. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  24. Juang, C.F., Juang, K.J.: Reduced interval type-2 neural fuzzy system using weighted bound-set boundary operation for computation speedup and chip implementation. IEEE Trans. Fuzzy Syst. 21(3), 477–491 (2013)

    Article  Google Scholar 

  25. Lin, F.J., Tan, K.H., Fang, D.Y., Lee, Y.D.: Intelligent controlled three-phase squirrel-cage induction generator system using wavelet fuzzy neural network for wind power. IET Renew. Power Gener. 7(5), 552–564 (2013)

    Article  Google Scholar 

  26. Lin, F.J., Hung, Y.C., Chen, J.M., Yeh, C.M.: Sensorless IPMSM drive system using saliency back-EMF-based intelligent torque observer with MTPA control. IEEE Trans. Ind. Inform. 10(2), 1226–1241 (2014)

    Article  Google Scholar 

  27. Lin, C.M., Li, H.Y.: A novel adaptive wavelet fuzzy cerebellar model articulation control system design for voice coil motors. IEEE Trans. Ind. Electron. 59(4), 2024–2033 (2012)

    Article  Google Scholar 

  28. Hsu, C.F., Lin, C.M., Yeh, R.G.: Supervisory adaptive dynamic RBF-based neural-fuzzy control system design for unknown nonlinear systems. Appl. Soft Comput. 13(4), 1620–1626 (2013)

    Article  Google Scholar 

  29. Hsueh, Y.C., Su, S.F., Tao, C.W., Hsiao, C.C.: Robust L 2-gain compensative control for direct-adaptive fuzzy-control-system design. IEEE Trans. Fuzzy Syst. 18(4), 661–673 (2010)

    Article  Google Scholar 

  30. Chen, H.K.: Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping. J. Sound Vib. 255(4), 719–740 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lin, C.M., Lin, M.H., Yeh, R.G.: Synchronization of unified chaotic system via adaptive wavelet cerebellar model articulation controller. Neural Comput. Appl. 23(3), 965–973 (2013)

    Article  Google Scholar 

  32. Hsu, C.F., Chang, C.W.: Intelligent dynamic sliding-mode neural control using recurrent perturbation fuzzy neural networks. Neurocomputing 173(3), 734–743 (2016)

    Article  Google Scholar 

  33. Huang, M.T., Lee, C.H., Lin, C.M.: Type-2 fuzzy cerebellar model articulation controller-based learning rate adjustment for blind source separation. Int. J. Fuzzy Syst. 16(3), 411–421 (2014)

    Google Scholar 

  34. Hung, Y.C., Lin, F.J., Hwang, J.C., Chang, J.K., Ruan, K.C.: Wavelet fuzzy neural network with asymmetric membership function controller for electric power steering system via improved differential evolution. IEEE Trans. Power Electron. 30(4), 2350–2362 (2015)

    Article  Google Scholar 

  35. Mai, T., Wang, Y.: Adaptive force/motion control system based on recurrent fuzzy wavelet CMAC neural networks for condenser cleaning crawler-type mobile manipulator robot. IEEE Trans. Contr. Syst. Technol. 22(5), 1973–1982 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the associate editor and the reviewers for their valuable comments. The authors appreciate the partial financial support from the Ministry of Science and Technology of Republic of China under Grant MOST 103-2221-E-032-063-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Fei Hsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, CF., Lee, TT. Emotional Fuzzy Sliding-Mode Control for Unknown Nonlinear Systems. Int. J. Fuzzy Syst. 19, 942–953 (2017). https://doi.org/10.1007/s40815-016-0216-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0216-7

Keywords

Navigation