Skip to main content

Advertisement

Log in

Fuzzy-Based Flat Anomaly Diagnosis and Relief Measures in Distributed Wireless Sensor Network

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper bestows a distributed adaptive scheme for diagnosing inaccurate data (anomaly) in wireless sensor networks. Faults occurring in sensor nodes are routine owing to the sensor device itself and the harsh environment in which the sensor nodes are deployed. It is mandatory for the WSNs to discover the anomaly and take actions to avoid further seediness of the network lifetime for confirming data accuracy. In this standpoint, we propose two perspectives for diagnosing and alleviating anomalies. The first view depicts input space partitioning by subtractive clustering method with robust density measure. Later, Takagi–Sugeno fuzzy inference model is applied for selection of several parameters and its membership functions, and rule-based construction is practiced to spot anomalies in distributed clustering wireless sensor network. By exploring combined correlation analysis with second perspective, the eliminated anomalous data are replaced by imputed data. Experimental results infer accuracy and reliability with a reduced amount of energy consumption than the state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Akyildiz, I.F., Su, W., Sankara subramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38, 393–422 (2002)

    Article  Google Scholar 

  2. Dargie W., Poellabauer C. In: Shen X., Pen D.Y. (eds.), Fundamentals of Wireless Sensor Networks. 3rd edn, Wiley (2010)

  3. Xie, Miao, Han, Song, Tian, Biming, Parvin, Sazia: Anomaly detection in wireless sensor networks: a survey. J. Netw. Comput. Appl. 34, 1302–1325 (2011)

    Article  Google Scholar 

  4. Sun, Bo, Shan, Xuemei, Kui, Wu, Xiao, Yang: Anomaly detection based secure in-network aggregation for wireless sensor networks. IEEE Syst. J. 7(1), 13–25 (2013)

    Article  Google Scholar 

  5. Roy, S., Conti, M., Setia, S., Jajodia, S.: Secure data aggregation in wireless sensor networks. IEEE Inf. Forens. Secur. 7(3), 1040–1052 (2012)

    Article  Google Scholar 

  6. Mitchell, Robert, Chen, Ing-Ray: A survey of intrusion detection in wireless network applications. Comput. Commun. 42, 1–23 (2014)

    Article  Google Scholar 

  7. Xu, H., Huang, L., Zhang, Y., Huang, H., Jiang, S., Liu, G.: Energy efficient cooperative data aggregation for wireless sensor networks. J. Parallel Distrib. Comput 70(9), 953–961 (2010)

    Article  MATH  Google Scholar 

  8. Forero, P., Cano, A., Giannakis, G.: Distributed clustering using wireless sensor networks. IEEE J. Sel. Top. Signal Process. 5(4), 702–724 (2011)

    Article  Google Scholar 

  9. Takagi, T., Sugeno, M.: Fuzzy Identification of systems and its applications to modeling and control. IEEE Trans. Syst., Man, Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  10. O’Reilly, C., Gluhak, A., Imran, M.A., Rajasegarar, S.: Anomaly detection in wireless sensor networks in a non-stationary environment. IEEE Commun. Surv. Tutor. 16(3), 1–20 (2013)

    Google Scholar 

  11. Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. ACM Commun. 43(5), 51–58 (2000)

    Article  Google Scholar 

  12. Chitra Devi, N., Palanisamy, V., Baskaran, K., Prabeela, S.: Efficient distributed clustering based anomaly detection algorithm for sensor stream in clustered wireless sensor network. Eur. J. Sci. Res. 54(4), 484–498 (2011)

    Google Scholar 

  13. Zhang, Yang, Meratnia, Nirvana, Havinga, P.J.M.: Distributed online outlier detection in wireless sensor networks using ellipsoidal support vector machine. J. Ad Hoc Netw. 11, 1062–1074 (2012)

    Article  Google Scholar 

  14. Zhang, Y., Hamm, N.A.S., Meratina, N., Stein, A., Van de Voort, M., Havinga, P.J.M.: Statistics based outlier detection for wireless sensor networks. Int. J. Geogr. Inf. Sci. 1–20 (2011)

  15. Kapitanova, K., Son, S.H., Kang, K.-D.: Using fuzzy logic for robust event detection in wireless sensor networks. J. Ad Hoc Netw. 10, 709–722 (2011)

    Article  Google Scholar 

  16. Liang Q, Wang L.: Event detection in wireless sensor networks using fuzzy logic system. In: International Conference on Computational Intelligence for Homeland Security and Personal Safety, IEEE, pp. 52–55 (2005)

  17. Sasikala, E., Rengarajan, N.: An intelligent technique to detect jamming attack in wireless sensor networks (WSNs). Int. J. Fuzzy Syst. 7(1), 76–83 (2015)

    Article  Google Scholar 

  18. Shamshirband, S., Amini, A., Anur, N., Kiah, M., Teh, Y., Furnell, S.: D-FICCA: a density based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks. J. Meas. Elsevier 55, 212–226 (2014)

    Article  Google Scholar 

  19. Kumaragea, Heshan, Khalil, Ibrahim, Tari, Zahir, Zomaya, Albert: Distributed anomaly detection for industrial wireless sensor networks based on fuzzy data modeling. J. Parallel Distrib. Comput. 73, 790–806 (2013)

    Article  Google Scholar 

  20. Barakkath Nisha, U., Maheswari, N.U., Venkatesh, R., Yasir Abdullah, R.: Robust estimation of incorrect data using relative correlation clustering technique in wireless sensor networks. In: IEEE International Conference on Communication and Network Technologies, Issue 1, pp. 314–318 (2014)

  21. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82, 35–45 (1960)

    Article  Google Scholar 

  22. Yang, H., Jiang, B., Staroswiecki, M.: Observer-based fault-tolerant control for a class of switched nonlinear systems. IET Control Theory Appl. 5, 1523–1532 (2007)

    Article  MathSciNet  Google Scholar 

  23. Yang, H., Cocquempot, V., Jiang, B.: Robust fault tolerant tracking control with application to hybrid nonlinear systems. IETControl Theory Appl 3(2), 211–224 (2009)

    Article  MathSciNet  Google Scholar 

  24. Huang, S., Tan, K.K., Lee, T.H.: Fault diagnosis and fault-tolerant control in linear drives using the Kalman filter. IEEE Trans. Ind. Electron 59(11), 4285–4292 (2012)

    Article  Google Scholar 

  25. Chen, Shui-Li, Fang, Yuan, Yun-Dong, Wu: A new hybrid fuzzy clustering approach to Takagi-Sugeno fuzzy modeling. Int. J. Digital Content Technol. Appl. 6(18), 341–350 (2012)

    Article  Google Scholar 

  26. Afifi, W.A., Hefny, H.A.: Adaptive TAKAGI-SUGENO fuzzy model using weighted fuzzy expected value in wireless sensor network. In: International Conference on Hybrid Intelligent Systems (HIS), IEEE, pp. 221–231 (2014)

  27. Chen, J.-J., FAN, X.-P., QU, Z.-H., YANG, X., LIU, S.-Q.: Subtractive clustering based clustering routing algorithm for wireless sensor networks. Inf. Control 7, 201–219 (2008)

    Google Scholar 

  28. Lizhe, Yu., Tiaojuan, Ren, Zhangquan, Wang, Banteng, Liu: Research on vehicle networking clustering routing algorithm based on subtractive clustering. Appl. Mech. Mater. 644–650, 2366–2369 (2014)

    Google Scholar 

  29. Barakkath Nisha, U., Uma Maheswari, N., Venkatesh, R., Yasir Abdullah, R.: Improving data accuracy using proactive correlated fuzzy system in wireless sensor networks. KSII Trans. Internet Inf. Syst. 9(9), 3515–3537 (2015)

    Google Scholar 

  30. Neamatollahi, P., Mashhad I., Taheri H., Naghibzadeh M., Yaghmaee M.: A hybrid clustering approach for prolonging lifetime in wireless sensor networks. IEEE International Symposium on Computer Networks and Distributed Systems, pp. 170–174 (2011)

  31. Chiu, S.: Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2, 267–278 (1994)

    Article  Google Scholar 

  32. Kim, D.W., Lee, K.Y., Lee, D., Lee, K.H.: A Kernel-based subtractive clustering method. Pattern Recognit. Lett. 26, 879–891 (2005)

    Article  Google Scholar 

  33. Nikhil, R.P., Chakraborty, D.: Mountain and subtractive clustering method: improvements and generalizations. Int. J. Intell. Syst. 15, 329–341 (2000)

    Article  MATH  Google Scholar 

  34. Yager, R.R., Filev, D.P.: Approximate clustering via the mountain method. IEEE Trans. Syst., Man Cybern. 24(8), 1279–1284 (1994)

    Article  Google Scholar 

  35. De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The Mahalanobis distance. J. Chemo Metrics Intell. Lab. Syst. Elsevier 50(1), 1–18 (2000)

    Article  Google Scholar 

  36. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing, 3rd edn. Prentice hall, Upper Saddle River (1997)

    Google Scholar 

  37. Sugeno, M., Kang, G.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28(1), 15–33 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zadeh, L.A.: Soft computing and fuzzy logic. ACM J. Softw. 11(6), 48–56 (1994)

    Article  Google Scholar 

  39. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications, 3rd edn. Publisher kluwer Academic Publishers Norwell, Norwell (1996)

    Book  MATH  Google Scholar 

  40. Vuran, M.C., Akan, B., Akyildiz, I.F.: Spatio-temporal correlation: theory and applications for wireless sensor networks. Comput. Netw. Int. J. Comput. Telecommun. Netw. 45(3), 245–259 (2004)

    MATH  Google Scholar 

  41. Liu, Z., Xing, W., Zeng, B., Wang, Y., Lu, D.: Distributed spatial correlation-based clustering for approximate data collection in WSNs. In: IEEE International Conference on Advanced Information Networking and Applications, pp. 56–63 (2013)

  42. Ishibuchi, H. Nakashima, T., Kuroda, T.: A hybrid fuzzy GBML algorithm for designing compact fuzzy rule-based classification systems. In: IEEE International Conference on Fuzzy Systems, pp. 248–252 (1999)

  43. http://db.csail.mit.edu/labdata/labdata.html

  44. http://lcav.epfl.ch/page-86035-en.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natarajan Uma Maheswari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barakkath Nisha, U., Uma Maheswari, N., Venkatesh, R. et al. Fuzzy-Based Flat Anomaly Diagnosis and Relief Measures in Distributed Wireless Sensor Network. Int. J. Fuzzy Syst. 19, 1528–1545 (2017). https://doi.org/10.1007/s40815-016-0253-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0253-2

Keywords

Navigation