Skip to main content
Log in

An Interval-Valued Fuzzy Cerebellar Model Neural Network Based on Intuitionistic Fuzzy Sets

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

An interval-valued fuzzy cerebellar model neural network (IV-FCMNN) is proposed for the identification and control of uncertain systems. It is a more general model that uses the framework of a cerebellar model neural network (CMNN) and Atanassov intuitionistic fuzzy sets (AIFSs), so that the mathematical representation of a fuzzy event is more complete and the fuzzy neural network is more general. In some special cases, this neural network can be reduced to an interval-valued fuzzy neural network (IV-FNN), a fuzzy neural network (FNN), a fuzzy cerebellar model neural network (FCMNN) or a CMNN. Since the interval-type input data are used to realize this algorithm, the IV-FCMNN copes better with uncertainty and allows greater freedom of design. Therefore, the ability to learn, the approximation precision and the fuzzy semantic description of this network are much better than those of other models. In the proposed IV-FCMNN, a training algorithm that uses a gradient descent method is proposed to adjust the parameters and convergence is proved using the Lyapunov stability theorem. The variable learning rates are analyzed and the optimal learning rates are also determined. For demonstrating the effectiveness of the proposed IV-FCMNN, three types of applications, including multiple functions approximation, multi-dimensional classification and nonlinear dynamic system feedback control, are performed and the comparison with other models are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin, Y., Liu, S.: A historical introduction to grey systems theory. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 2403–2408 (2004)

  2. Albus, J.S.: A new approach to manipulator control: the cerebellar model articulation controller (CMAC). J. Dyn. Syst. Meas. Control 97, 220–227 (1975)

    Article  MATH  Google Scholar 

  3. Chiang, C.T., Lin, H.S.: CMAC with general basis functions. Neural Netw. 9(7), 1199–1211 (1996)

    Article  Google Scholar 

  4. Lin, C.M., Chen, L.Y., Yeung, D.S.: Adaptive filter design using recurrent cerebellar model articulation controller. IEEE Trans. Neural Netw. 21(7), 1149–1157 (2010)

    Article  Google Scholar 

  5. Lin, C.M., Li, H.Y.: A novel adaptive wavelet fuzzy cerebellar model articulation control system design for voice coil motors. IEEE Trans. Ind. Electron. 59(4), 2024–2033 (2012)

    Article  Google Scholar 

  6. Lin, C.M., Li, H.Y.: TSK fuzzy CMAC-based robust adaptive back stepping control for uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 20(6), 1147–1154 (2012)

    Article  Google Scholar 

  7. Lin, C.M., Hou, Y.L., Chen, T.Y., Chen, K.H.: Breast nodules computer-aided diagnostic systems design using fuzzy cerebellar model neural network. IEEE Trans. Fuzzy Syst. 22(3), 693–699 (2014)

    Article  Google Scholar 

  8. Almedia, P.E.M., Simoes, M.G.: Parametric CMAC networks fundamentals and applications of a fast convergence neural structure. IEEE Trans. Ind. Appl. 39(5), 1551–1557 (2003)

    Article  Google Scholar 

  9. Lin, C.M., Chen, L.Y., Chen, C.H.: RCMAC hybrid control for MIMO uncertain nonlinear systems using sliding-mode technology. IEEE Trans. Neural Netw. 18(3), 708–720 (2007)

    Article  Google Scholar 

  10. Mendel, J.M.: Computing derivatives in interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 12(1), 84–98 (2004)

    Article  MathSciNet  Google Scholar 

  11. Straszecka, E.: Combining uncertainty and imprecision in models of medical diagnosis. Inf. Sci. 176(20), 3026–3059 (2006)

    Article  MathSciNet  Google Scholar 

  12. Han, J.W., Kamber, M.: Data Mining: Concepts and Techniques. Morgan, San Mateo (2006)

    MATH  Google Scholar 

  13. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-1. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J., Xu, Z., Bedregal, B., Montero, J., Hagras, H., Herrera, F., De Baets, B.: A historical account of types of fuzzy sets and their relationships. IEEE Trans. Fuzzy Syst. 24(1), 179–194 (2016)

    Article  Google Scholar 

  15. Hu, X., Pedrycz, W., Castillo, O., Melin, P.: Fuzzy rule-based models with interactive rules and their granular generalization. Fuzzy Sets Syst. 307, 1–28 (2017)

    Article  MathSciNet  Google Scholar 

  16. Sanchez, M.A., Castillo, O., Castro, J.R.: Information granule formation via the concept of uncertainty-based information with interval type-2 fuzzy sets representation and Takagi-Sugeno-Kang consequents optimized with cuckoo search. Appl. Soft Comput. 27, 602–609 (2015)

    Article  Google Scholar 

  17. Hernandez, M.D.L.A., Melin, P., Méndez, G.M., Castillo, O., López-Juarez, I.: A hybrid learning method composed by the orthogonal least-squares and the back-propagation learning algorithms for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems. Soft. Comput. 19(3), 661–678 (2015)

    Article  Google Scholar 

  18. Abiyev, R.H., Kaynak, O.: Type 2 fuzzy neural structure for identification and control of time-varying plants. IEEE Trans. Ind. Electron. 57(12), 4147–4159 (2010)

    Article  Google Scholar 

  19. Castillo, O., Melin, P.: A review on the design and optimization of interval type-2 fuzzy controllers. Appl. Soft Comput. 12(4), 1267–1278 (2012)

    Article  Google Scholar 

  20. Castillo, O., Castro, J.R., Melin, P., Rodríguez-Díaz, A.: Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction. Soft. Comput. 18(6), 1213–1224 (2014)

    Article  Google Scholar 

  21. Castillo, O., Castro, J.R., Melin, P., Rodríguez-Díaz, A.: Universal approximation of a class of interval type-2 fuzzy neural networks in nonlinear identification. Adv. Fuzzy Syst. 2013, 1–16 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Castro, J.R., Castillo, O.: A class of interval type-2 fuzzy neural networks illustrated with application to non-linear identification. In: International Joint Conference on Neural Networks, pp. 1–6 (2013)

  23. Soto, J., Melin, P., Castillo, O.: Particle swarm optimization of the fuzzy integrators for time series prediction using ensemble of IT2FNN architectures. In: Nature-Inspired Design of Hybrid Intelligent Systems. Springer, pp. 141–158 (2017)

  24. Gaxiola, F., Melin, P., Valdez, F., Castro, J.R., Castillo, O.: Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO. Appl. Soft Comput. 38, 860–871 (2016)

    Article  Google Scholar 

  25. Li, H., Sun, X., Wu, L., Lam, H.K.: State and output feedback control of interval type-2 fuzzy systems with mismatched membership functions. IEEE Trans. Fuzzy Syst. 23(6), 1943–1957 (2015)

    Article  Google Scholar 

  26. Sanz, J.A., Bernardo, D., Herrera, F., Bustince, H.: A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data. IEEE Trans. Fuzzy Syst. 23(4), 973–990 (2015)

    Article  Google Scholar 

  27. Kumbasar, T.: Robust stability analysis and systematic design of single-input interval type-2 fuzzy logic controllers. IEEE Trans. Fuzzy Syst. 24(3), 675–694 (2016)

    Article  Google Scholar 

  28. Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Inf. Sci. 132(1–4), 195–220 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Prentice (2001)

    MATH  Google Scholar 

  30. Melgarejo, M.A., Garcia, R.A., Pena-Reyes, C.A.: Pro-two: a hardware based platform for real time type-2 fuzzy inference. IEEE International Conference on Fuzzy Systems, pp. 977–982 (2004)

  31. Lynch, C., Hagras, H., Callaghan, V.: Embedded type-2 FLC for real-time speed control of marine and traction diesel engines. In: IEEE International Conference on Fuzzy Systems, pp. 347–352 (2005)

  32. Wu, H., Mendel, J.M.: Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 10(5), 622–639 (2002)

    Article  Google Scholar 

  33. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bustince, H., Burillo, P.: Vague sets are intuitionistic fuzzy sets. Fuzzy Sets Syst. 79(3), 403–405 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, D.: Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons. IEEE Trans. Fuzzy Syst. 21(1), 80–99 (2013)

    Article  Google Scholar 

  36. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(1), 338–353 (1965)

    Article  MATH  Google Scholar 

  37. Huang, H.P., Yan, J.L., Cheng, T.H.: Development and fuzzy control of a pipe inspection robot. IEEE Trans. Ind. Electr. 57(3), 1088–1095 (2010)

    Article  Google Scholar 

  38. Badaloni, S., Falda, M.: Temporal-based medical diagnoses using a fuzzy temporal reasoning system. J. Intell. Manuf. 21(1), 145–153 (2010)

    Article  MATH  Google Scholar 

  39. Louverdis, G., Andreadis, I., Tsalides, P.: New fuzzy model for morphological colour image processing. IEE Proc. Vision Image Signal Process. 149(3), 129–139 (2002)

    Article  MATH  Google Scholar 

  40. Atanassov, K.: Intuitionistic Fuzzy Sets, Theory and Applications. Physica-Verlag, Wurzburg (1999)

    Book  MATH  Google Scholar 

  41. Ye, J.: Cosine similarity measures for intuitionistic fuzzy sets and their applications. Math. Comput. Model. 53(1–2), 91–97 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Keleş, A., Yavuz, U.: Expert system based on neuro-fuzzy rules for diagnosis breast cancer. Expert Syst. Appl. 38(5), 5719–5726 (2011)

    Article  Google Scholar 

  43. Own, C.M.: Switching between type-2 fuzzy sets and intuitionistic fuzzy sets: an application in medical diagnosis. Appl. Intell. 31(3), 283–291 (2009)

    Article  Google Scholar 

  44. Badaloni, S., Falda, M.: Temporal-based medical diagnoses using a fuzzy temporal reasoning system. J. Intell. Manuf. 21(1), 145–153 (2010)

    Article  MATH  Google Scholar 

  45. Turksen, I.B.: Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst. 20(2), 191–210 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  46. Gau, W.L., Buehrer, D.J.: Vague sets. IEEE Trans. Syst. Man Cybern. 23(2), 610–614 (1993)

    Article  MATH  Google Scholar 

  47. Xu, Z., Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen Syst. 35(4), 417–433 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mandic, D.P.: A generalized normalized gradient descent algorithm. IEEE Trans. Signal Process. Lett. 11(2), 115–118 (2004)

    Article  Google Scholar 

  49. Li, Q.J., Wang, Y., Li, Z.X., Wang, X.: ISODATA algorithm based on intuitionistic fuzzy. Comput. Eng. Appl. 48(9), 176–177 (2012)

    Article  Google Scholar 

  50. Khatibi, V., Montazer, G.A.: A new evidential distance measure based on belief intervals. Sci. Iran. Trans. D Comput. Sci. Eng. Electr. Eng. 17(2), 119–132 (2010)

    MATH  Google Scholar 

  51. Cha, S.H.: Comprehensive survey on distance similarity measures between probability density functions. Int. J. Math. Models Methods Appl. Sci. 1(4), 300–307 (2007)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their constructive comments and based on which the presentation of this paper has been greatly improved. This work was supported by the Natural Science Foundation (2015J01275) of Science and Technology agency, Fujian, and the Science and Technology-Planned Project (3502Z20143034) of Xiamen, and the Foreign Science and Technology Special Cooperation (E201401400) of Xiamen University of Technology, and the National Science Council of the Republic of China under Grant NSC 98-2221-E-155-058-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Min Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Lin, CM. An Interval-Valued Fuzzy Cerebellar Model Neural Network Based on Intuitionistic Fuzzy Sets. Int. J. Fuzzy Syst. 19, 881–894 (2017). https://doi.org/10.1007/s40815-017-0321-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0321-2

Keywords

Navigation