Skip to main content
Log in

Relaxed Stability Conditions for Discrete-Time T–S Fuzzy Systems via Double Homogeneous Polynomial Approach

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper deals with the problem of stability analysis for discrete-time Takagi–Sugeno (T–S) fuzzy systems. The double homogeneous polynomially parameter-dependent (DHPPD) Lyapunov function is proposed, which is expressed in the double homogeneous polynomial form not only of the membership functions but also of the state variables. Based on the DHPPD Lyapunov function, a relaxed stability condition is derived. Additionally, the complete square matricial representation of homogeneous polynomials is considered to further reduce the conservatism. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC–15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  2. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)

    Book  Google Scholar 

  3. Tanaka, K., Hori, T., Wang, H.O.: A multiple Lyapunov function approach to stability of fuzzy control systems. IEEE Trans. Fuzzy Syst. 11(4), 582–589 (2003)

    Article  Google Scholar 

  4. Lee, D.H., Park, J.B., Joo, Y.H.: A fuzzy Lyapunov function approach to estimating the domain of attraction for continuous-time Takagi–Sugeno fuzzy systems. Inf. Sci. 185(1), 230–248 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sala, A., Arino, C.: Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: applications of Polya’s theorem. Fuzzy Sets Syst. 158(24), 2671–2686 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Peng, C., Yue, D., Fei, M.R.: Relaxed stability and stabilization conditions of networked fuzzy control systems subject to asynchronous grades of membership. IEEE Trans. Fuzzy Syst. 22(5), 1101–1112 (2014)

    Article  Google Scholar 

  7. Chen, J., Xu, S., Li, Y., Qi, Z., Chu, Y.: Improvement on stability conditions for continuous-time T–S fuzzy systems. J. Frankl. Inst. 353(10), 2218–2236 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, J., Xu, S., Li, Y., Chu, Y., Zou, Y.: Further studies on stability and stabilization conditions for discrete-time T–S systems with the order relation information of membership functions. J. Frankl. Inst. 352(12), 5796–5809 (2015)

    Article  MathSciNet  Google Scholar 

  9. Chen, J., Xu, S., Jia, X., Zhang, B.: Novel summation inequalities and their applications to stability analysis for systems with time-varying delay. IEEE Trans. Autom. Control. 62(5), 2470–2475 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Su, X., Wu, L., Shi, P., Song, Y.: A novel approach to output feedback control of fuzzy stochastic systems. Automatica 50(12), 3268–3275 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Su, X., Shi, P., Wu, L., Song, Y.: A novel control design on discrete-time Takagi–Sugeno fuzzy systems with time-varying delays. IEEE Trans. Fuzzy Syst. 21(4), 655–671 (2013)

    Article  Google Scholar 

  12. Wu, L., Su, X., Shi, P., Qiu, J.: A new approach to stability analysis and stabilization of discrete-time TS fuzzy time-varying delay systems. IEEE Trans. Syst. Man Cybern. B Cybern. 41(1), 273–286 (2011)

    Article  Google Scholar 

  13. Guerra, T.M., Miguel, M.: Strategies to exploit non-quadratic local stability analysis. Int. J. Fuzzy Syst. 14(3), 372–379 (2012)

    MathSciNet  Google Scholar 

  14. Guelton, K., Manamanni, N., Duong, C.C., Koumba-Emianiwe, D.L.: Sum-of-squares stability analysis of Takagi–Sugeno systems based on multiple polynomial Lyapunov functions. Int. J. Fuzzy Syst. 15(1), 1–8 (2013)

    MathSciNet  Google Scholar 

  15. Li, H., Sun, X., Wu, L., Lam, H.: State and output feedback control of a class of fuzzy systems with mismatched membership functions. IEEE Trans. Syst. 23(6), 1943–1957 (2015)

    Google Scholar 

  16. Li, H., Sun, X., Shi, P., Lam, H.: Control design of interval type-2 fuzzy systems with actuator fault: sampled-data control approach. Inf. Sci. 302, 1–13 (2015)

    Article  MATH  Google Scholar 

  17. Lendek, Z., Guerra, T.M., Lauber, J.: Controller design for TS models using delayed nonquadratic Lyapunov functions. IEEE Trans. Cybern. 45(3), 453–464 (2015)

    Article  Google Scholar 

  18. Guerra, T.M., Vermeiren, L.: LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi–Sugeno’s form. Automatica 40(5), 823–829 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guerra, T.M., Bernal, M., Guelton, K., Labiod, S.: Non-quadratic local stabilization for continuous-time Takagi–Sugeno models. Fuzzy Sets Syst. 201, 40–54 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feng, G.: Stability analysis of discrete-time fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 12(1), 22–28 (2004)

    Article  Google Scholar 

  21. Ding, B.: Homogeneous polynomially nonquadratic stabilization of discrete-time Takagi–Sugeno systems via nonparallel distributed compensation law. IEEE Trans. Fuzzy Syst. 18(5), 994–1000 (2010)

    Article  Google Scholar 

  22. Lee, D.H., Park, J.B., Joo, Y.H.: Improvement on nonquadratic stabilization of discrete-time Takagi–Sugeno fuzzy systems: multiple-parameterization approach. IEEE Trans. Fuzzy Syst. 18(2), 425–429 (2010)

    Google Scholar 

  23. Xie, X., Ma, H., Zhao, Y., Ding, D.W., Wang, Y.: Control synthesis of discrete-time T–S fuzzy systems based on a novel non-PDC control scheme. IEEE Trans. Fuzzy Syst. 21(1), 147–157 (2013)

    Article  Google Scholar 

  24. Xie, X., Yue, D., Zhu, X.: Further studies on control synthesis of discrete-time T–S fuzzy systems via useful matrix equalities. IEEE Trans. Fuzzy Syst. 22(4), 1026–1031 (2014)

    Article  Google Scholar 

  25. Shen, H., Su, L., Park, J.H.: Reliable mixed \(H_{\infty }\)/passive control for T–S fuzzy delayed systems based on a semi-Markov jump model approach. Fuzzy Sets Syst. 314, 79–98 (2017)

    Article  MATH  Google Scholar 

  26. Shen, H., Park, J.H., Wu, Z.G.: Finite-time reliable \(\cal{L}_2-\cal{L}_{\infty }/\cal{H}_{\infty }\) control for Takagi–Sugeno fuzzy systems with actuator faults. IET Control Theory Appl. 8(9), 688–696 (2014)

    Article  MathSciNet  Google Scholar 

  27. Chen, J., Xu, S., Zhang, B., Qi, Z., Li, Z.: Novel stability conditions for discrete-time T–S fuzzy systems: a Kronecker-product approach. Inf. Sci. 337–338, 72–81 (2016)

    Article  Google Scholar 

  28. Chen, J., Xu, S., Zhang, B., Chu, Y., Zou, Y.: New relaxed stability and stabilization conditions for continuous-time T–S fuzzy models. Inf. Sci. 329, 447–460 (2016)

    Article  Google Scholar 

  29. Chesi, G., Garulli, A., Tesi, A., Vicino, A.: Homogeneous Lyapunov functions for systems with structured uncertainties. Automatica 39(6), 1027–1035 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chesi, G.: Establishing robust stability of discrete-time systems with time-varying uncertainty: the Gram-SOS approach. Automatica 50(11), 2813–2821 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Oliveira, R.C.L.F., Peres, P.L.D.: Parameter-dependent LMIs in robust analysis: characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations. IEEE Trans. Autom. Control. 52(7), 1334–1340 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Nature Science Foundation under Grants 61673215, 61403199, 61403178, the Natural Science Foundation of Shandong Province for Outstanding Young Talents in Provincial Universities under Grant ZR2016JL025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Xu, S., Ma, Q. et al. Relaxed Stability Conditions for Discrete-Time T–S Fuzzy Systems via Double Homogeneous Polynomial Approach. Int. J. Fuzzy Syst. 20, 741–749 (2018). https://doi.org/10.1007/s40815-017-0339-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0339-5

Keywords

Navigation